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2 Methods2.1 RBF networkA two-layer RBF network implements a mapping ŷ : Rn 7! R according toŷ(x) = �0 + nrXi=1 �i�i(kx� cik=hi)where x 2 Rn is an input vector, �i(:) is the transfer function, hi is the i-th center width,k:k denotes the Euclidean norm, �i 2 R are the weights, ci 2 Rn represent the positions ofRBF centers, and nr is the number of centers. In the same way as in Platt's algorithm, thepolynomial approximation of the Gaussian transfer function was used.2.2 Platt's algorithmThe Platt's method can be described with the following pseudo-code:�0 = �max, �0 = y0, c1 = x1, �1 = y1 � y0 = e1, h1 = ��0�1 = �0 exp(�1=� )for j = 2 to number of iterations fevaluate output of network ŷj =Pnri=1 �i�i(xj) + �0compute error ej = yj � ŷjfind distance to nearest center d = minikci � xjkif jej j > � and d > �jallocate new unit: nr = nr + 1, cnr = xj, �nr = ej, hnr = ��jelseUpdate(�0; f�i; cignri=1)if �j > �min�j+1 = �j exp(�1=� )else�j+1 = �jgThe network was initialized with the �rst two input-output pairs. The condition forallocating a new center in step j exploits two criteria. The �rst criterion was based onprediction error jej j = jyj � ŷj j (yj was desired output). This was compared with the criticalvalue �. The second criterion was satis�ed if the distance of input x from the nearest centerc was larger than the critical scale resolution �j . The learning started at largest scale ofresolution, i.e. �0 = �max and was shrunk during N time steps until it reached the smallestvalue �min. The parameter � (decay constant) was thus evaluated from number of steps N .The LMS algorithm was used to update weights��i = �ej�i(xj) ��0 = �ej ;and centers �ci = 2 �(hi)2 (xj � ci)�i(xj)ej�i ; (1)where � is the learning factor.



2.3 Weights adaptationOur �rst modi�cation of Platt's algorithm consists in using di�erent algorithm for estimationof weights f�ignri=0. Instead of the LMS algorithm we used QRD algorithm with square-root-free Givens rotations (GQRD) [4]. In GQRD algorithm, the forgetting factor � was adjustedat each time step according to �(j) = �0�(j� 1)+1� �0. After adding a new center � = �(0)and in order to re-adjust the network, further center addition was not allowed for next Ttime-steps. It is necessary to note that in the case of non-stationary data, the application ofthe forgetting factor might improve estimate of weights but convergence is not guaranteed.The similar method of weights adaptation, based on extended Kalman �lter (EKF) algo-rithm, was recently applied to RANs by McLachlan and Lowe [5]. Comparison of GQRD andEKF can be found in [4].2.4 Dynamic Cell StructuresThe second modi�cation we have studied consists in using modi�ed DCS algorithm for on-line adaptation of positions of existing centers fcignri=1. DCS employ a modi�ed Kohonenlearning rule in conjunction with competitive Hebbian learning. Hebbian learning is exploitedto establish lateral connection between centers with the goal to re
ect the topology of theapproximated manifold. Symmetric lateral connections was assumed. A new center wasconnected with the center nearest to the presented input with weight equal to 1. The Kohonen-like learning rule served to adjust the position of centers�cw = �1(xj � cw) �ci = �2Awi(xj � ci) for i 2 Nh(w) ; (2)where �1; �2 are the learning factors, Awi is the symmetric real-valued matrix of lateralconnections and Nh(w)= fi j (Awi 6= 0; 1 � i � nr)g is the neighborhood of a center cw,closest to presented input xj . We also investigated modi�cation of this rule derived from (1):�cw = 2�1(hw)2 (xj � cw)�w(xj)ej�w �ci = 2�2(hi)2Awi(xj � ci)�i(xj)ej�i for i 2 Nh(w): (3)Both the update of matrixA and the adjustment of the centers position were done in procedureUpdate() (see pseudo-code of Platt's algorithm).2.5 Time-series predictionRAN was applied to prediction of chaotic Mackey-Glass time series (available from CMULearning Benchmark Archive [3]). Network was trained to predict the value at time t + 85,from inputs at time t, t � 6, t � 12, and t � 18. The �rst 3103 generated data pointswere presented to the network with the following values of parameters: � = 0:87, T = 30,�(0) = 0:9, �0 = 0:99, � = 0:05, N = 2500, �max = 0:7, �min = 0:07, �1 = 0:01, �2 = 0:001 .3 ResultsThe quality of prediction was evaluated in terms of normalized root mean square error(NRMSE) and number of inserted centers (NIC) (Table 1). One can see, that using (B)decreased NRMSE by 30% on average compared to \pure" Platt's approach (A). Moreover,improvement was obtained also in terms of NIC which signi�cantly decreased in two cases,



� = 0:1 and 0:05. On the whole, the best results were achieved with method (C). NIC for(C) was 1.8 times lower on average than for (B) and NRMSE was smaller for (C) as well.Both (D) and (E) slightly decreased NIC compared to (C), but, on the other hand, NRMSEincreased in both cases, especially in (D).A B C D ELMS LMS 1 GQRD LMS 1 GQRD LMS 30 GQRD DCS2 30 GQRD DCS3 30� NIC NRMSE NIC NRMSE NIC NRMSE NIC NRMSE NIC NRMSE0.01 114 0.395 113 0.258 52 0.242 47 0.318 48 0.2660.02 113 0.402 90 0.260 46 0.241 41 0.318 44 0.2680.05 95 0.383 48 0.272 32 0.250 31 0.362 31 0.3020.10 67 0.388 28 0.294 20 0.285 22 0.399 19 0.346Table 1: Comparison of achieved results. The items in the \triplets" on the second line relateto the methods for weights adaptation, center adaptation and the length of window duringwhich the next center was not allowed to be inserted. DCS2 and DCS3 represent the methodsbased on DCS algorithm associated with equation (2) and (3), respectively.4 DiscussionIn this paper we report about a new method for constructing RANs. Developed networkswere applied to chaotic time-series prediction. Using NRMSE and NIC as criteria for modelevaluation, we found out that our modi�cations with GQRD method provided results thatwere superior to those reported by Platt. We also tried to use DCS as a di�erent method forapproximation of the input data manifold. Although this approach performs well in o�-linelearning [2], we didn't �nd any signi�cant improvement in on-line case. We made severalinvestigations with a di�erent on-line version of DCS [1] and got the same results as withDCS described in this paper. As these algorithms strongly depend on parameters setting, wethink that more experiments have to be done to make conclusions.Although we achieved the improvement in on-line model order estimation, this questionstill remains open. We hypothesize that DCS approach can lead to even more \considerate"strategy of inserting centers, resulting in lower network complexity with the same accuracy.References[1] I. Ahrns, J. Bruske, and G. Sommer. On-line learning with dynamic cell structures. In Proceedingsof ICANN'95, volume 2, pages 141{146, 1995.[2] J. Bruske and G. Sommer. Dynamic Cell Structure learns perfectly topology preserving map.Neural Computation, 7:845{865, 1995.[3] http://legend.gwydion.cs.cmu.edu/neural-bench/benchmarks/mackey-glass.html.[4] N. Kalouptsidis and S. Theodoridis. Adaptive system identi�cation and signal processing algo-rithms. Prentice Hall, 1993.[5] A. McLachlan and D. Lowe. Tracking of non-stationary time-series using resource allocating RBFnetworks. In R. Trappl, editor, Cybernetics and Systems '96. Proceedings of the 13th EuropeanMeeting on Cybernetics and Systems Research., pages 1066{1071, 1996.[6] C.J. Platt. A resource allocating network for function interpolation. Neural Computation, 3(2):213{225, 1991.


