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Abstract—It has been demonstrated that the computational
capabilities of echo state networks are maximized when the recur-
rent layer is close to the border between a stable and an unstable
dynamics regime, the so called edge of stability, or criticality. The
maximization of performance is computationally useful, leading
to minimal prediction error or maximal memory capacity, and
has been shown to lead to maximization of information-theoretic
measures, such as transfer entropy and active information storage
in case of some datasets. In this paper, we take a closer look at
these measures, using Kraskov–Grassberger–Stögbauer estimator
with optimized parameters. We experiment with four datasets dif-
fering in the data complexity, and discover interesting differences,
compared to the previous work, such as more complex behavior
of the information-theoretic measures. We also investigate the
effect of reservoir orthogonalization, that has been shown earlier
to maximize memory capacity, on the prediction accuracy and
the above mentioned measures.

I. I�����������

Reservoir computing (RC) has received considerable atten-
tion regarding the effect of reservoir properties on information
processing in the neural network models employed in various
tasks such as time series prediction or input reconstruction
(reflecting the memory properties of the model). It has been
shown [1], and further confirmed in subsequent studies, e.g.
[2], [3], that the task performance is maximized when the net-
work is operating in a state near the edge of chaos, or stability.
It concerns the critical state between a stable (ordered) regime
when disturbances are attenuated and an unstable (chaotic)
regime where disturbances are amplified (hence deteriorating
performance). The critical regime seems interesting also from
a biological perspective, since it has been hypothesized that
cortical circuits may be tuned to criticality for optimized
behavior [4], [5] (but see also [6] for critical assessment).

In the case of the echo state networks (ESNs) having
discrete-time dynamics, a lot of work has been done regarding
proper initialization of the reservoir matrix, its proper tuning,
including the reservoir orthogonalization (see overview in [7]).
Regarding the memory properties of ESNs, Jaeger [8] defined
and quantified the short-term memory capacity (MC) that
measures the network ability to reconstruct the past input infor-
mation from the reservoir on the network output by computing
squared correlations. Orthogonal ESNs have been shown to
increase the MC to a certain degree and we recently showed
[9], using two gradient-based orthogonalization procedures,
that this increase can approach the theoretical limit proved by
Jaeger [8] for linear reservoirs to be equal to the reservoir size.

The critical regime has also been investigated from the
view of information processing by evaluating the information-
theoretic measures such as active information storage [10] and
transfer entropy [11]. It was shown, in case of two datasets
[12], that both measures are maximized near the edge of
stability (criticality). In this work, we replicated these results,
but extended the investigation using four datasets, and taking
a closer look at these measures, leading to a more complex
interpretation of the results. In addition, we investigate the
effect of reservoir orthogonalization on these measures as well
as on ESN performance.

The paper is organized as follows. In Section II we provide
background information about the underlying theory and the
methods used. Section III presents results of experiments.
Section IV concludes the paper.

II. T����� ��� �������
Here we introduce the model of ESN we used, as well as

measures used for its evaluation on two different tasks (mem-
ory capacity and time series prediction) using four datasets.

A. Echo state network model
For the purpose of experiments, we assume an ESN model

with a single input u(t), N reservoir neurons and Q output
neurons. Reservoir activations x(t) = (x1(t), . . . , xN (t))�

and output activations y(t) = (y1(t), . . . , yQ(t))
� are up-

dated according to ESN dynamics given by the formulas

x(t) = f(winu(t) +Wx(t− 1))

y(t) = fout(Woutx(t))

where f : RN→RN and fout : RN→RQ are suitable activation
functions. We use nonlinear f = tanh and the linear readout
fout = id (both applied element-wise). The weight vector win

refers to input weights, W and Wout are recurrent and output
weight matrices, respectively. Readout weights are computed
as Wout = UX+, where the matrix U is created either by con-
catenation of the target vectors (corresponding to past inputs
with different delays) in MC task, or as a single target vector
(in case of the prediction task), and X+ = X�(XX�)−1 is
the Moore–Penrose pseudoinverse matrix of concatenated state
vectors.

B. Information-theoretic measures
In order to get deeper insight into information processing in

an ESN, we use fundamental quantities of information theory,
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capturing the dynamics of information in the network. The
fundamental question the measures address is: “where does the
information in a random variable Vt+1 in a time series come
from?” [13]. This question is addressed in terms of information
from the past of process V (the information storage), or
information contributed from other source processes Z (the
information transfer). The active information storage (AIS) AV

[10] measures how much of the information is observed to be
in use in computing its next state. AV is the local mutual
information between realizations v

(k)
t = [vt, vt−1, ..., vt−k+1]

of the past state V
(k)
t and the corresponding realizations vt+1

of the next value Vt+1. Formally, local AIS aV is defined as

aV (k, t+ 1) = log2
p(vt+1|v(k)

t )

p(vt+1)

The local values of AIS measure the dynamics of information
storage at different time points within a system, revealing how
the use of memory fluctuates during a process. The average
A

(k)
V is the time-average of the local values aV (t+ 1, k).

Information transfer, as a directed measure, is defined as
the amount of information that a source process provides
about a target (or destination) process’ next state that was not
contained in the target’s past. The transfer entropy (TE) [11]
captures the average mutual information (MI) from realizations
z
(l)
t of the state Z

(l)
t of a source time-series process Z to

the corresponding realizations zt+1 of the next value Zt+1

of the target time-series process V , conditioned on realiza-
tions v

(k)
t of the previous state V

(k)
t , i.e. TZ→V (k, l) =

MI(Vt+1;Z
(l)
t |V(k)

t ). The local TE quantifies the amount of
information transfer attributed to the specific configuration or
realization (vt+1,v

(k)
t , z

(l)
t ) at time step t+ 1:

tZ→V (k, l) = log2
p(vt+1|v(k)

t , z
(l)
t )

p(vt+1|v(k)
t )

.

These local information transfer values measure the dynamics
of transfer in time between any given pair of processes within
a system.

C. Estimation of information-theoretic measures

For approximation of TE we use the Kraskov–Grassberger–
Stögbauer estimator [14] that has been formulated and argued
in [13] (p. 48) to be more data efficient and accurate than other
techniques. Precisely,

�TE(k,l)

Z→V = Ψ(K)+

+ �Ψ(n
v
(k)
t

+ 1)−Ψ(n
vt+1,v

(k)
t

+ 1)−Ψ(n
v
(k)
t ,z

(l)
t

+ 1)�t

where Ψ denotes the digamma function, n(·) denotes the
number of nearest neighbors in �-hypercubes centered at (·)
in the marginal spaces where � is given by the Chebyshev
distance of the realization (vt+1,v

(k)
t , z

(l)
t ) at time step t to

its Kth nearest neighbor in the joint space, and �·�t denotes
the time-average. Similarly the AIS estimator is written as

�AIS(k)V = Ψ(K) +Ψ(N)− �Ψ(n
v
(k)
t

+ 1) +Ψ(nvt+1
+ 1)�t.

where N is the sample size.

For finding the optimal parameters of the KGS estimator,
we apply the Ragwitz–Kantz criterion [15] that is based on
scanning the (k, τ) plane to identify the point in that plane
that minimizes the locally constant predictor error, i.e.

(k, τ) = argmin �v − v̂(k, τ)� (1)

where k ∈ Z, τ ∈ Z , v(k, τ) is the entire tested sequence
(observed on a single neuron), v̂(k, τ) is its estimate and the
embedded state vector v

(k)
t = [vt, vt−τ , ..., vt−(k−1)τ ]. The

estimated state vectors are found as

v̂t+1 =
1

card(Ut)

�

vl∈Ut

vl+1 (2)

where Ut = {vl : �vl − vt� ≤ �}. The parameter � results
from the number (K) of chosen nearest neighbors (NN).

Since we are using ESNs, we assume that only the most
recent activity of the source unit is a causal contributor to
the activity of the target unit, i.e. l = 1. Hence, no parameter
search is made for optimal embedding of the source unit.

D. Relative entropy of reservoir transfer entropy

In order to assess the change in TE due to the reservoir
scaling, we computed relative entropy, known as Kullback–
Leibler divergence, that measures the distance of the tested dis-
tribution from the uniform distribution on the interval [0;1]. 1

This can be used to quantify the TE differences depending on
the reservoir scaling (the higher the KL value, the larger the
distance). The estimator for relative entropy of the reservoir
transfer entropy in our case is computed as

�DKL(TE
(k,l)
RES �U(0; 1)) = ln(1)− �HKL(TE

(k,l)
RES)

where ln(1) is the exact differential entropy of the uniform
distribution on [0; 1], �HKL(·) is the Kozachenko–Leonenko en-
tropy estimator and TE

(k,l)
RES is the distribution of the estimates

of transfer entropies in the reservoir.

E. Memory capacity

Jaeger [8] introduced (short term) memory capacity (MC),
as a measure for the ability of the reservoir to store and recall
previous inputs fed into the network. Jaeger defined it as

MC =

qmax�

q=1

MCq =

qmax�

q=1

cov2(u(t− q), yq(t))

var(u(t)) · var(yq(t))
(3)

where ‘cov’ denotes covariance (of the two time series), ‘var’
means variance, qmax = ∞, u(t− q) is the input presented q-
steps before the current input, and yq(t) = wout

q x(t) = ũ(t−q)
is its reconstruction at the network output (using linear read-
out), where wout

q is the weight vector of q-th output unit.
The computation of MC is approximated using qmax = Q
(i.e. given by the number of output neurons). The concept
of MC is based on the network ability to retrieve the past
information (for various delays q) from the reservoir using the
linear combinations of reservoir unit activations observed at
the output (quantified by MCq).

1We chose the uniform distribution as it maximizes the differential entropy
when no prior knowledge about distribution is available.
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F. Reservoir setting

Memory capacity depends on reservoir properties. Papers
[16] and [7] provide a concise overview of practical tips on
the reservoir initialization in ESNs (but see also [17], [18]
for more recent results). Spectral radius is not a universally
acceptable indicator of (non)existence of echo states. Never-
theless, ρ(W) ≈ 1 tends to lead to higher MC, as investigated
also in [9], [19], where we also investigated the effect of
two iterative orthogonalization procedures (OG and ON) of
reservoir weight vectors on memory capacity of an ESN. We
showed that both procedures helped MC increase to almost
reach the theoretical limit (N ). Here we test the effect of these
procedures on information measures and the ESN performance
in case of four different datasets.

G. Estimating the criticality

In order to monitor the changes of information measures,
one can look at the stability properties of the reservoir. The
well-known approach from the literature is the (characteristic)
Lyapunov exponent (LE, or λ), based on evaluating the average
sensitivity to perturbations of the initial conditions [1]. LE is
computed for trained ESNs, considering all reservoir neurons,
one at a time, and averaging over their sensitivity to perturba-
tions over the large enough temporal interval. Ordered state in
ESN occurs for λ < 0, whereas λ > 0 implies unstable state.
Hence, a bifurcation occurs at λ ≈ 0 (the critical point, or
the edge of stability). Since λ is by definition an asymptotic
quantity, it has to be estimated for most dynamical systems.
We used the method described in [20] and replicated in [9].

III. E����������

A. Experimental setup

We use the ESNs with N = 100 reservoir units, a single
input unit and the number of output units Q dependent on
the task (120 units for the MC task, and a single unit for the
prediction task). The elements of the input weight vector win

were initialized from the uniform distribution U(−0.1; 0.1) and
elements of the recurrent weight matrix W from the normal
distribution N (0; 0.5), in order to set the reservoir to a unstable
regime in all four dataset cases. For reservoir scaling, we set
the spectral radius ρ to the desired values 0.6 and 0.95, in order
to get to a stable and a close-to-critical regimes, respectively.
The reservoirs scaled to ρ = 0.95 were further orthogonalized
by the OG or ON method. In all experiments, after discarding
the first 100 samples to get rid of transients, we used 1000
samples for setting the readout weights and the next 2000
samples of the time series for testing the model performance.

For experiments, we use four datasets. For testing memory
capacity (MC), we consider (as in our previous work) an
unstructured one-dimensional input: a sequence of indepen-
dent and identically distributed (i.i.d.) real numbers from
the interval [−1; 1]. For time series prediction, we use three
benchmark datasets: (1) a nonlinear NARMA model, generated
by the equation u(t + 1) = 0.2u(t) + 0.004u(t)

�29
i=0 u(t −

i) + 1.5 q(t − 29)q(t) + 0.001, where the driving input q(t)
is sampled from a uniform random distribution U(0; 0.5),
(2) Mackey–Glass (M–G) system [21] with parameters τ =
17,β = 0.2, γ = 0.1, n = 10, and (3) the x-coordinate of the
Lorenz system [22] with parameters σ = 10, ρ = 28,β = 8/3.

The reason for using three different time series was to in-
vestigate potential differences in TE and AIS depending on
the reservoir scaling, and the potential effect of reservoir
orthogonalization(s). Regarding the complexity, NARMA is
known to be more complex than the other two time series.
The prediction performance is measured by normalized root
mean squared error computed as

NRMSE =

�
�(ŷ(t)− y(t))2 �t

�(y(t)− �y(t)�t)2 �t
where ŷ(t) denotes the predicted output and y(t) is the true
output.

B. Information-theoretical measures around criticality
As a first step, we looked at TE behavior as a function of

the estimated Lyapunov exponent (introduced in Section II-G),
whose values can be used for monitoring the reservoir states
around the critical regime. Using the same initialization of
win and W, we increased σ, with 5 simulations per value,
such that log σ varied within the interval [−1.5;−0.25], with
a step 0.1. In order to get different values of λ, we increased
the variance σ of the distribution from which the elements of
W are drawn, with 5 simulations per value, such that log σ
varied within the interval [−1.5;−0.25], with a step 0.1 using
the same initialization of win and we computed λ afterwards.
Regarding the KGS estimator needed for calculation of infor-
mation measures, we used k = 2, τk = 1, l = 1, τl = 1,
and 4-NN (skipping the grid search for optimal values, to be
done in the next step). Since the KGS estimator has some
inherent systematic error, for TE and AIS close to zero the
�TE and �AIS estimates can be negative. From the definition of
TE and AIS as special cases of Kullbeck–Leibler divergence,
the values can be only non-negative. Therefore we have set all
the negative values of TE and AIS in the experiments to zero
since the purpose of the experiments was not to test whether
there is some information transfer but to compare changes of
information transfer in various settings.

Figure 1 provides the results. In MC and NARMA tasks,
the performance peaks when TE is increased, as observed
in [12], but in the stable regime, when approaching λ = 0,
both TE and AIS decrease while MC grows (as seen from
a more detailed inset). Hence, there exists a non-monotonous
relationship between the measures and the performance. For
λ > 0 the dependence looks similar to [12], i.e. significant
decrease of both measures and the performance (i.e. error
growth in NARMA task). Another difference between our
results and [12] is that our AIS maximum at criticality in
NARMA dataset is much higher (3 versus 1.6). All differences
may arise from the fact that they used kernel estimation with
a fixed radius of 0.2 (and k = 2 as we did), whereas we
used K-NN estimator for information measures. The other
two datasets, M–G and Lorenz attractor, not tested in [12],
yield quite different results. First, in both cases, TE peaks
at criticality, but grows from left (unlike previous datasets),
manifesting monotonous relationship. Second, AIS does not
peak at criticality but keeps its high values all over the stable
regime. Third, for λ > 0, the performance degrades rapidly
in case of M–G, but only gradually in case of the Lorenz
system, which implies that the latter dataset is less sensitive to
disturbances in an unstable reservoir.
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Fig. 1. Average values of TE and AIS in the reservoir and the task performance as a function of the Lyapunov exponent, in case of four datasets. For
interpretation, see the text.

C. Optimization of the KGS estimator
The second step was to get a more detailed view at

information flow in the reservoir, and, hence, TE. Before doing
so, we searched for optimal parameters of the KGS estimator
using the simplifying assumption (to reduce the search space)
that only the most recent value of the source unit causally
affects the target unit, hence l = 1. We varied both parameters
k and τ from 1 to 6, and for each pair, 100 instances were run.
Results are shown in Figure 2. The dependences have single
maxima for all unscaled reservoirs, and remain unimodal after
scaling in all cases (M–G shows a slightly bimodal pattern),
with τ = 1 (left column). The pattern for Lorenz dataset is less
focused, especially for ρ = 0.95. Optimal values of the KGS
estimator that we chose in further experiments are shown in
Table I. Using these values implies that the maximum possible
amount of information is extracted from the unit’s history,
while the rest has to be extracted from the source units.

TABLE I. O������ ������ �� ����������, ���� �� ����������
����������� ��� ���������� �����������-����������� ��������.
❳❳❳❳❳❳❳Scaling

Task MC NARMA M–G Lorenz
k τ k τ k τ k τ

init 6 1 6 1 6 1 6 1
ρ = 0.6 4 1 4 1 2 1 2 3
ρ = 0.95 6 1 6 1 2 1 2 2

D. A closer look at transfer entropy
Having found optimal values of KGS estimator, we can

proceed to computing transfer entropy. We generated one

Fig. 2. Grid search of (k, τ) pairs (with k growing from the top on y-axis,
τ is on x-axis starting from the left), for various scalings of the reservoir, in
case of all four datasets (MC task, NARMA, M–G, Lorenz). Each cell denotes
the number of occurrences when the task performance was best. We used this
maximum value for determining the optimal pair.

instance of an input weight vector win and a recurrent weight
matrix W and used them in all subsequent scalings across all
tasks for comparability reasons. We plot the matrices of the
individual TE values (i.e. for each pair of reservoir neurons)
for the scaled reservoirs. All initialized reservoirs had flat TE
matrices with small values (not shown), but the four data sets
yield different TE matrices as seen in Figure 3. TE for unscaled
is not shown, since in all cases it looks flat with very low
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Fig. 3. The matrices (N×N ) of TE values in the reservoir for two scalings
(spectral radii), in four datasets. Rows of the matrix denote source units and
columns denote target units.

values. Scaling to ρ = 0.6 leads to a sparse distribution of
information transfer “hubs” (fan-in), i.e. neurons with large
TE values (visible as darker columns) from other sources. As
opposed to “vertical” matrix structure in MC and NARMA,
M–G and Lorenz matrices partially reveal also a “horizontal”
structure, due to neurons with higher values of TE leading
to various targets (fan-out). Scaling close to the criticality
(ρ = 0.95) leads to different effects depending on the dataset.
It either disturbs the hubs (MC, NARMA), or extends the
distribution to more units (articulated more for M-G, less for
Lorenz). Quantitative differences are provided in Table II.

E. Changes in information measures

Consistently with previous results, here we plot the distri-
butions of TE resulting from different scalings of the reservoir.
This is shown in Figure 4. The initial distribution of TE is the
same (with small values) for all datasets, but changes arise due
to scaling. For ρ = 0.6, the span ranges from the entire interval
[0;1] (MC) to the lower half. Criticality leads to decrease of
maximal values in case of MC, NARMA and M–G datasets.
In case of M–G, the distribution of TE differs most noticeably
from other cases.

Fig. 4. Changes in TE distribution due to reservoir scaling in case of four
data sets (y-axis is in the log plot). Initial TE distribution is always the same
(with small values) but the differences arise in the scaled reservoirs, both in
the x-range and the shape, depending on the data set.

Analogical results for AIS are plotted in Figure 5. It can
be observed that AIS value have similar spread but different
mean values, contrasting 0.5 (top row) versus 3 (bottom row).

Fig. 5. AIS changes in various reservoir scalings in case of four data sets.
Initial AIS distribution is always the same but evident differences arise between
two pairs of data sets (top and bottom).

TABLE II. Q����������� �������� ��� ��� ��������, �� ���� ��
�����������, ������ ��� �������������� ����������.

MC task Unscaled ρ = 0.6 ρ = 0.95 OG ON
MC 0.06 17.8 32.8 47.4 33.3

Average TE 0.009 0.092 0.048 0.042 0.062
Average AIS 0.027 0.146 0.151 0.12 0.148

Rel. entr. of TE 3.37 1.19 2.11 2.35 1.73
LE 0.53 −0.52 −0.06 −0.09 −0.16

NARMA Unscaled ρ = 0.6 ρ = 0.95 OG ON
NRMSE 2.07 0.98 0.83 0.82 0.84

Average TE 0.0093 0.088 0.053 0.044 0.067
Average AIS 0.023 0.267 0.247 0.232 0.257

Rel. entr. of TE 3.35 1.55 1.89 2.05 1.66
LE 0.52 −0.53 −0.062 −0.089 −0.16

Mackey–Glass Unscaled ρ = 0.6 ρ = 0.95 OG ON
NRMSE 1.12 0.00025 0.00026 0.0003 0.00026

Average TE 0.0093 0.15 0.25 0.26 0.24
Average AIS 0.029 3.204 3.073 3.142 3.115

Rel. entr. of TE 3.36 0.81 0.99 1.23 0.88
LE 0.53 −0.52 −0.062 −0.09 −0.16

Lorenz Unscaled ρ = 0.6 ρ = 0.95 OG ON
NRMSE 0.56 0.00012 0.0013 0.0034 0.00097

Average TE 0.009 0.087 0.16 0.15 0.12
Average AIS 0.025 3.157 2.971 2.932 3.002

Rel. entr. of TE 3.37 1.45 1.01 1.09 1.24
LE 0.52 −0.74 −0.28 −0.35 −0.32

This reflects the fact that reservoir units have much higher
predictability of their future values in case of less complex
datasets (M–G and Lorenz system).

F. Quantification of used measures

As a final step, we evaluated information-theoretic mea-
sures in case of initialized reservoirs (corresponding to an
unstable regime) and two scalings (0.6 and 0.95). In addition,
these values are also computed for orthogonalized reservoirs,
where we used the learning rates according to [9]. Consistently
with Figure 1, Table II confirms several observations. First,
reservoir scaling improves performance in all cases, but for
ρ = 0.95 the performance is not maximized in case of M–G
and Lorenz datasets. Second, orthogonalization methods keep
all models in the stable regime but different effects on various
measures across the datasets. Third, in some cases we observe
a small but statistically significant decrease of NRMSE by
one of the methods, as tested by Wilcoxon signed-rank test
of differences between two sample means. Concretely, OG
method improves NARMA, whereas ON method improves
Lorenz prediction. On the other hand, the orthogonalization
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does not improve MC in our simulations, as it should, when
we compare it to [9] (where both OG and ON methods
led to MC > 90). The reason is due to different unscaled
initialization of the reservoir matrix: here we used σ =

√
0.5

and U(−0.1; 0.1) for input weights (commonly for all datasets),
as opposed to σ = 0.092 found to be optimal by grid
search, and U(−0.01; 0.01). It appears that an optimal value
of σ for a concrete dataset, prior to scaling and subsequent
orthogonalization is crucial for best performance, together with
suitable input weights scaling (also investigated in [9]).

IV. C���������

Our results partially confirm those in [12], but extend them
in multiple ways. We took a closer look at information mea-
sures (transfer entropy and active information storage), quan-
tifying the information flow in ESNs with differently scaled
reservoirs. The differences among the datasets arise from the
complexity of the input sequences. The results conformed the
previous findings that both AIS and TE increase significantly
at criticality. However, our computational analyses revealed in
addition that both measures actually decrease before they peak
at criticality. Hence, the dependence of performance is more
complex, nonmonotonous, in case of these two datasets than
previously thought. Interestingly, the two additional data sets
(Mackey–Glass and Lorenz system) reveal that AIS is (equally)
high also outside the criticality (in a stable regime), and to a
small degree also TE. At criticality, the performance is usually
maximized, but it seems that (deterministic) Mackey–Glass and
Lorenz systems do not benefit from criticality because they
achieve equivalent performance also in the stable regime.

Results from the search for optimal embedding dimension
and the time delay using a locally constant predictor also
provide some insight into the complexity and dynamics of
the reservoir units in case of our four datasets. In [15] it is
argued that a locally constant predictor is in fact a specific
Markov predictor and the embedding dimension that minimizes
the locally constant prediction error of a time series can be
viewed as the order of some scalar Markov process. In the
light of the above, if we describe the signal of a reservoir
unit as a realization of a Markov process, then the most
frequent orders, as shown in Figure 2, are the same for MC
and NARMA tasks, as well as for M–G and Lorenz tasks. This
seems to support our findings that two complexity classes are
present in our four tasks where different behaviors regarding
TE, AIS, NRMSE/MC are observed in the neighborhood of the
criticality. More detailed investigations are needed for better
understanding of these differences, as well as the optimization
of reservoir orthogonalization aimed at potential improvement
of prediction performance.

A�������������

This work was supported by the Slovak Grant Agency for
Science (VEGA), project 1/0686/18 and by KEGA project
017UK-4/2016.

R���������

[1] N. Bertschinger and T. Natschläger, “Real-time computation at the edge
a of chaos in recurrent neural networks,” Neural Computation, vol. 16,
no. 7, pp. 1413–1436, 2004.

[2] R. Legenstein and W. Maass, “Edge of chaos and prediction of computa-
tional performance for neural circuit models,” Neural Networks, vol. 20,
pp. 323–334, 2007.

[3] L. Büsing, B. Schrauwen, and R. Legenstein, “Connectivity, dynamics,
and memory in reservoir computing with binary and analog neurons,”
Neural Computation, vol. 22, no. 5, pp. 1272–1311, 2010.

[4] D. Chialvo, “Critical brain networks,” Physica A, vol. 340, no. 4, pp.
756–765, 2004.

[5] J. Beggs, “The criticality hypothesis: how local cortical networks might
optimize information processing,” Philosophical Transactions of the
Royal Society A, vol. 366, no. 1864, pp. 329–343, 2008.

[6] J. Beggs and N. Timme, “Being critical of criticality in the brain,”
Frontiers in Physiology, vol. 3, no. 163, 2012.

[7] M. Lukoševičius, A practical guide to applying echo state networks,
2nd ed., ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7700, pp. 659–686.

[8] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep. GMD
Report 152, 2001.

[9] I. Farkaš, R. Bosák, and P. Gergeľ, “Computational analysis of memory
capacity in echo state networks,” Neural Networks, vol. 83, pp. 109–120,
2016.

[10] J. Lizier, M. Prokopenko, and A. Zomaya, “Local measures of informa-
tion storage in complex distributed computation,” Information Science,
vol. 208, pp. 39–54, 2012.

[11] T. Schreiber, “Measuring information transfer,” Physics Review Letters,
vol. 85, no. 2, pp. 461–464, 2000.

[12] J. Boedecker, O. Obst, J. Lizier, N. Mayer, and M. Asada, “Information
processing in echo state networks at the edge of chaos,” Theory in
Biosciences, vol. 131, pp. 205–213, 2012.

[13] M. Wibral, R. Vicente, and J. Lizier, Eds., Directed Information
Measures in Neuroscience. Springer, 2014.

[14] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physics Reviews E: Stat. Nonlin. Soft Matter Phys.,
vol. 69, no. 6, Part 2, p. 066138, 2004.

[15] M. Ragwitz and H. Kantz, “Markov models from data by simple
nonlinear time series predictors in delay embedding spaces,” Physics
Reviews E: Stat. Nonlin. Soft Matter Phys., vol. 65, no. 5, Part 2, p.
056201, 2002.

[16] M. Lukoševičius and H. Jaeger, “Survey: Reservoir computing ap-
proaches to recurrent neural network training,” Computer Science
Reviews, vol. 3, no. 3, pp. 127–149, 2009.

[17] I. Yildiz, H. Jaeger, and S. Kiebela, “Re-visiting the echo state property,”
Neural Networks, vol. 35, pp. 1–9, 2012.

[18] G. Manjunath and H. Jaeger, “Echo state property linked to an input:
Exploring a fundamental characteristic of recurrent neural networks,”
Neural Computation, vol. 25, pp. 671–696, 2013.

[19] I. Farkaš and P. Gergeľ, “Maximizing memory capacity of echo state
networks with orthogonalized reservoirs,” in International Joint Con-
ference on Neural Networks, 2017, pp. 2437–2442.

[20] J. Sprott, Chaos and Time-Series Analysis. Oxford University Press,
2003.

[21] L. Glass and M. Mackey, Scholarpedia, vol. 5, no. 3, 2010.
[22] “Lorenz system,” https://en.wikipedia.org/wiki/Lorenz_system.

2018 International Joint Conference on Neural Networks (IJCNN) 122


