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Abstract. We present the results of an ongoing research in the area of
symbol grounding. We develop a biologically inspired model for ground-
ing the spatial terms that employs separate visual what and where sub-
systems that are integrated with the symbolic linguistic subsystem in
the simplified neural model. The model grounds color, shape and spatial
relations of two objects in 2D space. The images with two objects are
presented to an artificial retina and five-word sentences describing them
(e.g. “Red box above green circle”) with phonological encoding serve as
auditory inputs. The integrating multimodal module is implemented by
Self-Organizing Map or Neural Gas algorithms in the second layer. We
found out that using NG leads to better performance especially in case
of the scenes with higher complexity, and current simulations also reveal
that splitting the visual information and simplifying the objects to rect-
angular monochromatic boxes facilitates the performance of the where
system and hence the overall functionality of the model.

Keywords: self-organization, categorization, symbol grounding, spatial
relations, linguistic description.

1 Introduction

The core problem of embodied cognitive science is how to ground symbols to the
external world. We are looking for a system interacting with the environment
that is able to understand its internal representations which should preserve
constant attributes of the environment, store them as concepts, and connect
these to the symbolic level. This approach to the meaning representation is
different from the classical symbolic theory based on formal semantics of truth
values, which cannot guarantee correspondence of the symbolic level with the
external world.

In this article we propose an extended version of the classical grounding ar-
chitecture [1] that implements the multimodal representations in the framework
of the perceptual symbol system proposed by Barsalou [2]. The main innova-
tion is the processing of symbolic input by a separate auditory subsystem and
the integration of auditory and visual information in a multimodal layer that
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incorporates the process of identification of symbols with concepts. Our theory
is similar to grounding transfer approach [3] but unlike it, our model works in a
fully unsupervised manner.

Our approach was tested in the area of spatial cognition. In our models, we
consider the evidence that the information about the location and identification
of an object in space are processed separately. Studies with humans [4] revealed
two separate pathways involved in processing of visual and spatial information:
The dorsal where pathway is assumed to be responsible for spatial representa-
tion of the object location, while the ventral what stream is involved in object
recognition and form representation.

In our previous experiment [5] we compared two versions of the visual subsys-
tem, analyzing the distinction between what and where pathways, by proposing
different ways how to represent object features (shape and color) and object
position (in a spatial quadrant). Model I contained a single self-organizing map
(SOM; [6]) that learned to capture both what and where information. Model II
consisted of two SOMs for processing what information (foveal input) and where
information (retinal input). Comparison of both models confirmed the effective-
ness of separate visual processing of shape and spatial properties that led to a
significant decrease of errors in the multimodal layer.

Both models assume the existence of the higher layer that integrates the
information from two primary modalities. This assumption makes the units in
the higher layer bimodal (i.e. they can be stimulated by any of the primary
layers) and their activation can be forwarded for further processing. Bimodal
(and multimodal) neurons are known to be ubiquitous in the association areas
of the brain [7]. See also discussion in [5] for the relation of our model to several
other connectionist models.

2 Motivation

The first goal of experiments presented here is the more detailed analysis of the
information processing in the where system. We tested two types of inputs for
this subsystem, namely full retinal images projected to where system (the same
as previously) and simplified version of retinal projections (the color information
was omitted and the object shapes were simplified to rectangular monochromatic
boxes. The results should help us decide, whether this simplification is important
for enhancing the overall model performance.

In [5] we also identified the difference in the effectiveness of the SOM com-
paring to Neural Gas (NG) algorithm [8] in the multimodal layer in favour of
lower NG error rates. The higher error rate in SOM should be attributed to its
fixed neighborhood function (while NG uses flexible neighborhood) that imposes
constraints to the learning process in multimodal layer. The second goal of the
current experiment is hence the analysis of the neighborhood function in SOM.
We presented stimuli with increasing fuzziness in the spatial location (see Fig. 2)
and compared error rates of SOM and NG algorithms.
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Fig. 1. The two-layer multimodal architecture used in our experiments

3 The Model

We adopted the model from [5] to test the architecture with a simplified type
of inputs and variable level of fuzziness. The inputs (similar to previous mod-
els) consisted of two objects in 2D environment and their linguistic descriptions.
The scenes contained the trajector and the base object in different spatial con-
figurations. The position of the base is fixed in the center of the scene and the
trajector position is fuzzy with variable level of fuzziness (Fig. 2). We trained
the model using scenes with 3 colors (red, green, blue), 5 object types (box, ball,
table, cup, bed) and 4 spatial relations (above, bellow, left, right) that means 840
combinations of two different objects in the scene. There were 42000 examples
(50 instances per spatial configuration) in the training set.

3.1 Visual Subsystem

The visual subsystem is formed by an artificial retina (28×28 neurons) and an
artificial fovea (two visual fields consisting of 4×4 neurons) that project visual
and spatial information about the trajector and the base to the the primary
unimodal visual layers. These layers are both made of SOMs that differentiate
various positions of two objects (resembling where pathway) from retinal pro-
jection and color and shape of objects (resembling what pathway) from foveal
projection. The color of each pixel was encoded by the activity level. Both maps
were trained for 100 epochs with decreasing parameter values (unit neighborhood
radius, learning rate).
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Fig. 2. Simplified visual inputs with varying levels of spatial fuzziness

3.2 Auditory Subsytem

Auditory inputs (English sentences) were encoded as phonological patterns rep-
resenting word forms using PatPho, a generic phonological pattern generator
that fits every word (up to trisyllables) onto a template according to its vowel-
consonant structure [9]. It uses the concept of syllabic template: a word repre-
sentation is formed by combinations of syllables in a metrical grid, and the slots
in each grid are made up by bundles of features that correspond to consonants
and vowels. In our case, each sentence consists of five 54-dimensional vectors
with component values in the interval (0,1). These inputs are sequentially fed
to RecSOM [10] that learns to represent inputs (words) in the temporal con-
text (hence capturing sequential information). RecSOM output, in terms of map
activation, feeds to the multimodal layer, to be integrated with the visual path-
way. RecSOM units become sequence detectors after training, topographically
organized according to the suffix (the last words).

Since RecSOM, unlike SOM, is not common, we provide its mathematical
description here. Each neuron i ∈ {1, 2, ..., N} in RecSOM has two associated
weight vectors: wi ∈ R

n – linked with an n-dimensional input s(t) (in our case,
the current word, n = 54) feeding the network at time t and ci ∈ R

N – linked
with the context y(t − 1) = [y1(t − 1), y2(t − 1), ..., yN(t − 1)] containing map
activations yi(t − 1) from the previous time step.

The output of a unit i at time t is yi(t) = exp(−di(t)), where

di(t) = α · ‖s(t) − wi‖2 + β · ‖y(t − 1) − ci‖2.

Here, ‖ · ‖ denotes the Euclidean norm, α > 0 and β > 0 are model parameters
that respectively influence the effect of the input and the context upon neuron’s
profile. Their suitable values are usually found heuristically (in our model, we
used α = β = 0.1). Both weight vectors are updated using the same form of
SOM learning rule:

Δwi = γ · hik · (s(t) − wi),
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Δci = γ · hik · (y(t − 1) − ci),

where b is an index of the best matching unit at time t, b = argmini{di(t)}, and
0 < γ < 1 is the learning rate. Neighborhood function hib is a Gaussian (of width
σ) on the distance d(i, b) of units i and b in the map: hib = exp(−d(i, b)2/σ2).
The ‘neighborhood width’, σ, linearly decreases in time to allow for forming
topographic representation of input sequences.

3.3 Multimodal Integration

Outputs from both visual SOMs and auditory RecSOM are projected to the
multimodal layer (SOM or NG). The main task for the multimodal layer is to
find and learn the categories by merging different sources of information. We
compared SOM and NG algorithms that are both unsupervised and based on
the competition among units, but NG uses a flexible neighborhood function, as
opposed to the fixed neighborhood in SOM.

For clarity, we explain NG algorithm briefly here. NG shares with SOM a
number of fetaures. In each iteration t, an input vector m(t) is randomly chosen
from the training dataset. Subsequently, for all units in the multimodal layer we
compute di(t) = ‖m(t)−zi‖ and sort the NG units according to their increasing
distances di, using indices l = 0, 1, ... (where l(0) corresponds to unit b, the
current winner). Then we update all weight vectors zi according to

Δzi = ε · exp(−l(i)/λ) · (m(t) − zi) (1)

with ε as the adaptation step size and λ as the so-called neighborhood range. We
used ε = 0.5 and λ = n/2 where n is number of neurons. Both parameters are
reduced with increasing t. It is known that after sufficiently many adaptation
steps the feature vectors cover the data space with minimum representation error
[8]. The adaptation step of the NG can be interpreted as gradient descent on a
cost function.

Inputs for the multimodal layer are taken as unimodal activations (from both
modalities) using the k-WTA (i.e. winner-takes-all) mechanism, where k most
active units are proportionally turned on, and all other units are reset to zero
(in the models, we used k = 6 for visual layers). The motivation for this type of
output representation consists in introducing overlaps between similar patterns
to facilitate generalization. On the other hand, the output representation in the
multimodal layer is chosen to be localist for better interpretation of results and
the calculation of error rate.

4 Results

We trained the system with the fixed sizes of unimodal layers (30×30 units) and
the multimodal layer (29×29). After the training phase, the system was tested
by a novel set of inputs. All inputs were indexed for the error calculation in the
second layer. Then we measured the effectiveness of this system, based on the
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percentage of correctly classified test inputs. To calculate the accuracy of neuron
responses, we applied a voting algorithm after training to label each neuron in
the layer based on its most frequent response. Then we measured the accuracy of
this system, based on the percentage of correctly classified test inputs. At first,
we compared the error rate in unimodal where layer trained with full retinal
images or simplified monochromatic rectangles standing for objects in the scene.
Results are shown in Fig. 3. It can be seen that simplified input significantly
reduce the error for all levels of spatial fuzziness which could be explained by
reduced variability of inputs that are topographically mapped in the SOM.

The analysis of the model behavior revealed that the trajector shape and the
spatial term representations are the most difficult task components for visual
unimodal systems which is caused by their variability and fuzziness. The model
analysis also confirmed that simplified projection of retinal images to the where
system resulted in lower error rates compared to full retinal images (Fig. 3).
This leads us to the conclusion that it is possible to simplify the information
projected to the where system to optimize the speed and effectiveness of our
architecture.

Fig. 3. The error rates in the where system as a function of input types and the levels
of spatial fuzziness

Next we compared SOM and NG algorithms in the multimodal layer using
the simplified where system. The calculation of the error rates was the same as
for the unimodal layers. Fig. 4 shows a lower error rate for NG in all levels of
fuzziness and the high error rates for SOM regardless of the fuzziness level.

The poorer result of multimodal SOM compared to NG could most probably
be attributed to the fixed neighborhood function which imposes constraints the
learned nonlinear mapping. There was a 70% error rate for all levels of fuzzy
inputs, so the multimodal SOM is able to represent neither fuzzy inputs nor
distinct inputs. We observed a different type of clustering in unimodal layers
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Fig. 4. Comparison of two models for different type of inputs. The error rates in the
where system as a function of levels of spatial fuzziness.

that are transferred to the multimodal layer at which the SOM is not able to
adapt to the joint outputs from unimodal layers. The results of NG algorithm
for the same input data confirm this hypothesis. There was a 25% error rate only
for highly overlaping inputs (compared to 70% error rate for all type of inputs
for SOM. The effectiveness of NG for less fuzzy inputs was even better.

5 Conclusion

Previous models of symbol grounding (see Discussion in [5]) deal with the lexical
level but our model goes beyond words because it is able to represent sentences
with fixed grammar via RecSOM. It finds the mapping of the particular words to
the concepts in the multimodal layer without any prior knowledge, so the system
proposes the solution to the binding problem. The system design allows us in
principle to append other modalities and still represent discrete multimodal cat-
egories. The hierarchical representation of the sign components is the important
advantage of our model. It guarantees better processing and storing of represen-
tations because the sign (multimodal level) is modifiable from both modalities
(the sequential “symbolic” auditory level and the parallel “conceptual” visual
level). The separate multimodal level provides a platform for the development
of subsequent stages of this system (e.g. inference mechanisms). Further tests
of this approach should focus on scaling up this architecture to more complex
mappings.
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