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Michal Vavrečka • Igor Farkaš

Received: 30 August 2012 / Accepted: 12 March 2013 / Published online: 22 March 2013

� Springer Science+Business Media New York 2013

Abstract We propose a bio-inspired unsupervised connec-

tionist architecture and apply it to grounding the spatial phra-

ses. The two-layer architecture combines by concatenation the

information from the visual and the phonological inputs. In the

first layer, the visual pathway employs separate ‘what’ and

‘where’ subsystems that represent the identity and spatial

relations of two objects in 2D space, respectively. The bitmap

images are presented to an artificial retina and the phonologi-

cally encoded five-word sentences describing the image serve

as the phonological input. The visual scene is hence repre-

sented by several self-organizing maps (SOMs) and the pho-

nological description is processed by the Recursive SOM that

learns to topographically represent the spatial phrases, repre-

sented as five-word sentences (e.g., ‘blue ball above red cup’).

Primary representations from the first-layer modules are

unambiguously integrated in a multimodal second-layer

module, implemented by the SOM or the ‘neural gas’ algo-

rithms. The system learns to bind proper lexical and visual

features without any prior knowledge. The simulations reveal

that separate processing and representation of the spatial

location and the object shape significantly improve the per-

formance of the model. We provide quantitative experimental

results comparing three models in terms of their accuracy.

Keywords Unsupervised learning � Self-organizing map �
Symbol grounding � Spatial phrases � Multimodal

representations

Introduction

The question of how to acquire, represent and use knowledge

in the learning agent is fundamental in artificial intelligence

and cognitive science research. Within the modern perspec-

tive, fueled by growing empirical evidence, we are looking for

a system that, through interaction with the environment, learns

the internal representations. These should store the constant

attributes and regularities of the environment, giving rise to

forming concepts, which become connected to the symbolic

level (language). This approach to the representation of

meaning differs from the classical symbolic (designer)

approach based on formal principles [28, 33], which are

subject to the symbol grounding problem (Harnad 1990).

Harnad (1990) proposed a hybrid architecture based on

discrimination and identification, where the former process

is considered a subsymbolic (non-arbitrary) representation

of perceptual inputs, while the latter assigns (non-arbitrary)

concepts to (arbitrary) symbols. Harnad used neural net-

works for the subsymbolic representations and the classical

architecture for symbol operations. In the overview of

grounding architectures, Taddeo and Floridi [41] intro-

duced the zero semantical commitment condition as a

criterion for valid solution to the symbol grounding prob-

lem, completely avoiding the designer approach. This cri-

terion, however, appears unsatisfiable not only in artificial,

but in living systems as well [46].

In the past two decades, there was a number of different

approaches and models of the symbol grounding (e.g., [1,

4, 7, 11, 23, 37, 40, 42]). These models typically ground

linguistic symbols by linking them with agent’s sensori-

motor behavior, or with objects and their features. Other

approaches, instead, focus on the social symbol grounding

where the symbols become grounded by simulating the

cultural evolution in a population of agents (e.g., [38, 52]).
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With respect to learning paradigms, we can distinguish

two types of connectionist models that link subsymbolic

(conceptual) knowledge with (linguistic) symbols. The

supervised approach is based on error correction learning

in which input patterns are linked with symbolic targets

(labels). The models listed above typically have this fea-

ture. Both inputs and outputs are assumed to be provided

by the environment, and the error information is used to

find the desired mapping between them.

On the other hand, the unsupervised approach treats both

perceptual stimuli and symbols equally as inputs, to be

associated (typically) by Hebbian-like learning. This

implies a different way of incorporating the symbolic

(lexical) level. The target signal (here the lexical level)

only functions as an additional input rather than being the

source for error-based learning. The unsupervised models

are typically based on self-organizing maps (SOM) that

organize (high-dimensional) input vectors according to

their similarities [19]. For instance, the DevLex model [20]

also consists of two self-organizing networks, one for

lexical symbols (phonological representations) and the

other for conceptual (semantic) representations, that are

bidirectionally connected. They can activate each other, but

there is no additional layer for multimodal representations,

as opposed to the model proposed here, and some other

models of grounding (e.g., [4, 36]).

Dorffner et al. [1] have proposed unsupervised binding

between two primary (symbolic and conceptual) layers

mediated by the central linking layer. The linking layer

(which could be seen as the bimodal layer) interconnects the

two primary layers via its localist units that link both rep-

resentations (i.e., one unit connects one word–concept pair

of primary representations). First, one set of links (weights to

the linking layer) is trained using a competitive mechanism

exploiting the winner-take-all approach. Then, the winner’s

weights toward the other layer are updated according to the

outstar rule [12]. Similarly, to DevLex, these mappings were

aimed at simulating word comprehension (the form to

meaning) and word production (meaning to the form).

Among the unsupervised approaches, there emerged an

alternative to link both the perceptual and symbolic

information (treated as an input) with multimodal repre-

sentations at the output. The example of this architecture is

the unsupervised feature-based model that was used to

account for early category formation in young infants [9].

Interestingly, this approach postulates the unsupervisory

role of linguistic labels that can effect categorization during

the acquisition process, which has also been supported by

experimental evidence.

The idea of unsupervised binding of two modalities (as

inputs) has also been applied in recent generative proba-

bilistic models such as the deep belief net (DBN).

The DBN was successfully trained to classify the isolated

hand-written digits, so the visual inputs were linked with

categorical labels [14]. The linking was established via the

training on image–label pairs, using the higher (bimodal)

layer that learned the joint distribution of input pairs.

Our model is similar to that of Gliozzi et al. [9] by

treating the information from two modalities as input. It

differs from it, however, by higher complexity and the task.

Our model was designed for grounding the spatial phrases

rather than object names (typical for early language learn-

ing). We test our model in the area of spatial cognition,

similarly to Regier [34], who created a supervised neural

network model consisting of several modules to ground the

spatial phrases. Regier’s model was able to ground both

static spatial relations (e.g., left, right) and dynamic relations

(e.g., around, through). However, in Regier’s model, the

symbolic representational level was considered prior and

fixed. On the contrary, we focus on unsupervised learning of

spatial relations of two objects in 2D space, by linking

perceptual information and linguistic description, where

neither level is considered prior and fixed. The neural

architecture we propose satisfies the requirement that the

artificial system (agent) should learn its own functions and

representations [53].

In this paper, we describe the ‘experimental trajectory’

of our work whose aim was to design a bio-inspired model

at a reasonable level of abstraction. We converged to a

model that processes visual input separately using ‘what’

and ‘where’ pathways, which is also a feature of biological

systems [45]. The motivation for our model was to

experimentally test whether it is possible (without errors)

to bind location, color and shape of two objects (Visual

Feature-Binding) without any prior knowledge and without

external information. The model also proposes a solution to

the (unsupervised) symbol grounding that can be consid-

ered as a temporal synchrony [6]. In this process, the

sequences of symbols (words), describing the spatial layout

of two objects and their identity, processed in the phono-

logical layer are grounded (bound) to proper features from

the visual subsystem (shape, color and location). Our

model exploits the simplification, being the fixed sentence

structure that facilitates the thematic role assignment in the

model(s).

The benefit of modularity in the model (including that for

separation of ‘what’ and ‘where’ information) was already

emphasized in earlier works. For instance, Jacobs et al. [15]

proposed a supervised approach to designing a modular

system, composed of competing expert networks and the

gating network, that could simultaneously learn two differ-

ent tasks. They applied their model to the learning of the

‘where’ and ‘what’ information (using simple bitmap ima-

ges) and pointed to the advantages of this modular feed-

forward architecture compared to the standard multi-layer

perceptron. In our models, the units also compete for inputs,
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albeit using the principles of self-organization. Unlike

Jacobs et al., the modules are assumed to be given in our

models (the competition does not occur at the level of

modules, but rather the level of individual units).

The rest of the paper is organized as follows. In section

‘‘The Models’’, we introduce the architecture(s) of our

models in a greater detail. Section ‘‘Results’’ presents results

from four series of simulations. Section ‘‘Discussion’’ con-

tains the discussion about our final model and its relation to

other models. Section ‘‘Conclusion’’ concludes the paper.

The Models

In our model, the representation process takes advantage of

the unimodal layers of units. The visual layers represent

spatial location, shape and color of objects and the phono-

logical layer represents sentences. The multimodal level

integrates the outputs of these unimodal layers. In contrast to

the classical approaches that postulate the abstract symbolic

level as fixed and prior (defined by the designer), our model

offers possibility to learn and modify the phonological layer,

visual layer and, consequently, the multimodal level. The

schema of the system is depicted in Fig. 1.

In the simulations, we compare different versions of the

visual subsystem, analyzing the distinction between ‘what’

and ‘where’ pathways. The results help us to decide whether

this simplification is important for enhancing the overall

model performance. The visual system of our model is

therefore tested in three different configurations (see Fig. 1;

Table 1): a single SOM that learns to capture both ‘what’ and

in Model 3 information (Model 1), two separate SOMs for

‘what’ and ‘where’ information (Model 2), and two separate

SOMs with reduced ‘where’ representations (Model 3).

In the last simulation, we compare two different types of

multimodal integration. Inspired by the biological evidence

about topographic organization of sensory and motor brain

areas, we assume that primary unimodal layers are topo-

graphically organized. Although examples of this orga-

nizing principle exist in higher areas as well [22], it

remains an empirical question whether topographically

organized responses are a general principle of the brain at

higher levels of organization. In the multimodal layer, we

hence compare the SOM and ‘neural gas’ (NG; [25])

algorithms as representatives of topographic and non-

topographic approaches, respectively. Both algorithms are

unsupervised, based on the competition among units, but

NG uses a flexible neighborhood function, as opposed to

the fixed neighborhood in SOM (that enforces topography).

The goal was to experimentally investigate the effect of the

neighborhood function in the multimodal layer. We used

the modified SOM Toolbox [50] for all simulations.

Fig. 1 Multimodal connectionist architecture for grounding spatial phrases. The phonological layer represents sentences and the visual layers

represent spatial location, shape and color of objects. The multimodal level integrates the outputs of these unimodal layers
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Visual Input

The visual scenes consist of the trajector and the base objects

in different spatial configurations. The base position is fixed

in the center of the scene (the center of the retina) and the

trajector position is located in one (or at the boundary

between two) of the spatial quadrants relative to the base.

The positions along the main semiaxes are linguistically

referred to as up, down, left and right, but perceptually, the

trajector position is fuzzy and random. The scene size

(artificial retina) contains 28 9 28 pixels and both objects

consist of 4 9 4 pixels (Fig. 2a). The color of each pixel is

encoded by the activity level, scaled to values between 0 and

1 (0 = white, 0.33 = red, 0.66 = green, 1 = blue). Inputs to the

visual SOM (Model 1) or just ‘where’ subsystem (Model 2

and 3) are the 784-dimensional vectors. Each dimension

represents the color information for Model 1 and 2, or

monochrome activity (0 = white, 1 = black) for Model 3.

Inputs to the ‘what’ subsystem (Model 2 and 3) are the

32-dimensional vectors. The ‘what’ system incorporates a

simple attentional mechanism and represents the foveal

input of two consequently observed objects. Two visual

fields (each with 4 9 4 receptors) simultaneously project

visual information about the trajector and the base in a fixed

position to the unimodal ‘what’ system. This subsystem

represents color and shape of pairs of objects (trajector and

base) irrespective of their spatial position.

We trained all models with an increasing combinatorial

complexity, starting with simple inputs with two colors,

two object types and four spatial relations, up to more

complex inputs consisting of three colors (red, green and

blue), five object types (box, ball, table, cup and bed) and

four spatial relations (above, below, left and right). The

most complex scenario with two different objects in the

scene amounts to 840 input configurations. The corre-

sponding training set results in 42,000 examples (with 50

instances per input configuration). We also present stimuli

with increasing fuzziness in the spatial location to inves-

tigate the relation between fuzziness and the error in the

visual and multimodal layer. The fuzziness stands for

variability of the trajector center with regard to the center

of the spatial quadrant ranging from 2 to 8 pixels. The two

conditions with the highest degree of fuzziness yield

overlapping inputs (as seen in Fig. 2b).

Visual Subsystem

The sensory input of the visual subsystem is captured by an

artificial retina that serves as an input to the primary visual

layer. Visual layer consists of the SOM(s) that learn the

nonlinear mapping of input vectors to output units in the

topography-preserving manner (i.e., similar inputs are

mapped to neighboring units in the map). The SOM per-

forms standard computations in each iteration. After the

presentation of a randomly chosen (rescaled) input vector

x, the output yi of a unit i in the SOM is first computed as

yi ¼ 1� k½xðtÞ � wiðtÞk

where ||.|| denotes the Euclidean norm (it will also be used

in forthcoming equations), and then, the k-WTA (winner-

take-all) rule is applied. According to k-WTA, k most

active units are proportionally kept active (with the activity

of the best matching unit scaled to 1), and all other units are

clamped to 0. In the models, we empirically found the

optimal value k = 6. The motivation for this type of output

representation rests in introducing some overlaps between

similar patterns to facilitate generalization.

The output vectors of all unimodal modules are con-

catenated (including the phonological input) and serve as

the input vector to the multimodal layer. For all visual

maps, standard computations are performed to update

weights. Then, the best matching unit (winner) c is calcu-

lated according to

c ¼ arg min
i
f xðtÞ � wiðtÞk kg;

the weights in the winner’s neighborhood are updated as

wiðt þ 1Þ ¼ wiðtÞ þ l hciðtÞ½xðtÞ � wiðtÞ�;

where l is the learning rate and hci(t) is the neighborhood

kernel around the winner c, with the neighborhood radius

Table 1 Summary of the visual features of the 3 models used in

experiments. Each model uses the same phonological subsystem

(RecSOM) and can be combined with the SOM or the NG module in

the multimodal layer

Model Visual input Visual system

1 full single SOM

2 ‘where’- full ‘where’ SOM

‘what’ -2 objects’ features ‘what’ SOM

3 ‘where’ -blobs ‘where’ SOM

‘what’ -2 objects’ features ‘what’ SOM

Fig. 2 a Example of a visual input scene and the monochrome visual

‘vocabulary,’ b Superimposed visual inputs with varying levels of

spatial fuzziness
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linearly shrinking over time. Let us now take a more

detailed look at these layers and their inputs.

In Model 1, the single SOM was tested whether it could

learn to differentiate various positions of two objects, as

well as object types and their color. In Model 2, we used

separate SOMs for spatial locations (abstraction of the

‘where’ system) and a separate SOM for color and shape of

objects (abstraction of the ‘what’ system). Model 3

employs the same ‘what’ and ‘where’ systems as Model 2,

but uses different inputs to the ‘where’ system consisting of

two monochromatic boxes (rather than concrete object

shapes in color) in the particular spatial position. The

dimension of all visual layers was fixed for all models,

namely dim(ywhat) = 25 9 25 neurons for the ‘what’ sys-

tem and dim(ywhere) = 30 9 30 neurons for the ‘where’

system. The similar size of matrices were estimated from

previous simulations [47], and they also stem from the

number of combinations in the most complex scenario (840

combinations in the ‘where’ system and 210 in the ‘what’

system). All SOM maps have a hexagonal neighborhood

function and the lattices have a toroid topology. The

overview of the characteristics of the three models is

summarized in Table 1.

Phonological Input

Phonological input (English sentences) was encoded as

high-dimensional patterns representing word forms using

PatPho, a generic phonological pattern generator that fits

every word (up to three syllables) onto a template

according to its vowel–consonant structure [21]. PatPho

uses the concept of a syllabic template: a word represen-

tation is formed by combinations of syllables in a metrical

grid, and the slots in each grid are made up by bundles of

features that correspond to consonants and vowels. Word

representations can hence be compared according to their

phonological similarities. In our case of 5-word sentences,

each sentence consists of five 54-dimensional vectors with

component values in the interval (0,1).

Phonological Subsystem

The phonological input is fed (one vector at a time) to the

RecSOM [51], a recurrent SOM architecture, that uses a

detailed representation of the context information (the

whole output map activation) and has been demonstrated to

be able to learn to represent much richer dynamical

behavior [44], in comparison with other recurrent SOM

models [13]. RecSOM learns to represent the input (words)

in the temporal context (hence, capturing the sequential

information). RecSOM output, in terms of the map acti-

vation, feeds to the multimodal layer, being integrated (by

vector concatenation) with the visual pathway. Like SOM,

RecSOM is trained by a competitive, Hebbian-like learning

algorithm. As a property of the RecSOM, its units become

the sequence detectors after training, topographically

organized according to the suffix (the most recent words).

Formally, each neuron i 2 f1; 2; . . .;Ng in RecSOM has

two associated weight vectors: wi 2 Rn – linked with an n-

dimensional input s(t) (in our case, the current word, with

dimension n = 54) feeding the network at time t, and the

weight vector ci 2 RN – linked with the context yðt � 1Þ ¼
½y1ðt � 1Þ; y2ðt � 1Þ; . . .; yNðt � 1Þ� containing the unit

activations yi(t - 1) from the previous time step. The

output of a unit i at time t is yiðtÞ ¼ expð�diðtÞÞ; where

diðtÞ ¼ aksðtÞ � wik2 þ bkyðt � 1Þ � cik2:

Here, a [ 0 and b [ 0 are the model parameters that,

respectively, influence the effect of the input and the

context upon the neurons profile. Their suitable values are

usually found heuristically (in our model, we use

a = b = 0.1). Both weight vectors are updated using the

same form of a SOM learning rule

wiðt þ 1Þ ¼ wiðtÞ þ chciðsðtÞ � wiðtÞÞ;
ciðt þ 1Þ ¼ ciðtÞ þ chciðyðt � 1Þ � ciðtÞÞ;

where c ¼ arg minifdiðtÞg; is the winner index at time t, and

0 \ c\ 1 is the learning rate. (The winner can be equiva-

lently defined as the unit c with the highest activation ycðtÞ :

c ¼ arg maxifyiðtÞgÞ: The neighborhood function hci is a

Gaussian (of width r) on the distance d(i, c) of units i and c

in the map: hci ¼ expð�dðc; iÞ2=r2Þ: The neighborhood

width r linearly decreases in time to allow the formation of

topographic representation of input sequences. After train-

ing, all RecSOM units become sensitive to particular sen-

tences, ordered topographically according to sentence

endings. The output vector is composed of five consecutive

winners representing particular words in the sentence. The

activations of winning units are slowly decayed in time

(decreased by value 0.1 at each step) toward the end of a

sentence. This function allows to represent the order of

winners in the sequence, hence differentiating between

similar phonetic features in a sentence (e.g., ‘red ball above

red table’ or ‘blue ball above red ball’). The size of RecSOM

was set to N = 20 9 20 neurons for all models based on

results from previous simulations.

Multimodal Layer

The multimodal layer is the core of the system, since it

learns to identify unique categories and represent them.

The main task for this layer is to process the output from

the unimodal layers and to find and learn the categories by

mapping different sources of information (visual and

phonological) that refer to the same objects in the external
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world. Input vectors m(t) for the multimodal layer are

taken as concatenated unimodal activation vectors (the

‘where’ and ‘what’ components are not separated in Model

1) using the above-mentioned k-WTA mechanism,

explained in ‘‘Visual Subsystem’’, i.e.,

mðtÞ ¼ ½ywhereðtÞ; ywhatðtÞ; yphonoðtÞ�:

The multimodal module receives a 1,300-dimensional

input in Model 1 and a 1925-dimensional input in Model 2

and 3. Unlike sparse localized output codes (k = 6) used at

the unimodal layer (to facilitate generalization), the output

representation in the multimodal layer with the WTA

mechanism is chosen to be localist (k = 1) for better

interpretation of results and the error calculation.

We tested two unsupervised algorithms in the multi-

modal layer, SOM and NG, that differ in the neighborhood

function. The size of the multimodal layer was set to allow

a distinct localist representation of all 840 object combi-

nations in the most complex data set, so we used 841

neurons (arranged in a 29 9 29 grid in case of SOM).

For clarity, we explain the NG algorithm briefly here. NG

shares a number of features with the SOM. In each iteration

t, an input vector m(t) is randomly chosen from the training

dataset. Subsequently, we compute di(t) = ||m(t) - zi|| for

all units, and then, we sort the units according to their

increasing distances di, using indices l ¼ 0; 1; . . .;N � 1

(where l(0) corresponds to the current winner’s index). We

then update all weight vectors zi according to

ziðt þ 1Þ ¼ ziðtÞ þ g expð�lðiÞ=kÞðmðtÞ � ziðtÞÞ

with g being the learning rate and k the so-called neigh-

borhood range. We used g = 0.5 and k = n/2 where n is

the number of neurons. Both parameters are reduced with

increasing t. It is known that after sufficiently many

adaptation steps, the feature vectors cover the data space

with minimum representation error [25]. Mathematically,

the adaptation step of the NG can be interpreted as the

gradient descent on a cost function.

Quantification of the Model Accuracy

To quantify the model accuracy, we designed the following

procedure for computing the classification error. After the

model has been trained, we again make a single sweep

through the training set, in order to label all neurons,

reflecting their responsiveness to each of the five input

features (base color, base shape, spatial location, trajector

color, trajector and shape). We attach five counter arrays

cf
(i)(j) to each neuron, initialized to zeros, each consisting of

n(fj) slots, corresponding to the number of different (possi-

ble) values of the feature fj (depending on the task com-

plexity), i.e., j ¼ 1; 2; . . .; nðfjÞ. For each training input

pattern, we find the winner (as in the SOM algorithm) whose

five counter values are increased by one (i.e., for each cur-

rent feature value). After sweeping through the training set,

we assign unique feature labels to all neurons by applying

the ‘maximum response principle,’ according to which each

neuron becomes a representative of only the most frequent

value of the given feature (for which that neuron became the

winner most often), i.e., f
ðiÞ
j� ¼ arg maxjfcðiÞf ðjÞg.

Then, we can measure the model accuracy, as the per-

centage of correctly classified test inputs. The feature of the

testing pattern is considered to be correctly classified, if it

matches the winner’s representative feature. The calcula-

tion of the classification error rate is first made for each

feature separately and then also for the whole scene-sen-

tence input (overall error) that requires that all features in

the testing input be correctly classified.

In the case of the sequential RecSOM, in addition to the

classification error, we also compute the confusion error. It

occurs if the same neuron wins more than once during a

sentence, most typically in case of multiple occurrences of

the same word in a sentence, e.g., in ‘red box above red

ball,’ or ‘red ball below blue ball.’ So whenever the same

winner occurs twice, we increase the error counter by one.

The confusion error stands for the percentage of examples

with the same winner and it helps to detect erroneous cases

not revealed by the classification error.

Results

We present results corresponding to the three models as

described in ‘‘The Models’’, tracking our ‘experimental

trajectory,’ along which we eventually converged to the

architecture with SOM maps in visual subsystems and NG

in the multimodal layer. We trained each model for 100

epochs and tested it with a novel set of inputs. For each run,

the data set was randomly split to the training and testing

subsets using the 70:30 ratio.

Model 1

In Model 1, the single SOM in the visual system is tested

whether it can learn to represent all visual features simul-

taneously. We observe a high error in this system for the

trajector features, because trajector positions overlap in the

specific area. Errors for trajector color (37 %) and trajector

shape (65 %) are rather high. Although the spatial location

of the trajector is fuzzy, the error for this feature in the test

set is the lowest (14 %). Low errors also result for base

color (18 %) and base shape (28 %). We also test whether

the level of fuzziness (shown in Fig. 2b) affects the error in

the SOM map. All features except for the spatial location

are not sensitive to the fuzziness level, as the errors vary
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within a 3 % range. On the other hand, the error for spatial

location correlates with the fuzziness starting from 3 % for

fixed position of the trajector to 14 % for highly overlap-

ping spatial locations.

The phonological RecSOM layer performs better com-

pared to the visual layer because the phonetic features,

being sequentially fed to the system, are not fuzzy. There

are 0 % errors for base color, base shape, trajector color

and spatial term. Error for the trajector shape is 1 %. On

the other hand, there is a 22 % confusion error, which

results in the confusion of the neuron response (see the

illustrative Fig. 3 with only 6 9 6 neurons) and increases

the error in the multimodal layer. There are only 4 winning

neurons in case of confusion (the same neuron wins twice

within one sentence). We observe that this problem can

partially be eliminated using the decayed winner activation

of winners (as described in ‘‘Phonological Subsystem’’). It

would be possible to solve this problem more reliably by

excluding the winner from competition until the rest of the

sentence (as, e.g., done in [16]).

The performance of the multimodal layer heavily

depends on the effectiveness of unimodal layers. The errors

for the representation of trajector color (8 %), base color

(1 %) and base shape (2 %) are low. On the other hand,

there are high errors for both the trajector shape (46 %) and

spatial term (25 %). This is due to poor performance of the

visual layer. The overall error of the system reaches 68 %.

Model 2

Model 2 processes ‘what’ and ‘where’ information using

separate SOMs, and we identify a difference in accuracy

between the two systems. The ‘what’ system outperforms

the ‘where’ system, as documented by low errors for base

color (1 %), base shape (8 %), trajector color (0 %) and

trajector shape (5 %). We did not test the performance of

the ‘what’ system for the spatial term simply because that

information was not made available to this system. The

errors for the ‘where’ and phonological systems are iden-

tical to Model 1, because these layers receive the same

input as in Model 1. Notably, the additional ‘what’ layer

changed the performance of the multimodal layer. Errors

for base color (2 %) and base shape (4 %) in the multi-

modal layer remain the same as in Model 1, but lower

errors are observed for trajector color (1 %) and trajector

shape (5 %). On the other hand, the system exhibits a much

higher error for the spatial term (71 %) compared to Model

1 (25 %). The multimodal SOM layer is probably not able

to merge the information from three unimodal layers. The

overall error is 75 %, caused by the problem with the

Fig. 3 Unit responses in the

phonological layer of Model 1.

If the same neuron responds to

the same feature (e.g., shape) of

the trajector and the base

(shown by overlapping dots), it

will increase the error for the

whole scene/sentence as well.

a Visualization of the RecSOM

grid (time is represented

bottom-up by the size of the dot;

b The time course of sentence

processing (y-axis) in the

bottom-up direction
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representation of the spatial term. A more detailed analysis

is explained in the Discussion section.

Model 3

The simplification of inputs to the ‘where’ system is

achieved by using monochromatic bounding boxes instead

of object shapes and colors. This expectedly led to a lower

error (8.3 % in the most complex and fuzzy scenario)

compared to full retinal images (see Fig. 4). We do not

compare the results for object features (shape and color),

because there is no information about them provided to the

‘where’ system in Model 3. The analysis of the SOM

structure revealed a better organization of specific clusters

in favor of bounding box inputs for the spatial term rep-

resentation. These results lead us to the conclusion that it is

possible to simplify the information projected to the

‘where’ system to optimize the speed and effectiveness of

the model. However, the simplification of the ‘where’

inputs does not affect the performance of the multimodal

layer. There are similar results for the object features,

spatial term (70 %) and also the overall error (74 %).

Therefore, we tested the NG algorithm in the multimodal

layer in further simulations trying to improve the accuracy.

Comparison of SOM and NG in Multimodal Layer

We compare the effectiveness of the SOM and NG algo-

rithms in the multimodal layer for all three models. We

observe a different type of clustering in the unimodal layers

that are transferred to the multimodal layer, where the SOM

is not able to adapt to the concatenated outputs from uni-

modal layers, apparently due to neighborhood constraints

(Model 1SOM and 2SOM). The results of the NG algorithm

(Model 1NG and 2NG) for the same input data confirm this

hypothesis. The multimodal layer based on NG is able to

correctly map all the object features except spatial term

without any problem. There is a 0 % error for both simplified

inputs (Model 3NG) and also for full retinal projections to

the ‘where’ system (Model 2NG). The errors for the multi-

modal NG module and the single SOM in the visual layer

(Model 1NG) are as follows: 1 % for base color, 2 % for

base shape, 6 % for trajector color and 26 % for trajector

shape. These results are significantly better than those for the

multimodal SOM. Surprisingly, we observe the lowest error

for the representation of the spatial term in the multimodal

layer for NG algorithm and a single SOM visual layer

(Model 1NG). There is a 12 % error compared to 24 % for

Model 2NG (see Fig. 5) and 32 % for Model 3NG (see Table

2). The SOM algorithm leads to higher errors of the spatial

term for both models, namely 25 % (Model 1SOM), 70 %

(Model 2SOM) and 73 % (Model 3SOM). These results are

contradictory, because Model 2SOM and 3SOM with sep-

arate ‘what’ and ‘where’ systems perform better for all

features except the spatial term (see Discussion). Pre-

liminary results of this comparison were also presented in

Vavrečka, Farkaš and Lhotská [49].

The comparison of the overall accuracy (overall error) is

shown in Fig. 6 and Table 2. The best results are obtained

for ‘what’ and ‘where’ subsystems and the NG algorithm in

the multimodal layer (Model 2NG). There is a 25 % error

compared to 70 % overall error for the multimodal SOM in

the most complex scenario. Hence, the better, albeit not

perfect, results are achieved with NG by sacrificing the

topographic organization of responses in the multimodal

layer.

The last analysis is dedicated to the comparison of SOM

(Model 3SOM) and NG (Model 3NG) algorithms in the

Fig. 4 Visualization of spatial term errors in the ‘where’ layer for full

retinal inputs (blue) and for bounding box inputs (red) as a function of

the fuzziness level of trajector spatial location

Fig. 5 Comparison of the errors in the multimodal layer for the

representation of the spatial term. Model 1NG (NG in the multimodal

layer and a single SOM in the visual system) performs best
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multimodal layer that have to process different levels of

spatial fuzziness. Fig. 7 reveals a lower error for NG at all

levels of fuzziness and the high errors for SOM regardless

of the fuzziness level (70 %). Hence, the multimodal SOM

is unable to unambiguously represent neither fuzzy nor

distinct inputs.

Discussion

We analyze the presented models in the context of theo-

retic assumptions, especially the perceptual theory of

cognition and conceptual approaches to knowledge repre-

sentation. We also discuss various aspects of our model, its

relation to other models and the features of visual feature-

binding and temporal synchrony [6].

Architecture

We should also compare our architecture with the system

for the representation of spatial relations developed by

Regier [34]. The main difference lies in the unsupervised

manner of our architecture compared to the supervised

approach adopted by Regier. His system is composed of

specific modules for the calculation of angle between tra-

jector and base, an object‘s intersection and dynamic

properties in motion inputs. It resembles the designer’s

approach described in Ziemke [53] as there is modular

architecture engineered for the specific task. Our system is

more generic and biologically inspired as the subsystems

copy the information processing in human brain (unsu-

pervised learning, ‘what’ and ‘where’ pathways, multi-

modal integration). The advantage of Regier’s system is the

ability to represent dynamic spatial relations (around,

through, etc.). On the other hand, our unsupervised archi-

tecture based on RecSOM [51] in a visual subsystem and

the growing-when-required networks [24] in the phono-

logical and multimodal layer was able to process visual

sequences (around, through, outside, over and under) and it

reached 88 % accuracy [48].

Table 2 Summary of error rates for specific layers and models

Subsystem Model TrajCol TrajShape SpatTerm BaseCol BaseShape Overall

Where 1,2SOM; 1,2NG 39.3 68.2 14.2 19.2 30.5 91.7

3SOM; 3NG - - 8.3 - - -

What 2,3SOM; 2,3NG 0.4 5.3 - 0.9 0.8 -

Phono 1,2,3SOM; 1,2,3NG 0.0 1.2 0.2 0.0 0.0 12.3

Multimodal 1SOM 8.3 46.0 24.6 0.5 2.0 68.3

2SOM 0.9 5.4 70.3 1.9 3.8 74.7

3SOM 0.9 4.1 72.7 1.2 1.6 75.3

1NG 5.6 26.4 12.3 0.6 1.7 41.5

2NG 0.0 0.3 24.0 0.0 0.0 24.3

3NG 0.0 0.0 31.5 0.0 0.0 31.5

Fig. 6 Errors in the multimodal layer for whole scene (overall)

representation. Model 2NG based on ‘what’ and ‘where’ visual

system and NG in multimodal layer performs best

Fig. 7 Errors in the multimodal layer for SOM (Model 3SOM) and

NG (Model 3NG) algorithms as a function of the fuzziness level of

the trajectors’ spatial location (see Fig. 2b)
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In our model, the representations take advantage of the

two or three unimodal layers of units. The phonological

layer represents unique labels (linguistic terms), whereas the

visual ‘where’ subsystem represents fuzzy information

about the spatial locations of objects in the external world

and the ‘what’ subsystem captures shapes and colors of

objects in a fixed foveal position. The multimodal level

integrates the outputs of these unimodal layers. The groun-

ded meaning is simultaneously represented by all layers

(phonological, visual and multimodal), making this

approach resemble the theory of Peirce [30] who defined

basic components of a sign—representamen and interpre-

tant. Our model represents the sign hierarchically guaran-

teeing better processing and storing of representations,

because the sign (the multimodal level) is modifiable from

both modalities (the sequential ‘representamen’ via the

phonological level and the parallel ‘interpretant’ via the

visual level). This feature makes the units in the higher layer

bimodal (i.e., they can be stimulated by any of the primary

layers) and their activation can be forwarded for further

processing. Bimodal (and multimodal) neurons are known to

be ubiquitous in the association areas of the brain [39]. The

multimodal layer is formed by exploiting the concept of self-

organized conjunctive representations that have been

hypothesized to exist in the brain with the purpose of binding

the features such as various perceptual properties of objects

[26]. We adhere to the view that conjunctive neurons, as an

alternative to mechanisms of temporal synchrony, are the

plausible connectionist approach for addressing the binding

problem [29]. Here, we extend the concept of binding by

linking the subsymbolic and symbolic information. Hence,

each output unit learns to represent a unique combination of

perceptual and symbolic information.

Visual Feature-Binding

Our Models 2 and 3 propose the unsupervised solution to

the visual feature-binding, based on the integration of the

‘what’ and ‘where’ pathways. With respect to the visual

feature-binding [6], the model is based on convergent

hierarchical coding, also called combination coding [35].

The neurons react only to combinations of features, that is,

to an object of a particular shape and color at a particular

retinal position (localist representation). Hierarchical pro-

cessing implies that increasingly complex features are

represented by higher levels in the hierarchy. Complex

objects and situations are constructed by combining sim-

pler elements. On the other hand, the convergent hierar-

chical coding requires as many binding units as there are

distinguishable objects. It should result in a combinatorial

explosion for large-scale simulations. Our model is able to

represent 840 combinations, but it can also suffer from the

combinatorial explosion because we represent pairs of

objects instead of separate entities in the primary visual

layers. In case of 10 objects, 5 colors in 4 spatial locations,

we would need to represent 2450 object pairs in a primary

‘what’ system, instead of 50 separate objects. It is also

possible to add a separate layer for the color processing, in

which case there will only be 10 objects presented in the

‘what’ system. Alternatively, we could represent the fea-

tures in the activity of a population of neurons distributed

within and across levels of the cortical hierarchy as the

distributed representation [8], although some authors have

raised the question whether the combinatorial explosion is

really a problem [10]. It is estimated that the number of

objects, scenarios, colors and other features in the brain is

approximately 10 million items. It is obviously beyond the

limits of recent cognitive systems, but it is below the

number of neurons in the mammalian visual cortex, so the

combination coding could be a sufficient method. It could

also be possible to adopt Neural Modeling Fields [31], the

unsupervised learning method based on Gaussian mixture

models that arguably does not suffer from combinatorial

complexity. The application of this theory to the area of

symbol grounding resulted in 95 % accuracy of the system

that learned the repertoire of 112 actions [5].

Temporal Synchrony

Our model is able to map the words in the sentence with

the fixed grammar to the objects in the environment

without any prior knowledge (temporal synchrony). Pre-

vious models of symbol grounding [2–5] deal with the

lexical level, but our model goes beyond words because it

can represent sentences in RecSOM. The ability of tem-

poral synchrony can be considered as an extension of the

symbol grounding. Cangelosi et al. [2] recommend to

ground-specific words at the first stage (sensorimotor toil)

and then compositionally chain them at the grounded lan-

guage level (symbolic theft). There are separate objects

presented to their system within a training phase, ground-

ing basic object features. Our approach can be considered

an alternative to this theory. We also ground words in the

first stage, but unlike the mentioned approach, we present

sentences as linguistic inputs to be bound with proper

features from the visual subsystem (shape, color and

location). Compared to the classic sensorimotor toil

experiments based on the grounding of two features, our

system is able to ground 5 features simultaneously, which

speeds up the process of symbol grounding (faster acqui-

sition of the grounded lexicon). Tikhanoff [43] proposed an

architecture (and implemented it in iCub robot) that was

able to understand basic sentences, but it was based on

supervised learning. Our model is a proof of concept that

unsupervised architectures can also find proper mapping

between multiple visual and lexical features. We are able to
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build representations solely from sensory inputs, arguing

that the co-occurrence of inputs from the environment is a

sufficient source of information to create an intrinsic rep-

resentational system.

Performance

The analysis of the model behavior revealed that the trajector

shape and the spatial term representations are the most dif-

ficult subtasks for visual unimodal systems. The difficulty is

caused by the variability and fuzziness of these inputs. The

correct representation of the trajector shape requires a sep-

arate unimodal ‘what’ system. The errors for (both SOM and

NG) Model 1, 2 and 3 confirm the necessity of the ‘what’

system in the complex environment because we observe a 60

% increase of errors in the model without a separate ‘what’

system. On the other hand, the error for the spatial term in

Model 2 and 3 reflects some problems with an increasing

number of inputs from different subsystems to the multi-

modal layer, because there is a lower error for Model 1

compared to Model 2 and 3 (both SOM and NG). The

problem could reside in the number of dimensions. The

multimodal module receives a 1300-dimensional input in

Model 1 and a 1925-dimensional input in Model 2 and 3. The

increase of dimensionality together with a localist unimodal

output function may decrease the effectiveness for the spatial

term representation, although other features are represented

better in a high-dimensional space. This contradiction has to

be investigated in greater detail.

The results for specific algorithms in the multimodal layer

confirm our hypothesis that the SOM algorithm, based on the

fixed neighborhood function, is not able to adapt to the joint

distribution of the outputs from unimodal layers. The SOM-

based models aim at the topology-preserving property for

the input data, but they are weak with regard to properly

representing clusters with different non-uniform data dis-

tributions [18]. On the other hand, the NG algorithm is not

subject to topographic constraints and, thus, leads to better

clusters. Our results are also in line with Pezzulo and Calvi

[32], who conclude that perceptual symbols may not be

topographically organized, although some parts of the per-

ceptual and motor areas show topographic hierarchical

organization. Grounding models based on topographically

organized connectionist networks (e.g., [17]) to simulate the

perceptual symbol system also exist, but our results do not

confirm this assumption for more complex inputs.

The mapping in our models is actually a clustering pro-

cess that makes the system also vulnerable to errors in the

input space. Successful clustering presumes that at least one

modality provides distinct activation vectors for different

classes to drive the clustering process (i.e., the classes are

well separable in the corresponding input subspace). On the

other hand, the occurrence of both phonological and visual

fuzzy inputs is rare in the real world, so our system could be

considered a step toward solving the symbol grounding

problem (at least at this small scale).

Conclusion

We have created an unsupervised connectionist system that

is able to extract constant attributes and regularities from

the environment and link them with abstract symbols. The

meaning is non-arbitrarily represented at the conceptual

level that guarantees the correspondence of the internal

representational system with the external environment. We

can also conclude that it is advantageous to follow the

biologically inspired hypothesis about the processing of

visual information in separate subsystems. The question for

future research is to find a proper way of output coding

from the unimodal layers to increase system accuracy and

to scale up the model. The main advantage of our model is

the hierarchical representation of the sign components.
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