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ABSTRACT 

 

Face recognition is an essential part of visual perception.  Few-shot learning is inspired by the 

unique ability of humans to recognize objects only after one or a few presentations. We adopt an 

interdisciplinary approach by combining the research from neuroscience for face perception as 

well as computer science research for using neural networks in the face perception domain. We 

focused on the implementation of few-shot learning models for face recognition, namely the 

Prototypical networks and the Siamese networks. We have used Labeled Faces in the Wild 

dataset (Huang et al., 2007). We provide an analysis showing that few-shot learning models do 

not provide sufficient classification accuracy compared to humans. However, with more 

computational power allowing a more thorough exploration of the deep learning models for few-

shot face recognition is a very promising area. 

 

Keywords: Deep Learning, Few-shot learning, Prototypical Network, Siamese Network, Face 

recognition 

 

  



 

ABSTRAKT 

 

Rozpoznanie tváre je nevyhnutnou súčasťou vizuálneho vnímania. Few-shot učenie sa inšpiruje 

jedinečnou schopnosťou ľudí rozoznať objekty už po jednej alebo niekoľkých prezentáciách. 

Interdisciplinárny prístup aplikujeme kombináciou výskumu neurovedy pre vnímanie tváre, ako 

aj výskumu počítačovej vedy používaním neurónových sietí v oblasti vnímania tváre. Zamerali 

sme sa na implementáciu few-shot učiacich modelov pre rozpoznávanie tváre, konkrétne 

Prototypických sietí a Siamských sietí. Použili sme dataset Labeled Faces in the Wild (Huang a 

spol., 2007). Prezentujeme analýzu, ktorá ukazuje, že modely s few-shot učením neposkytujú 

dostatočnú presnosť klasifikácie v porovnaní s ľuďmi. S väčšou výpočtovou silou, ktorá 

umožňuje dôkladnejšie skúmanie hlbokých modelov učenia je few-shot rozoznavanie ludí veľmi 

sľubná oblast . 

 

Keywords: Deep Learning, Few-shot learning, Prototypical Network, Siamese Network, Face 

recognition 
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Introduction 

Face recognition is an essential part of visual perception. We use this skill during social 

interaction between humans. Face recognition is an important part of artificial intelligence 

with a wide application in the fields of recognition systems, surveillance applications, and 

social robotics. 

Deep learning is the leading technology for computer vision, and deep learning is 

inspired by cognitive science and neuroscience. Few-shot learning is inspired by the unique 

ability of humans to recognize objects only after one or a few presentations. This works 

well for recognizing faces in humans; however, there are not many such applications in 

deep learning. In this thesis, we will focus on few-shot learning models that can be used 

for face recognition. This thesis adopts an interdisciplinary approach by combining the 

research from neuroscience for face perception as well as computer science research for 

using neural networks in the face perception domain. 

In this master thesis, we will explain Face recognition from the neuroscience 

perspective in chapter 1. We outline some neuroscience details, e.g., the Fusiform Face 

Area (FFA) that is responsible for face perception and some research in the area of face 

recognition and theories of perception. Then we continue with chapter 2 Artificial neural 

networks, where we will explain the basics about Artificial neural networks and more 

details of Convolutional neural networks (CNN's). In chapter 3, we will mention some 

research in face recognition using CNN and discuss the ethical concerns of using face 

recognition technologies around the world. Next, we will explain few-shot learning 

principles and describe in detail the Prototypical neural networks and Siamese neural 

networks. In chapter 5, we will focus on our work on few-shot learning models for face 

classification and verification. Then we will describe the dataset that we used to train our 

models. Finally, we present our architectures used in our experiments. In the following 

chapter 6, we will present our implementation and experimental results. After that, we 

discuss the results and provide some conclusions to the experimental part and suggestions 

for future work. 
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1. Face perception – neuroscience view 

Face perception and recognition of its individual characteristics are an integral part of 

cognitive processes. Facial perception is different from the perception of other objects and 

is accompanied by specific neurophysiological processes. Thus, during the evolution of the 

brain and human social life, specialized brain structures, and a specific neurocognitive 

network were created. Modernization of brain imaging methods has made it possible to 

observe the activation of specific areas of the brain in specific activities, including the 

perception of the human face. Significant technological advances have brought much new 

knowledge that has led to the formulation of new theories of perception, which also have 

practical benefits. (Blažek & Trnka, 2009). 

For purposes of this chapter, which deals with the specificities of facial perception, 

we will mention Rakic's theory of radial units (Rakic, 1995), which explains the process of 

forming the cladding of the terminal brain during the early years of human life. The basis 

of the theory is to increase the number of cells in mature mammals and especially the 

possibility of increased mitotic division, where one of the two daughter cells travels 

according to the protrusion of radial glia into the emerging cortex, and the other can divide. 

The frequency of this division affects the resulting number of neurons in the cortex. We 

are increasing the cortex volume results in finer differentiation of cortical fields and more 

complex brain structures (including enlargement). 

Damasio's model of somatic markers for experiencing and awareness of internal 

states (Damasio, et al., 2000) points out that body signals also increase the accuracy and 

efficiency of the decision-making process in recognizing human emotionality. The central 

idea is that body marker signals influence the stimulus-response process. Markers reflect, 

but are not limited to, bioregulatory processes, such as emotions, as well as physical states, 

and regulatory processes or their manifestations in the central nervous system. (Damasio, 

Everitt, & Bishop, 1996). 

The action of the marker takes place at the conscious as well as unconscious level. 

Instead of calculating all behavioral alternatives associated with stimulus-response, the 

brain only focuses on those associated with a positively experienced somatic marker. 
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Markers that are experienced negatively are excluded from decision making. In this way, 

the response to the stimulus is reduced to a lower number, which can then be processed at 

a conscious level, for example, by searching for logical connections and relationships 

(Damasio, Everitt, & Bishop, 1996).  

According to Mesulam's theory of neurocognitive networks, the various functional 

areas of the cerebral cortex are networked to form a neurocognitive network for certain 

processes that are closely related or interconnected. The neuro-cognitive network for 

recognizing the face and its components, including the expression, is quite complex. In this 

facial network, in addition to the primary visual cortex and the region of the lower occipital 

lobe, fusiform gyrus participates on the borderline between the temporal and occipital 

lobes, which probably play a crucial role in facial recognition), the amygdala and the 

prefrontal region. (see Figure 1) This network performs several tasks in parallel, in 

particular facial expression, emotional tuning of others, sex determination, the distinction 

of relatives, etc. Cognitively oriented theories of mental representation formation are also 

important for perception and facial recognition. 

1.1 Neurophysiological mechanisms of facial perception 

Neurophysiological processes of facial perception are specific, although many functional 

areas of the terminal brain cortex, which are crucial for facial recognition, may also be 

involved in other cognitive processes. In this context, a "facial specificity hypothesis" has 

been developed, which is linked to the existence of a neural network with a crucial special 

area on the border of the temporal and occipital lobes in the lower part - the gyrus fusiform 

(Blažek & Trnka, 2009). The uniqueness of this area has been known since the 1990s, and 

its existence and relationship to face recognition is proven mainly by the fact that we 

perceive faces as a special category of observed objects and attribute uniqueness to them. 

(Gautier & Nelson, 2001). 

Koukolík & Drtinová (2006) demonstrate that, when the brain is exposed to visual 

stimuli in the form of faces, functional imaging methods show considerable activation of 

the Fusiform Face Area (FFA). Although this area is also active in the visual presentation 

of other objects - faces, it reacts to the face twice as intensely. The experiment of Rhodes 
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(2006) examined the function and essence of this area and was to decide among three 

hypotheses: 

• FFA is specialized in processing visual stimuli related to faces 

• FFA is specialized in the individualization of visually similar items within one category 

of a stimulus. This hypothesis is based on the fact that although human faces are 

important to us, it may not be the only category of visual stimuli that are very similar 

in absolute terms, and we must distinguish among them. It would be useful for the brain 

to have the ability to adapt (immediately after a series of sensations) to a series of 

stimuli and be able to differentiate them. This hypothesis does not attach to the crucial 

role of experience. 

• FFA is specialized in individualization within a category with which an individual has 

experience. This hypothesis is similar to the previous one with the difference that 

instead of rapid brain adaptation, it is gradually gaining expert experience. Once the 

brain has gathered enough data to process the perception at a "deeper" level, the facial 

area of the gyrus fusiform takes up this activity. 

 

Rhodes' research consisted in presenting human faces, objects with which the 

participants had no experience (a series of objects that were specified for the second 

hypothesis, for example, butterflies of one species differ so slightly that only an individual 

familiar with the category can differentiate between them) or objects with which they had 

one that could be considered an expert. 

If hypothesis 1 were true, the FFA would only be activated in the presentation of 

human faces; if hypothesis 2, it would be activated in the presentation of all the objects 

they encountered, and its activation would continuously increase. The results of the 

experiment confirmed the hypothesis 3. People became active in the FFA area when they 

perceived human faces and if they perceived objects with which they had expert experience 

(such as butterfly connoisseurs). 

Koukolík & Drtinová (2006) add that the results showed the existence of groups of 

FFA neurons that are tuned to the features necessary to distinguish members of different 

classes of visual objects. The facial function of FFA has been confirmed, among other 
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things, by other studies of injured patients (Goffaux, Jemel, Jacques, Rossion, & Schyns, 

2003). 

   

Figure 1: Localization of the fusiform face area – fusiform gyrus (Mysid, 2010)  

1.2 Facial neurocognitive network 

The technological boom in medicine has provided the finding that facial recognition is a 

complex process involving many areas in the brain. The facial neurocognitive network 

includes the following nodal areas (Blažek & Trnka, 2009): 

a) The lower occipital lobe, which belongs to the visual cortex, 

b) gyrus fusiform, 

c) amygdala, 

d) certain areas of the prefrontal cortex at the front of the frontal lobe. Furthermore, 

hearing centers in the temporal lobe are also connected to the network. 

The facial network works as follows (Blažek & Trnka, 2009): 

1. The perceived face is treated in the first step in the primary visual cortex as any other 

visual stimulus. 

2. Visual analysis is performed, which recognizes partial elements of perceived objects. 

At this point, the object is identified as a human face. 

3. Fusiform facial area (FFA) processes further information (already on the face). 
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4. It continues, together with the occipital face area, to the differentiation of other facial 

characteristics (gender, age, race, acquaintance) and individual face identification. 

5. Identification is further fixed to the memory in the crown lobe with the participation of 

prefrontal areas (asymmetrically differentiated based on whether facial information is 

stored or retrieved). Through the limbic system, information is processed in the 

amygdala with the participation of some areas of the temporal and parietal lobes to 

recognize mimic expressions. 

6. Amygdala also transmits information to various parts of the prefrontal area, which are 

the basis for assessing and shaping attitudes, for assessing the attractiveness and 

associating facial characteristics with anticipated personality traits, anticipating certain 

reactions in the context of social relationships. 

Face recognition itself takes place in prefrontal areas where the background 

information flows from the fusiform facial area (FFA) (Blažek & Trnka, 2009). The facial 

neurocognitive network evolves during the ontogenesis process and forms a complex that 

is functionally interconnected with other areas, not only with the visual analyzer but also 

with the hearing analyzer districts for speech signal recognition and others. (In blind 

people, the dominant visual perception is replaced by increased susceptibility to auditory, 

tactile, and odor sensations.) (Blažek & Trnka, 2009) 

1.3 Facial image processing 

The retina of the eye, which senses and preprocesses the light signals coming into it through 

the lens, includes, in addition to the luminous cells (rods and cones), neurons originating 

in the proximal process. The optic nerve transmits information from the retina to the 

thalamus in the middle and then further to the visual centers, especially the occipital lobe 

of the cerebral cortex (see above). The perception of the object is based on the rapid shift 

of the view from one point to another (for the face, especially between the left and right 

eye, the tip of the nose, lips, the contour of the face), with the overall image reconstructed 

by the visual analyzer in the brain. The visual analyzer itself is further divided into two to 

three dozen districts, which are specialized and provide partial parts of the analysis. Each 

of them specializes in different aspects of visual perception, such as the position of the 
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object in space, movement of the object, contrast, etc. In the lower occipital lobe, there is 

an area that activates when facial is perceived. It is part of the lower occipital lobe, which 

is responsible for recognizing the individual physical characteristics and qualities of the 

face rather than recognizing the face itself. It is also referred to as the occipital region. 

(Blažek & Trnka, 2009) 

Pre-adaptations in the field of visual information processing were important for the 

development of human cognitive abilities. In the first place, it is the formation of the so-

called parvocellular cells, which are based on about 80% of ganglion neurons with smaller 

dimensions, in addition to the previously formed (mammalian) magnocellular cells 

consisting of 10% of ganglion cells, which are larger. 

Magnocellular cells are characterized by low color resolution, high contrast 

sensitivity, fast resolution over time, and low resolution of spatial characteristics. The 

creation of the parvocellular cells has allowed higher primates to enhance visual perception, 

namely overall spatial orientation, object recognition and location and spatial orientation, 

three-dimensional vision, fine color differentiation, and speed motion resolution. 

(Koukolík F. , 2002)  

Facial surface features, such as eye size and shape, eyebrow density, skin 

pigmentation, as well as the three-dimensional structure of the face and the location of the 

individual elements in it, are important for face recognition. (Rolls, & Ekman, 1992) 

At facial perception, functional asymmetry of the brain is already traceable at the 

level of area activation in the visual cortex. Face perception is associated with the right half 

of the brain, but asymmetric activation also occurs in the primary V1 region. When 

observing other objects, i.e., objects that are not identified as a human face activate areas 

on the border of the temporal and occipital lobes in the areas following the secondary visual 

cortex. 

1.4 Specifics of face perception 

Once the perceived object is recognized as a human face, areas of the cortex are activated 

in the brain, which is specifically designed to analyze the face and its individual 

characteristics. This activation occurs even under difficult or unusual conditions for 
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identification, such as insufficient light, blurred image, a different angle of view, inverse 

face (rotated 180 °), etc. 

The identification of an object as a face takes about 120 ms, and this time interval is 

considered to be evidence of a two-step process of facial recognition since a longer time is 

required to identify a person (Kato & Nakamura, 2004). There are several differences in 

facial perception compared to other objects, as the face is identified as a face based on 

simple criteria. It has been shown experimentally that the size of the face does not affect 

its perception (it plays a role in other objects). Observing the face as a complex with all 

characteristics (photographs) and as a simpler representation (e.g., line drawing) does not 

lead to a difference in the functioning of the relevant cortical areas (Allison, Puce, Spencer, 

& McCarthy, 1999). Manipulation of facial image (rotation, blur, negative image, moving 

different parts of the face, combinations of different faces) is not an obstacle to categorizing 

the face into the face category and activating areas for cognitive processing as a face (Farah, 

1998). 

There is a neurological disorder of prosopagnosia in which patients can classify an 

object as a face, but are unable to identify a face, even if it is demonstrably known to them 

(they are not able to identify their own face and associate it with themselves). The main 

symptom of prosopagnosia is the inability to analyze the face and its features, resulting 

from impaired or impaired gyrus fusiform (Grüter, Grüter, & Christia, 2008). Autism 

patients also achieve poor face recognition results. While a healthy individual is generally 

able to better distinguish and fix faces in memory than other objects, autists do not 

distinguish between faces and other objects and thus have much worse scores in face 

recognition (Hauck, 1998). Autists use centers other than people without this diagnosis to 

recognize and distinguish faces, leading to different results. 

In summary, in addition to the involvement of the areas of the visual cortex, 

especially in the occipitalis inferior gyrus, gyrus fusiform and other areas of the occipital 

and crown lobes are decisive for the perception of the face. At the same time it is connected 

with other parts of the brain: especially the prefrontal cortex (in front of the frontal lobe) 

and its precincts, which are focused on self-knowledge, memories of perceived and 

identified person, or attribution of evaluation aspects; furthermore, the fusiform region also 
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has links to the limbic system and the temporal and temporal lobe. In addition to identifying 

the individual, gender differentiation concerning sexual signaling, and differentiating facial 

expressions in communication, these cognitive functions are also important for forming 

attitudes towards others (Koukolík & Drtinová, 2006). Recognition of belonging of 

individuals to more distant, different population groups, associated with assignment to the 

so-called "races" (i.e., categories based on a typological approach). 

1.5  The specificity of perception of different races 

What motivated the development of research activities on the perception of various human 

races was the inaccurate identification of eyewitnesses. The reason for the misconception 

of the court was misinformation provided by witnesses who, moreover, probably acted in 

good faith in the correctness of their identification. (Loftus, 1976) (Lickson, 1974) 

described a case from Florida: In 1971, a group of blacks were arrested and charged with 

murdering a man during a robbery. No clues were found in the scene of the crime that could 

withstand the trial and, at the same time, prove directly or indirectly that the detainees were 

real perpetrators. However, even five independent testimonies spoke against the detainees. 

The prosecution's language was eloquent: "What better than identifying a biased witness? 

Moreover, if there are five such witnesses? This is evidence that leaves no room for 

justified doubt." The court condemned the defendants. As a witness of the defense, Dr. 

Werner was called to court. Haythorn, a specialist psychologist who was supposed to 

disprove testimony by pointing out the effect of another race affecting identification, but 

since there were not enough conclusive studies at the time, his testimony was not 

considered relevant. The ability to better remember the faces of one's own race is due to 

the different facial image processing processes, namely the increased response in the left 

fusiform cortex and the right hippocampus. Besides, asymmetries in amygdala activity in 

the perception of faces associated with a race other than that of the observer were also 

observed when investigating the effect of another race. Other experiments (Eberhardt, 

2005) have also shown a different activity of the prefrontal regions, which they relate to 

attitudes and beliefs gained in the social context since the activity of the prefrontal regions 

is also recorded in the investigation of racial prejudice (Richeson & Shelton, 2003).  
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However, some voices attribute different amygdala activity to learning and cultural 

influences (Lieberman, Hariri, Jarcho, & Eisenberger, 2005). 
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2. Artificial neural networks 

Artificial neural networks (ANN) are computer systems inspired by biological neural 

networks, the brains of living organisms (Williams & Zipser, 1989). Generally, the brain 

works by sending individual impulses between many interconnected cells called neurons. 

Components of the ANN are neurons, connections with weights, activation function, and 

the learning rule. There are different approaches to training the ANN: supervised learning, 

unsupervised learning, reinforcement learning (Lippmann, 1988).  

2.1 Introduction to Artificial neural networks 

The neural network itself consists of mathematical models of neurons, where each neuron 

has its own set of weights and through these generates an output as a product of the input 

and the synaptic weight strength, which is subsequently processed by the activation 

function. These neurons are topologically assembled into a structure communicating 

through oriented evaluated junctions. All networks can be different. Very often, it depends 

on the nature of the neuron, the topological arrangement, and, last but not least, the learning 

strategy. 

In Figure 2, we can see that the neurons are assembled into predetermined layers, and 

this structure is called the multilayer perceptron (MLP). The neurons in this model are 

usually not connected within a layer, but there is a full connection between the layers. Each 

individual connection is given a weight, which controls the strength of the connections 

between neurons. In this arrangement, there is always one input layer and one output, but 

there may be more than one hidden layer. The most standard architecture, especially in 

deep learning is the feed-forward neural network. It is called feed-forward because the 

signal propagates in only one direction, from input to output. Neural networks are 

characteristic of robustness and resistance to damage. It means they provide relatively 

correct outputs even if some parts of the input or the weights themselves are damaged.  

https://paperpile.com/c/XgIOt0/5RG4
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Figure 2: Multilayer perceptron with a hidden layer (Hassan et al., 2015) 

The life of a neural network comprises two phases. The first phase is always learning 

or so-called training when the network learns its parameters based on the training dataset. 

Subsequently, it enters the testing phase, in which the network no longer changes, but it is 

tested on different inputs and evaluated. 

2.1.1 Learning principles 

The input weights W represent trainable parameters of the neuron. Learning is provided by 

an adaptation algorithm that sets the weights. This process takes place iteratively during 

the training phase when the algorithm has a set of input data and the corresponding output. 

The learning procedure finds a set of weights t alhat maximize the measure of correctness 

(performance) of the network. The great advantage of neural networks is the ability to find 

the right set of weights, even in those cases where the solution is very hard to find 

analytically. Usually, a large amount of training data is needed for this, on which the given 

network can learn correctly. Generally, there are three approaches that differ in how the 

learning objective is formulated, unsupervised learning, i.e., without a teacher, supervised 

learning, i.e., with the teacher and reinforcement learning, which is similar to supervised 

and we will not include it here due to space limitations of this thesis. 
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Learning without a teacher 

Unsupervised learning is, in general, a machine learning method that looks for a hidden 

structure in data. It works on the principle of cluster analysis, so it looks for similar 

elements in the input data, which are sorted into groups (the number of groups can be 

known in advance), in which these objects have similar properties. We do not interfere in 

learning in any way, so the whole learning is based only on the information obtained from 

the input data set. The most famous neural network for unsupervised learning is the so-

called Kohonen network, or it is also called the self-organizing map (Kohonen, 1982). 

Learning with the teacher 

In this case, the adaptation algorithm has a sufficient set of input pairs to the corresponding 

output. It, therefore, has specific examples of the correct outputs, which it uses to adapt the 

weights. Usually, the dataset is divided into three parts, training, testing, and validation 

parts. The ratio is not exactly given; it must be chosen according to the nature of the task. 

Typically, a training set contains about 60% - 80% of the total data set. 

The algorithm gradually presents the individual elements and determines the 

deviation from the expected output and then performs the weight correction. This 

procedure, after it goes through the whole training set, is called an epoch. Hundreds to 

thousands of epochs are usually needed to train a network. The moment of stopping the 

learning is most often chosen by reaching a certain value of the total error when we declare 

the network learned. Learning can also stop if the error has stabilized at a value and no 

longer decreases. We then verify the performance of the learned network using a test set. 

There are more criteria for correct learning, but most often, it is the mean square error 

(MSE) between the outputs of the network and the ground truth values. If the performance 

over the test set is good, we assume that it will be approximately as good for inputs outside 

our set. 

Given the context of this thesis, supervised learning is usually used on such datasets 

that contain image data and classifications of each item (e.g., the face of George W. Bush). 

ANN learns for many epochs in order to increase the accuracy of the representation needed 

for the classification task. 
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2.1.2 Multilayer perceptron 

A perceptron network is a multilayered neural network with forward connections shown in 

Figure 2. Neurons in one layer are connected to all neurons in the previous layer. There are 

usually no connections between distant layers or between neurons within a single layer. 

Thus, each neuron has exactly as many inputs as there are neurons in the lower layer. The 

network input layer is only used to distribute input values. For the activation function of a 

multilayered perceptron, neither a simple stepwise nor a linear function is suitable. So, the 

nonlinear activation functions are used in perceptrons. These functions usually “squash” 

the input values into some small predefined range (for example, sigmoid, tanh) or set the 

negative values of the input to zero or close to zero (rectified linear unit - ReLU, leaky 

ReLU). In the classical multilayer perceptron, the sigmoid function is most often used. A 

hyperbolic tangent is also a popular option, and the ReLU is typical in deep learning. See 

Figure 3 with the equations and graphs of the activation functions: 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑: 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

 

𝑡𝑎𝑛ℎ: 𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

 

𝑅𝑒𝐿𝑈: 𝑟𝑒𝑙𝑢 (𝑥) =  𝑚𝑎𝑥 (0, 𝑥) 

 

 

A multilayer perceptron network with one hidden layer, i.e., the layer between the 

input layer and the output layer, is generally taken as a universal approximator. We assume 

that any continuous function can be represented with such architecture. Each neuron in the 

layer can divide the space into two parts. A neural network with no hidden layer can be 

used to represent simple binary logical operations such as disjunction or conjunction. The 

Figure 3: Activation functions: sigmoid, tanh, ReLU (Edvinsson, 2017) 
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hidden layer already allows us to learn a linearly inseparable problem. The more neurons 

in a given layer, the more complex function can be represented with a given layer. 

2.1.3 Error backpropagation 

The error backpropagation algorithm is the most important and used algorithm for 

supervised neural network learning. Therefore, the input and output value pairs must be 

known. The error propagates back across all layers to the first layer. Learning, according 

to this algorithm, takes place in three phases. 

• In the first phase, the input is presented. The neurons of the individual layers of the 

network respond to this input, gradually from the input layer to the output layer. Once 

the network returns the output values, an output error can be computed. 

• In the second phase, error information is propagated back from the output layer. The 

error of neurons in the hidden layer is determined by the sum of the errors of the neurons 

of the next layer multiplied by the corresponding weights. There is no need to consider 

the error for the input layer because the input layer only distributes the input values. 

• In the third phase, when the error is already known for each neuron, it is possible to 

adapt the weights according to the learning rule. First, we need to compute the gradient 

of the output error (cost function) with respect to all weights (∇J). Then, we can use 

these gradients to update the weights of the network. 

Loss function: ∇J = (
∂J

∂𝑤1
,

∂J

∂𝑤2
, … ,

∂J

∂𝑤𝑙
)      Weight update:  Δ𝑤𝑙 = −𝛼

𝜕𝐽

𝜕𝑤𝑙
 

The learning cycle consists of the individual iterations described above. Each pattern 

is submitted to the network exactly once during the cycle. Experience has shown that where 

training patterns are independent of each other, it is not appropriate, as already mentioned, 

to present the patterns in the same order. This is because the network could find unwanted 

dependencies in repetitive sequences. 

Unfortunately, backpropagation has several unpleasant features. Above all, it is a fact 

that the error function is dependent on all weights, and thanks to that, it is a very complex 

function, i.e., it has many local minima. The gradient method can lead to the nearest 

minimum, which may not be global. The second problem is the number of learning 
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parameters, also called the hyperparameters. The algorithm does not determine that, and 

the successful convergence of the error function depends on them. The appropriate setting 

of these parameters can significantly affect the learning performance. This method 

converges relatively slowly, especially for large weights, where nonlinear activation 

function-based changes are very small. 

 

Figure 4: Error backpropagation (Rumelhart, Hinton, & Williams, 1985) 

In Figure 4, there are the schematics of the error backpropagation algorithm. The 

solid arrows indicate the direction of signal propagation, while the dashed direction of error 

propagation. The improvement of the algorithm with backward propagation of the error 

consists in the introduction of "inertia" in the changes of the weights, where the change of 

the weight also depends on the size of the previous change of the weight. Originally, the 

stochastic gradient descent (SGD) method was used for the update of the weights. 

2.1.4 Optimizers 

In order to update the weights of the network, we can use various optimization algorithms. 

Nowadays, modern optimizers are used instead of classical stochastic gradient descent. 

One of the most popular ones is Adam (Kingma & Ba, 2014). Because it achieves higher 

accuracy than stochastic gradient descent across multiple tasks, Adam is very popular in 

the field of Deep Learning. 
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Unlike the SGD, which maintains a single learning rate (alpha - ) during the whole 

course of training. Adam adapts the learning rate as learning unfolds. It is a combination 

of older extensions to the SGD, namely the AdaGrad (Duchi, Hazan, & Singer, 2011) and 

RMSProp (Tieleman & Hinton, 2012). 

The Adaptive Gradient Algorithm (AdaGrad), maintains a specific learning rate for 

each parameter (weight). This brings improvement in problems with sparse gradients (e.g., 

computer vision problems and natural language). 

The Root Mean Square Propagation (RMSProp) also maintains per-parameter 

learning rates. These separate learning rates are adapted as the average of recent 

magnitudes of the gradients for the particular weight, so the learning rate depends on how 

quickly the concrete weight is changing. Like this, the algorithm can do well in case of the 

online and noisy non-stationary problems. 

2.1.5 Image processing 

For image recognition and classification, fully connected neural networks described above 

may not be the best solution. In order to be able to work effectively with a large set of 

different input images, it would be necessary to make the network very deep, with an 

unreasonable number of neurons. Although it is possible to arrange this, we still encounter 

the fundamental limitations of classical multilayer perceptron - individual neurons learn in 

isolation from other neurons, while at the input, we have a real-life image where pixels are 

semantically grouped. Thus, it would be more advantageous to focus on improving the 

architecture of the neural network itself, specialized in having a bitmap at the input, and 

thus neighboring neurons should somehow share their weights at the inputs. Modern trends 

are in the use of convolutional neural networks, which were designed primarily for working 

with image data. We devote the latter part of this chapter to deep and convolutional neural 

networks. 
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2.2 Deep learning and Convolutional neural networks 

Deep learning is often applied in very deep feed-forward neural networks (DNNs), and it 

is used as an alternative to standard machine learning techniques for working with large 

data. The main aim of using deep networks is to discover representations that can help 

feature detection and classification of the data. Deep learning seems to be better than 

conventional algorithms or other machine learning techniques at discovering high-level 

structures in multi-dimensional data. Therefore, it can outperform task-specific algorithms 

in the area of image recognition (Krizhevsky, Sutskever, & Hinton, 2012), speech 

recognition, natural language processing systems, drug design, and other (Deng & Yu, 

2014). Steinkraus, Simard, & Buck (2005) proposed to use the graphical processing unit 

(GPU) instead of a central processing unit (CPU) for machine learning tasks. DNNs 

implemented on a GPU provided incredible performance results compared to CPU 

processing (Ciresan, Meier, Masci, Gambardella, & Schmidhuber, 2011). 

Further progress in the area of image processing and ANN has led to developing 

Convolutional Neural Networks (LeCun et al., 1989). CNN's were inspired by biological 

processes in the brain related to processing visual content. From the visual neuroscience, 

there are simple cells and complex cells  (Hubel & Wiesel, 1962). Therefore, the CNN 

structure is divided into various layers that can have different architecture. CNN tries to 

mimic the architecture of the visual cortex, which is defined by areas in the brain: V1, V2, 

V4, and IT (Felleman & Van, 1991). Each area is specific and serves a slightly different 

role in the whole hierarchical process of image recognition, which is well illustrated in 

Figure 5. Similarly, CNN's are designed to process 2D data in many neural network layers 

that perform hierarchical detection of image features. 

https://paperpile.com/c/XgIOt0/xd14
https://paperpile.com/c/XgIOt0/6DZa
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Figure 5: Image processing by humans (O'Reilly & Munakata, 2000) 

2.2.1 Convolutional neural networks 

As well as the standard feed-forward neural networks, CNN consists of an input and an 

output layer and many hidden layers. The difference with CNN is that it is designed for the 

extraction of features. Hidden layers of the CNN consist of convolutional layers (CONV), 

pooling layers, and some layers that can be fully connected (FC). The convolutional layer, 

which has sparser connectivity, then the standard FC layer, processes the input and passes 

it to another layer. The pooling layer consolidates the output from separately processed 

parts of the previous layer. Typically, the ReLU is used as the activation function for these 

special layers in order to minimize computational demand. Fully connected layers are 

interconnecting every neuron from one layer to another layer and usually are placed at the 

output of the whole architecture to perform classification or another task. Here, standard 

activation functions such as sigmoid or softmax are used. 

According to Deng & Yu (2014), the main ideas behind CNN are that they "take 

advantage of the properties of natural signals: local connections, shared weights, pooling, 

and the use of many layers". Due to the economy of the convolutional layers which have 

much fewer weights than the fully connected ones, we can process much bigger images 

with less computational effort. For example, if we process only 22-by-22 pixel colorful 

images, in case of fully connected networks with the same amount of neurons in each layer, 

every layer will have 1452 neurons and exponentially more weights. In the case of real 

image processing with medium and high-resolution images, CNN's have become a 

necessity. 
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Based on Figure 6 below, it is clear that the convolutional neural network is made up 

of individual layers, each with different properties and functions. The main building blocks 

unique to CNN's are convolution layer, pooling layer, and batch-normalization layer. 

 

 

Figure 6: Convolutional neural network architecture (Saha, 2018) 

2.2.2 Convolution layer 

The convolution layer (CONV) applies a filter to the input image. We can define the size 

of the filter in advance, for example, 6 x 6 x 3. The first two values refer to the spatial size 

of the filter, and the third value refers to the number of neurons or “depth” of the filter. The 

first two values can be thought of as the size of the receptive field of the neuron. The filter 

moves over the input space, and at each location, it outputs some activation value that is 

passed to the next layer. For ease of understanding, this procedure is illustrated in the figure 

below. How much each convolutional filter moves during the convolution procedure is 

controlled by a parameter called stride. If the stride parameter is set to a number greater 

than 1, the spatial size of the input to the convolutional layer will be reduced when it passes 

through the convolutional layer. 

For the most part, however, the input is passed through multiple filters 

simultaneously. For example, there are several different filters, and each one forms a two-

dimensional activation map. Thanks to the Figure 7: CNN sequence to classify handwritten 

digits , we can observe how the number of activation maps in individual layers increases, 

and at the same time, the maps decrease. The reason is both the stride parameter of the filter 

and the use of a pooling layer. 
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Figure 7: CNN sequence to classify handwritten digits (Saha, 2018) 

Many convolutional layers stacked together are the basic building blocks of modern neural 

networks used in Deep Learning. 

2.2.3 Pooling layer 

The task of the pooling layer is to progressively reduce the size (spatial dimension) of 

represented data and thus reduce the number of activations passed to the next layer. The 

pooling layer works independently of the input depth. The most often used size of the 

pooling layer is 2x2. Up to 75% of the input data is reduced. The pooling operation is 

presented in Figure 8, whereby applying the pooling, the size of the input is reduced by 

75%. 

 

Figure 8: Pooling layer of the image 
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This layer works similarly to the convolution layer, where a filter travels over the entire 

image, which selects a suitable output value from a given matrix of points. The output value 

is determined based on the required function, either the maximum is selected from the given 

values (max-pooling) or the mean value (average-pooling) as shown in Figure 9. 

 

Figure 9: Pooling function: max pooling or average pooling (Saha, 2018) 

2.2.4 Batch normalization layer 

The batch normalization layer is normalizing the input layer, usually hidden layers in the 

CNN to speed up the learning and increase the stability of the neural network (Ioffe & 

Szegedy, 2015). Batch normalization reduces the covariance shift applied to the hidden 

layer values. Regularization is a side effect of this algorithm. 

First, the batch normalization algorithm computes the minibatch mean and minibatch 

standard deviation. The batch normalization updates the output of a previous activation 

layer by subtracting the minibatch mean and dividing by the minibatch standard deviation. 

The batch normalization adds two trainable parameters gamma and beta to each layer. 

Then, the normalized output is multiplied by parameter gamma and add parameter beta. 
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3. Convolutional neural networks for face recognition 

CNN's are widely used for face recognition problems. These include identification of 

people, segmentation in images, classification of emotions, detection of gender and age, 

and many more. 

3.1 Face recognition 

The conventional face recognition process consists of 4 stages: face detection, face 

alignment, feature extraction, and classification. According to (Hu, et al., 2015), the most 

critical stage of face recognition is feature extraction. It remains an open problem to find 

common facial features in an image, which are improving the accuracy of face recognition 

in unconstrained environments. This problem is mainly related to the diversity of the 

images and the background environments on them. If we focus on the facial features on the 

image, where colors are bright, it is easy to recognize the common features like eyes, nose, 

and mouth. In more challenging conditions and improper contrast, the common facial 

features cannot be clearly identified, while other features can be used to categorize or 

identify the face on the image.  

The most challenging database for benchmarking of automated recognition systems 

is Labeled Faces in the Wild (LFW), which contains images of faces in various background 

environments (Huang et al., 2007). 

Hu et al. (2015) compared the performance and accuracy of several CNN models and 

tried to invent a better design of CNN for face recognition problems. Sun, Wang, & Tang 

(2014) exploited a novel approach to fuse multiple networks which have been named 

DeepID. Hybrid or multiple networks have emerged, and they lead to impressive results 

with accuracy better than 90%, e.g., High Dimension Local Binary Patterns (Chen, Cao, 

Wen, & Sun, 2013). 

In recent years, improvements in deep learning techniques, computing power 

utilizing GPUs, and accumulating large training datasets lead to the evolution of CNN 

architecture complexity, speed of response, and accuracy of the results. Naïve Deep Face 

Recognition (Zhou, Cao, & Yin, 2015) presented Megvii Face Recognition System, which 
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achieved 99.50% accuracy on the LFW benchmark dataset. The main reason why they 

provided such remarkable accuracy was due to the high amount of training images that 

were gathered from the internet. New social media; Facebook, Instagram contains many 

images of known persons, and they are correctly categorized. 

3.2 Age and gender classification 

Another area within the face recognition domain is age and gender classification. The 

problem of automatically extracting age-related attributes from images with faces has 

received increasing attention in recent years. The first methods of age estimation were 

based on calculating ratios between different measurements of facial features. Common 

facial features (eyes, nose, mouth, chin, ears, etc.) need to be located on the image, and 

their size and distance between them computed. Then, predefined rules are used to estimate 

age from ratios between facial features. 

One of the early methods for gender classification (Golomb, Lawrence, & Sejnowski, 

1990) used a neural network trained on a small set of face images. More recently, Ullah et 

al. (2012) used the webers local texture descriptor (Golomb & Sejnowski, 1995), (Jabid, T, 

Kabir, & Chae, 2010) for gender recognition, demonstrating near-perfect performance. 

On top of the recent achievements, there have been created a very comprehensive 

model for image recognition (Ranjan et al., 2017), which provided age, gender estimation, 

smile detection, and face recognition. It was supported by the US government agencies and 

provided very accurate results. The processing time of one image with the trained model 

took on average 3.5s. The main bottleneck in the model is the process of generating region 

proposals and passing each of them through the CNN - first stage. 

3.3 Ethical concerns of using face recognition technologies 

Earlier on 18th January 2020, information spread around the world about the inconspicuous 

Clearview AI start-up, which collected several billion photos of people from social 

networks, which they offered to police officers in search of facial identification technology. 

The United States government has been enthusiastic about this information, as it makes 

https://paperpile.com/c/XgIOt0/pcn6+fcY8
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their work much easier and faster. For example, when they look for a thief from a store 

whose face is recorded on an industrial camera but does not match any records in official 

databases, Clearview AI will help authorities to determine who it is. It can find his face in 

pictures from YouTube, Facebook, or Twitter and connect him with profiles on these 

networks (Hill, 2020). 

According to Martin Urban, CEO of Eyedea Recognition "I cannot imagine such a 

thing in Europe yet, the protection of personal data, including a photo, is at a different level 

here. The police would not even be able to legally obtain such a tool here" (Urban & Zandla, 

2018). 

Facial recognition has significantly improved and accelerated over the last three 

years, due to the development of deep neural network technology. As stated by Hill (2020), 

It would be technically extremely demanding and expensive that cameras will be watching 

us everywhere and comparing online footage with databases and our profiles on Facebook. 

It was not mentioned that the most probably we will face this problem in the near future. 

On the other hand, it is important to note that face recognition is nothing new, people 

have been commonly encountered at airports for many years, and the police have been 

trying to pair industrial camera footage with their footage for criminals or lost children for 

at least two decades. Nevertheless, with the development of artificial intelligence and high-

resolution cameras equipped with an internet connection, the question of ethics and 

ubiquitous snooping is fully opening up. A warning example is China, which makes no 

secret of the fact that it is building nationwide camera surveillance, and which, according 

to some estimates, has already ahead of the US in the development of artificial intelligence. 

The highest deployment rate of cameras with facial recognition technology is in a 

Chinese province in the west of the country inhabited mainly by the Uyghur minority. In 

the Xinjiang region, there are the same number of cameras per ten thousand inhabitants as 

in other regions of tens of millions of people. According to calculations by the analytical 

company IHS Markit, China holds 46% of the global CCTV market. "Today, there are 176 

million industrial cameras in China. In comparison, there are 50 million in the US. There 

are already 200 million in China by 2020. A large part of them will be located in Xinjiang," 

says Russian sinologist Leonid Kovacic (Light & Kovachich, 2020). 

The police databases contain photographs of all the inhabitants of the province, and 

the register is connected to the facial recognition system. The system can monitor everyone 

within range of the cameras and watch when someone changes their daily routine. 
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Bloomberg reported that artificial intelligence itself would alert the police if a person 

identified as a "person of interest" deviated from his route home to work by more than three 

hundred meters. Moreover, they do not have to be criminals or recidivists, and they can 

also be human rights activists or practicing Muslims (Drozdia, 2020). 

At the end of 2018, the Karel Čapek Research Center for the Study of Values in 

Science and Technology, established by Charles University and the Academy of Sciences, 

was established precisely because of ethical and legal issues associated with the 

development of modern technologies. 

There is an agreement in professional circles on three basic rules for dealing with it. 

The first is the principle of commitment in the public interest and respect for human rights. 

The second is the principle of the least possible interference, especially in people's privacy, 

and the last is the principle of proportionality. Here it is thought that once there are civilian 

victims, it must be redeemed by some important strategic goal. By analogy, if we are 

already interfering with someone's privacy, there must be a profound reason (Jirouš, 2019). 

The principles that Černý mentions are ignored in places where civil society is either 

not present or the regime is working to weaken it. In addition to China, these are India, the 

states of the former Soviet Union, or several countries in Africa and Latin America. 

Developers in Russia are very active. In June 2016, visitors to the Alfa Future People dance 

festival in Moscow received a message from the organizers to view the photos on which 

they are displayed. It was one of the first public presentations of FindFace technology 

developed by NtechLab. She examined tens of thousands of photos from the festival 

created by organizers or visitors, recognized faces, and then linked them to the profiles of 

users of Russia's largest social network VKontaktě. The creators of FindFace technology 

won the 2015 The MegaFace Benchmark competition organized by the University of 

Washington, and a year later, they took first place in the Facial Recognition Vendor Test, 

compiled by the American National Institute of Standards and Technology. In the Kremlin, 

they want to fight against unauthorized demonstrations with the help of facial recognition 

(Light & Kovachich, 2020). 

This is a key issue because of the spread of artificial intelligence is closely linked to 

security. And not just because facial recognition technology helps find terrorists or prevents 

thugs from entering sporting venues. It is also a question of national security - Chinese 

companies, such as Huawei, are leading suppliers of computer technology and, at the same 

time, are closely linked to the local communist government and play a leading role in 
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China's state-sponsored development of artificial intelligence. For Beijing, this is one way 

to spread its influence around the world (Thompson, 2019). 

A positive example is Ecuador, where crime has fallen by 24 percent, making it one 

of the safest countries in Latin America, China's Xinhua agency quoted deputy chief of 

staff os system ECU 911. The system ECU 911 was developed by CEIEC and donated 14 

million US dollars free of charge in 2016 to the Ecuadorian government. CEIEC is a 

Chinese government corporation that manufactures electronics for military and security 

use. In recent years, it has been actively offering its face recognition equipment around the 

world. 

Nevertheless, CEIEC does not succeed everywhere; they met with resistance in 

Kyrgyzstan, for example. Last spring, CEIEC signed an agreement with the local Ministry 

of the Interior to supply eighty cameras, and it was later revealed that CEIEC had donated 

the system to Bishkek. Given that Kyrgyzstan borders China's Xinjiang Province, where 

China has built a police "state" to monitor Uyghurs, local people have a good idea of how 

the use of a facial recognition system can turn out (Hill, 2020). 
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4. Few-shot learning 

Few-shot learning was first formulated as a classification or a verification task in computer 

vision in which we have only a limited amount of images per each class. There is a subset 

one-shot learning where we have only one image per category. In few-shot learning, we 

usually use 3 or 5 images per category. These tasks are challenging to accomplish with a 

high level of accuracy. On the other hand, humans can perform a one-shot task with high 

precision. (Lake, Salakhutdinov, Gross, & Tenenbaum, 2011). In this thesis, we focus only 

on the classification and verification of images. However, modern few-shot learning 

research also involves tasks such as image segmentation or object detection. 

4.1 Few-shot learning models 

We can approach the few-shot learning problem in different ways. Usually, deep learning 

networks with backpropagation mechanisms using gradient descent learning mechanisms 

are used. This was explained in the previous chapter. In order to classify new classes not 

seen during training based only on a few examples, an existing neural network architecture 

must be taken and adapted to accommodate this new task (Snell, Swersky, & Zemel, 2017). 

The model can be trained on a particular task with a selected set of data that will not be 

used for testing, or it can even be trained on a different task. This approach is referred to 

as transfer learning, and it is a very common practice in the image classification domain. 

Transfer learning can be done with the same pre-trained model just by adapting the last 

layers of the architecture or by so-called model fine-tuning in which the pre-trained model 

is further trained on the current dataset.  

In order to classify a query image into one of the classes, a model is given a support 

set of example images (few-shot) or a single example (one-shot) for every class. The 

number of examples per class is usually denoted as the shot and the number of classes as 

the way (e.g., 1-shot 15-way training). For the image classification task, we split the dataset 

based on classes into distinct datasets. One for training and one for testing. The testing 

dataset cannot contain images from classes in the training dataset and vice versa. 
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In the following sections, we are describing the two chosen neural network models for the 

few-shot learning task. There are many more models. For instance well known are the 

Matching networks model which was proposed by Vinyals et al. (2016), MAML networks 

(Finn, Abbeel, & Levine, 2017), REPTILE networks (Nichol, Achiam, & Schulman, 2018) 

and Relational networks (Sung, Yang, Zhang, Xiang, & Torr, 2017). 

4.2 Prototypical neural networks 

The Prototypical neural networks (PNN) were designed by Snell and colleagues (Snell, 

Swersky, & Zemel, 2017). From the interdisciplinary point of view, they can be seen as an 

implementation of the prototype theory of categorization (Rosch, 1973). According to this 

theory, categories are formed around some more typical members than others (see Figure 

10). In this principle, the classification of an example can be presented as a single number 

showing the degree of membership to the class. The PNN model learns an embedding 

function using a sub-network. Then the PNN builds a prototype out of the given example 

set. Then it computes the distance between the embedding of the query image and the 

prototype of the class. Based on these distances, the best-matching class is selected. 

 

Figure 10: The Prototypical network classification principle (Snell et al., 2017) 

As visualized in Figure 10, the Prototypical networks classification principle from 

Snell et al. (2017). C1, C2, and C3 represent prototypes for a given category. These 

prototypes are constructed as a mean of the embeddings of support examples. Query 

example X is then classified by calculating an Euclidean distance to the prototypes and 

then setting the predicted category to the category of the closest prototype. 
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As described by Snell et al. (2017), Prototypical networks are computing the so-

called prototypes from the output of the embedding part of the architecture 𝑓∅, which is a 

convolutional neural network. Prototypes denoted as ck are computed as means of 

embeddings from a small set of examples Sk from the particular class k: 

𝑐𝑘 =
1

|𝑆𝑘|
∑ 𝑓∅(𝑥𝑖)

(𝑥𝑖)∈𝑆𝑘

 

The training algorithm (pseudocode), which was presented by Snell et al. (2017), is 

outlined in Figure 11, where N denotes the number of examples in the training set, K 

denotes the number of classes in the training set, NC ≤ K denotes the number of classes per 

episode, NS denotes the number of support examples per class, NQ denotes the number of 

query examples per class. RANDOMSAMPLE(S, N) is a function that creates a set of N 

elements randomly chosen from set S, without repeating items. 

 

 

Figure 11: Pseudocode for the Prototypical networks training procedure (Snell et al., 2017) 

Classification is performed in the few-shot scenario by finding the nearest prototype 

class for an embedded query point. In practice, it means that we have to go through every 

query item and compute Euclidean distance to each prototype class and then choose a class 

that has the lowest distance between its prototype and our query item embedding. 
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4.3 Siamese neural networks 

A Siamese Neural Network (Bromley, Guyon, LeCun, Sackinger, & Shah, 1993) is a class 

of neural network architectures that contain two identical sub-networks. Identical here 

means they have the same configuration with the same parameters and weights. Parameter 

updating is mirrored across all sub-networks. Two sub-networks output feature vectors that 

are concatenated to form an input to subsequent classification layers that will output the 

final output of the network. The final output of the network represents the degree of class 

similarity between the two inputs to the network. If the final output of the network is close 

to 1, that means that network "judges" the two inputs as belonging to the same class. If the 

output is close to 0, the inputs should belong to different classes. See in Figure 12. 

 

 

Figure 12: Schema of the Siamese neural network. The output is representing a probability of 

inputs from the same class (Koch et al., 2015) 

The Siamese network learning task is, therefore, reduced to a binary classification 

learning task where the pairs of the input data are classified either as belonging to the same 



32 

 

class or not. Unfortunately, classification within many classes is not implemented in the 

Siamese network; therefore, we need to perform the classification by finding the similarity 

between the support examples of different classes and the query example that we want to 

classify. Then we assign the query example the category of support example that has the 

highest similarity to query example. 

With the Siamese network, we can perform the verification task by comparing two 

images, and the output is the probability that the images are from the same class. 
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5. Few-shot face recognition 

We have focused our experiments on the few-shot learning problem utilizing Prototypical 

neural networks (PNN) and Siamese neural networks (SNN). We have directed mainly on 

the classification task, and later we have performed a verification task using SNN. We have 

created a dataset for few-shot tasks as it is described later in this chapter. In order to 

compare the result, we have used the same architecture for embedding sub-network of both 

PNN and SNN.  

We have performed a classification task and a verification task. The classification 

task was measured if the query example was properly assigned to the class from the list of 

classes we have provided. The verification task was much more straightforward as we need 

to choose if the query image is from the same class as the supported image, which is a 

binary classification. 

5.1 Dataset 

There are multiple datasets in the face recognition task. Among the most popular face 

recognition datasets are the Labeled Faces in the Wild (LFW) dataset created by Huang et 

al. in 2007 and the CelebA dataset (Liu, Luo, Wang, & Tang, 2018). 

Finally, we have chosen to use the Labeled Faces in the Wild (LFW). This dataset 

contains a large number of categories, which is ideal for few-shot image recognition and is 

considered a benchmark dataset in the image recognition domain (Schroff, Kalenichenko, 

& Philbin, 2015).  

Within the LFW dataset, there are several preprocessing steps applied to the images. 

We have chosen the dataset where the images were preprocessed by the automatic 

alignment that is called deep funneling (Huang, Mattar, Lee, & Learned-Miller, 2012) - 

LFW deep funneled images. For our task, where we will introduce to the network only a 

few images as support images in order to provide proper results. Below is a short example 

of images from the dataset which have been preprocessed by deep funneling see Figure 13.
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Colin Powell   

 

Angelina Jolie   

 

  

George Robertson  

 

George W. Bush  

 

Figure 13: Images from LFW dataset - deep funneled images 

The resolution of the images in the LFW dataset is 250x250 pixels and are in the 

RGB color space. For training purposes, the images were resized to 84x84 resolution while 

preserving all three color channels. The dataset contains many categories; each category 

represents a different person. We removed all categories with less than six images so that 

we can select at least three queries and three support images for every category. Our 

reduced dataset contains 311 categories and 5425 unique images. We have divided the 

dataset into two distinct datasets. The training dataset contains 277 classes with 4679 

images, and the testing dataset contains 34 classes with 746 images. The important fact of 

the datasets is that the testing dataset was separated from training one, and testing images 

were never used during training. 

5.2 Prototypical network for face recognition 

We tested the application of prototypical networks to few-shot face recognition using 

various numbers of classes ("way") and a various number of support examples per class 

("shot"). We have chosen 1, 3, and 5 shots for our experiments and 5, 10, 15, 30, 60, 90 for 

a number of classes – ways.  
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An important part of the training process is the preparation of the training batches. In 

each training episode, we randomly select a certain number of training classes from all 

available training classes. For example, if we are training our network in the 5-way setting, 

we randomly select five classes from all 277 training classes. Then we select a certain 

number of support examples for every training class. For example, in the 5-shot setting, we 

select five support images for every training class. Subsequently, for every training class, 

we select some query examples that we wish to classify. These query examples should 

naturally be different from the support examples. Finally, we construct a label for all query 

examples in this training episode. We do this by simply assigning a random label according 

to the number of training classes in the episode. For example, if we have ten training 

classes, the classes will be assigned labels from 0 to 9. The same batch preparation 

procedure is applied to testing batches, but the classes are sampled from testing classes. 

Example of the expected label vector for 3-shot 10-way:  

Output Label = [ 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9 ] 

During the training, we periodically tested and logged the performance of our 

network. Testing was performed in a 30-way setting (30 classes per testing episode), and it 

was repeated 100 times. 

5.3 Siamese network for face recognition 

We have implemented the Siamese network from the Koch et al. (2015) proposal, and the 

process for training was as follows: For every training episode, we randomly select several 

images from the training part of the dataset regardless of the category of the images. Then 

for every selected image, we select another image from the training part of the dataset. 

With a 50% probability, we select an image from the same category, and with a 50% 

probability, we select an image from a different category. The goal of the model is then to 

classify the pairs of images into two classes: pairs of images belonging to the same class 

and pairs of images belonging to a different class. The labels reflect this binary 

classification task. Below we provide an example of a label vector for 3-shot and 10-way.  

Output Label = [1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0] 
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During the training, we tested and logged the performance of our network 

periodically. Verification accuracy is computed by selecting batches using the process 

described above, but we sample the data from the testing part of our dataset. The output of 

the network is rounded to the nearest integer, i.e., to 0 or 1. When the network outputs 0, 

the network "thinks" that the pair of input images belong to different categories. When the 

network outputs 1, the network "thinks" that the pair of images belong to the same 

categories. We compare the labels to the rounded output of the network to get the 

verification accuracy.  

Classification testing is much more complicated. First, we have to create support 

images, and query images list the same way as in prototypical networks. E.g., 3-shot 30-

way. The query and support lists cannot contain the same images from the same class. Then 

the classification is performed by comparing the query image (the image that we want to 

classify) to every support image. The support-query image pair with the highest output is 

used to determine the class of the query image. If we use more than one support image per 

class, we average the outputs of the network for support images that belong to the same 

category. This process needs to be repeated for every query image separately. 

The Siamese classification testing procedure is much more computational extensive 

that in the Prototypical networks. 

5.4 Architecture 

We have used the same architecture for embedding sub-network for both models. The 

architecture is presented in Table 1. Siamese network architecture contains a fully 

connected network which has input from above embedding sub-network. The architecture 

of the Siamese fully connected network, which creates output value, is in Table 2. 

Prototypical network computes from embedding sub-network euclidian distance layer for 

every query and support. Then the softmax layer is choosing the prototype with the lowest 

distance to the query input. The number of outputs is the same size as the number of 

classification categories. 
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Table 1: Architecture specification for embedding sub-network 

Layer 

name 

Type Number 

of neurons 

Kernel 

size 

Stride Activation 

function 

conv_1 Convolutional 64 3x3 1 ReLU 

bn_1 Batch norm 64 - - - 

mp_1 Max Pooling  2x2   

conv_2 Convolutional 64 3x3 1 ReLU 

bn_2 Batch norm 64 - - - 

mp_2 Max Pooling  2x2   

conv_3 Convolutional 64 3x3 1 ReLU 

bn_3 Batch norm 64 - - - 

mp_3 Max Pooling  2x2   

conv_4 Convolutional 64 3x3 1 ReLU 

bn_4 Batch norm 64 - - - 

mp_4 Max Pooling  2x2   

 

 

Table 2: Architecture specification for the Siamese fully connected network 

Layer 

name 

Type Number of 

neurons 

Activation 

function 

fc_1 Fully connected 512 ReLU 

fc_out Fully connected 1 Sigmoid 
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6. Experiments and results 

6.1 Implementation 

The experimental part of the work was performed on the LFW dataset with deep funneling 

and used the Prototypical networks and the Siamese networks models, as it was described 

in chapter 6. Both models were implemented in the Python programming language using 

the Pytorch library. Pytorch library is a Deep Learning library that utilizes the CUDA 

toolkit to accelerate both inference and learning computations using graphical processing 

units (GPUs). 

6.2 Hyperparameters 

As described in the previous chapter architecture of embedding sub-network were shared 

between Prototypical and Siamese network. Siamese network has a difference that the 

output from sub-network, which is creating the feature vectors per each image. This is then 

used as input to a fully-connected linear layer, which provides the final output value. 

The following hyperparameters were used for the training of the network. 

• Learning rate - 𝛼 = 0,0001  

We have tested with various values e.g. 0,001 , 0,0001 and 0,00001,  but in final 

experiments we used value: 𝛼 =  0,0001. 

Adam optimizer was used in all experiments, and it was initiated by the proposed 

learning rate while Adam was updating the learning rate during the training 

(Kingma & Ba, 2014) 

Hyperparameters:  

𝛽1 = 0,9   𝛽2 = 0,999   𝜀 = 10−8 

• Number of episodes = 20 000 or 60 000  

We have used this number of episodes based on training results. For Prototypical 

networks, there was enough to train in 20 000 episodes while in Siamese 

networks, we had to train more; therefore, we have used 60 000 training episodes. 
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• Classes per testing = 30   

We have used this parameter as the main parameter to keep the results from both 

networks in a comparable form. During testing, we have used that amount of test 

classes for classification of the query images from Support images. 

6.3 Prototypical network results 

We have used 30 classes (30-way) for testing in all graphs presented here. 

In Figure 14, we present the learning curves of the Prototypical network model based 

on the number of training classes per batch during the training. 

 

Figure 14: Classification accuracy using a different number of training classes 

From Figure 14, it is apparent that test accuracy saturates when we are using ten or 

more train classes per training batch.  

We also performed experiments, where we vary the number of support examples per 

test batch (shot). We examine the relationship between the number of classes per train batch 

and the number of support examples per test batch and results are in Figure 15. 
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Figure 15: Final accuracy in testing for a different amount of training classes and different final 

test shots 

In Table 3, Table 4, and Table 5, we present the accuracy for each training case 3-

shot, 5-shot, 1-shot. The bold result is highlighting the best result in that category. 

Table 3: Test accuracy for 3-shots during training using a different number of train classes -ways 

and different number of testing shots 

Number of classes 

during train - way 

Support during the test – Shot 

1-shot 3-shot 5-shot 

5 0.368 0.672 0.749 

10 0.416 0.722 0.801 

15 0.406 0.716 0.798 

30 0.387 0.706 0.787 

45 0.371 0.690 0.761 

60 0.373 0.687 0.772 

90 0.359 0.686 0.795 

 

Table 4: Test accuracy for 5-shot during training using a different number of train classes - ways 

and different number of testing shots 

Number of classes 

during train - way 

Support during the test – Shot 

1-shot 3-shot 5-shot 

5 0.333 0.649 0.750 

10 0.340 0.679 0.756 

15 0.347 0.696 0.787 

30 0.334 0.681 0.781 

45 0.310 0.674 0.773 

60 0.301 0.666 0.768 
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Table 5: Test accuracy for 1-shot during training using a different number of train classes -ways 

and different number of testing shots 

Number of classes 

during train - way 

Support during the test – Shot 

1-shot 3-shot 5-shot 

5 0.449 0.682 0.730 

10 0.473 0.699 0.752 

15 0.469 0.694 0.766 

30 0.436 0.673 0.747 

45 0.433 0.697 0.766 

60 0.440 0.682 0.754 

90 0.412 0.644 0.725 

120 0.438 0.692 0.768 

 

From the tables above, we can compose Table 6 with the best classification accuracy 

parameters per each shot category. 

Table 6: Best classification accuracy results with hyperparameters 

Number of classes 

during train – way 

 1-shot train 3-shot train 3-shot train 

1-shot test 3-shot test 5-shot test 

10 0.473 0.722 0.801 

 

6.4 Siamese network results 

We have been testing the Siamese networks, and we have found that we are not able to 

achieve the same level of accuracy compared to prototypical networks. Therefore, we have 

increased the number of episodes. 

The graph in Figure 16 shows the progress of test classification accuracy over the 

time of training using more options for the number of shots. 
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Figure 16: Classification accuracy using a different number of shots – training classes  

Additionally, in Figure 17 is a graph representing testing loss over the time of 

training. 

 

Figure 17: Testing classification loss using a different number of shots – training classes 
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Then we have recorded and compared the verification accuracy with a different 

number of support examples – shots. The graph is shown in Figure 18. 

 

 

Figure 18: Verification accuracy using a different number of shots 

The final testing accuracy in the Siamese network after 60 000 episodes is in Table 

7. 

Table 7: Final testing accuracy for classification and verification task after 60 000 episodes 

 
Classification Verification 

1-shot 39.78% 66.22% 

3-shot 48.33% 74.11% 

5-shot 51.22% 76.89% 

6.5 Performance 

We have had limited resources for computation, and during our experiments, we have 

utilized 185 hours of computational time for Prototypical networks and 194 hours of 

computational time for Siamese networks. We do not have the space to present all 

experiments we have executed and all the variables we have tested, but we have tried to 

tune the Siamese networks as best as we could. Nevertheless, the accuracy of the Siamese 

networks is not very impressive.  
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Table 8 shows computational time per each final test we have performed using the 

Prototypical networks. 

Table 8: Duration of training for the Prototypical networks 

Training Classes 

per Episode 

Support to train - shot 

1-shot 3-shot 5-shot 

5 1:30:04 4:17:24 4:22:15 

10 5:12:30 5:19:58 5:29:38 

15 6:10:55 6:23:00 6:36:29 

30 8:48:21 6:37:59 10:00:21 

45 8:33:41 12:47:35 13:27:38 

60 15:05:16 11:56:59 7:48:28 

90 6:10:55 22:24:31 -- 

120 16:41:52 -- -- 

TOTAL 185:45:49 Apx. 7.2 day 
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7. Discussion and future work  

In this master thesis, we have prepared experiments for a few-shot learning face 

classification and verification. We have trained the Prototypical neural networks and the 

Siamese neural networks.  

7.1 Discussion of results 

Prototypical networks 

In Figure 14, we present the training curve when we use a different amount of training 

classes (ways) in a batch during the training. This graph tells us that the final accuracy is 

better then 10-way (class) batches are used during the training.  

In Tables 3, 4, and 5, we explore the relationship between the number of classes per 

batch during the training, the number of train shots, and the number of test shots. The best 

combinations of these parameters are summarized in Table 6. The highest accuracy is 

achieved using 10-way training batches with 3 training examples per class (shots) and 5 

testing examples (shots). We have achieved the highest classification accuracy 80,14% in 

5-shot testing, 72,21% in 3-shot testing, and 47,27% in 1-shot testing.  

Siamese networks 

The presented results show that Siamese networks need more training episodes 

compared to Prototypical networks. The limitation of the Siamese networks model was 

already outlined in chapter 5.3. The main limitation of Siamese networks is that the testing 

task (30-way classification) is different from the training task (binary verification task). 

Therefore Siamese network does not directly learn the few-shot classification task, as 

Prototypical networks do, but learn a related task (binary image verification), which can be 

leveraged for classification during the testing. This can lead to lower classification accuracy 

compared to Prototypical networks, which was the case in our experiments. 

We have presented the progress of testing accuracy on the Siamese networks for the 

classification task in Figure 16. It is clearly visible that the network continues to learn after 

60 000 episodes.  
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Best results for classification accuracy in Siamese networks are presented in Table 

6, and the highest classification accuracy is 51.22% in 5-shot testing, 48.33% in 3-shot 

testing, and 47,27% in 1-shot testing. 

As we mentioned before, Siamese networks are trained on a verification task. In 

Figure 18, we show the learning curves for a different amount of examples per testing batch 

(shots). In Table 7, we show the final results of the verification accuracy, which is 76.89% 

for 5-shot testing, 74.11% for 3-shot testing, and 66.22% for 1-shot testing.  

Interestingly, as seen in Figure 18, the highest verification accuracy is achieved 

around episode 5000. After 5000 episodes, verification accuracy tends to go down while 

the classification accuracy continues to rise. 

We have to admit that the classification accuracy of the presented models, namely 

Prototypical networks and Siamese networks, cannot be compared with the one-shot 

learning capabilities of humans. We think that with advancements in computational 

resources and algorithms, few-shot learning algorithms might close the gap between the 

few-shot classification accuracy of current Deep Learning algorithms and humans. This 

means not only in the classification accuracy, but as well match the speed of performing 

the classification task.  

At the moment, only neural network models trained using large face-recognition 

datasets with a large number of examples per class can come close to face classification 

accuracy of the human brain. 

7.2 Limitations of our models and future work 

GPU memory is the main limiting factor in Prototypical networks. More concretely, the 

GPU memory requirements rise sharply with a higher number of output classes and the 

number of shots per batch. In Table 4, where we have used 5-shot for training, we have 

been able to train with a maximum of 60-ways (classes). In Table 5, where we have used 

1-shot training, we have been able to compute with 120-ways (classes). We were limited 

by the GPU memory, which is in our case of Nvidia GTX1080 8 GB. 

The number of computational resources was another limitation. We have reduced the 

picture size to 84 by 84 pixels, and even then, the length of our experiments was quite high. 
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It was mentioned in chapter 6.5 that total computational time was more than 15 days of 

continuous processing. This time does not include testing time and running incorrect 

configuration etc. If we have more computational power and resources, we could explore 

deeper models, and do more extensive hyperparameter search. We could use the full-size 

images for training and testing and train the model with more episodes. Then this could 

lead to much better results than we are presenting here.  

The most surprising result was that the Siamese network results were not capable of 

providing classification accuracy comparable to prototypical networks. We hypothesize 

that this is because the classification procedure is not explicitly built-in the Siamese 

network training procedure. Instead, the Siamese network is trained on the verification task, 

and the classification procedure is done during the testing phase by comparing support 

examples with the query examples. 

We think that the main area of focus for future work is to check the possibility to 

improve the classification accuracy of the Siamese networks and to modify the Prototypical 

networks to improve the classification accuracy. 
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Conclusion 

In this master thesis, we focused on the implementation of few-shot learning models for 

face recognition, namely the Prototypical networks and the Siamese networks. The main 

contribution of this thesis is a novelty in the combination of face recognition using well 

known few-shot learning models.  

In the theoretical part, we have explained face recognition functionality from a 

neurological perspective, then we have explained the basics of neural networks and, in 

more detail, how the convolutional networks work. Later we have focused on current 

research in face recognition using convolutional neural networks and ethical challenges 

with using these technologies. Then we have elaborated few-shot learning, specifically the 

Prototypical networks and Siamese networks. Currently, we cannot determine bio 

plausibility of few-shot networks, but the Prototypical networks derive from cognitive 

science because they use the prototype theory which was described in chapter 4.2 

Finally, we have presented the implementation of our experiments, including 

architecture and a detailed description of our models. We present the results of our 

experiments in chapter 6, and we concluded that the few-shot learning models do not 

provide sufficient classification accuracy compared to humans. However, with more 

computational power allowing a more thorough exploration of the deep learning models, 

few-shot face recognition is a promising avenue for future research.  



49 

 

References 

Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies 

of human face perception. I: Potentials generated in occipitotemporal cortex by face 

and non-face stimuli. Cerebral cortex 9, no. 5, 415-430. 

Andreasen et al. (1996). Neural substrates of facial recognition. Neurosciences 8, 139-146. 

Blažek, V., & Trnka, R. (2009). Lidský obličej: Vnímání tváře z pohledu kognitivních, 

behaviorálních a sociálních věd. Praha: Karolinum. 

Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., & Shah, R. (1993). Signature verification 

using a siamese time delay neural network. Advances in Neural Information Processing 

Systems, volume 6. 

Chen, D., Cao, X., Wen, F., & Sun, J. (2013). Blessing of dimensionality: High-

dimensional feature and its efficient compression for face verification. IEEE 

Conference on Computer Vision and Pattern Recognition, (pp. 3025-3032). 

Ciresan, D., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011). Flexible, 

High Performance Convolutional Neural Networks for Image Classification. 

Proceedings of the Twenty-Second International Joint Conference on Artitificial 

Intelligence, Volume Two. 2, pp. 1237–1242. 

Damasio, A. R., Everitt, B. J., & Bishop, D. (1996). The somatic marker hypothesis and 

the possible functions of the. 

Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L., Parvizi, J., & 

Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-

generated emotions. Nature neuroscience, pp. 1049-1056. 

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Foundations and 

Trends in Signal Processing, pp. 1-199. doi:10.1561/2000000039 

Drozdia, N. (2020). facial-recognition-coming-to-europe-terms-and-conditions-apply. 

Retrieved from Bloomberg [online].: https://www.bloomberg.com/news/articles/ 2020-

02-01/facial-recognition-coming-to-europe-terms-and-conditions-apply 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online 

learning and stochasticoptimization. The Journal of Machine Learning Research, 

12:2121–2159. 

Eberhardt, J. L. (2005). Imaging race. American Psychologist 60, no. 2, p. 181. 



50 

 

Edvinsson, J. (2017). Machine Learning at Condé Nast, Part 1: A Neural Network Primer. 

Retrieved from https://technology.condenast.com/story/a-neural-network-primer 

Farah, I. (1998). Approximate homomorphisms. Combinatorica 18.3, 335-348. 

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the 

primate cerebral cortex. Cerebral cortex, 1-47. 

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation 

of deep networks. ICML, pp. 1126-1135. 

Goffaux, V., Jemel, B., Jacques, C., Rossion, B., & Schyns, P. G. (2003). ERP evidence 

for task modulations on face perceptual processing at different spatial scales. Cognitive 

Science, 27(2), 313-325. 

Golomb, B. A., Lawrence, D. T., & Sejnowski, T. J. (1990). SEXNET: A Neural Network 

Identifies Sex From Human Faces. NIPS, (pp. Vol. 1, p. 2). 

Golomb, B., & Sejnowski, T. (1995). Sex recognition from faces using neural networks. 

Applications of neural networks, 71-92. 

Grüter, T., Grüter, M., & Christia, C. (2008). Neural and genetic foundations of face 

recognition and prosopagnosia. Journal of neuropsychology 2.1, 79-97. 

Hassan, H., Abdelazim, N., Mohamed, Z., & Oliver, S. (2015). Assessment of artificial 

neural network for bathymetry estimation using High Resolution Satellite imagery in 

Shallow Lakes: case study El Burullus Lake. International Water Technology Journal 

5. 

Hauck, S. (1998). The roles of FPGAs in reprogrammable systems. Proceedings of the 

IEEE 86.4, (pp. 615-638). 

Hill, K. (2020). The Secretive Company That Might End Privacy as We Know It. Retrieved 

from The New York Times [online]:  https://www.nytimes.com/2020/01/18/ 

technology/clearview-privacy-facial-recognition.html 

Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S. Z., & Hospedales, T. (2015). 

When face recognition meets with deep learning: an evaluation of convolutional neural 

networks for face recognition. IEEE International Conference on Computer Vision 

Workshops, (pp. 142-150). 

Huang, G. B., Mattar, M., Lee, H., & Learned-Miller, E. (2012). Learning to Align from 

Scratch. LFW deep funneled images.  

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the 

wild: A database for studying face recognition in unconstrained environments. 

Technical Report 07-49, University of Massachusetts, Amherst. 



51 

 

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled Faces in the 

Wild: A Database for Studying Face Recognition in Unconstrained Environments. 

Amherst: University of Massachusetts. 

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional 

architecture in the cat's visual cortex. The Journal of physiology, 160(1),. 106-154. 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training 

by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 

Jabid, T, T., Kabir, M. H., & Chae, O. (2010). Gender classification using local directional 

pattern (LDP). 20th International Conference on Pattern Recognition (pp. 2162-2165). 

IEEE. 

Jirouš, F. (2019). ČÍNA DNEŠKA: KAMERY VÁS POZNAJÍ PODLE TVÁŘE I STYLU 

CHŮZE. Retrieved from Centrum Karla Čapka [online]: https://www.cevast.org/ 

cz/news/33-cina-dneska-kamery-vas-poznaji-podle-tvare-i-stylu-chuze-za-sedm-

minut-vas-maji 

Kato, Y., & Nakamura, O. (2004). On the isolation of spectacles and the extraction of faces 

for personal identification. Canadian Conference on Electrical and Computer 

Engineering (IEEE Cat. No. 04CH37513), vol. 2,, (pp. 999-1003). 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv 

preprint, p. arXiv:1412.6980. 

Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot 

image recognition. ICML deep learning workshop, 2. 

Kohonen, T. (1982). Analysis of a simple self-organizing process. Biological cybernetics 

44, no. 2, pp. 135-140. 

Koukolík, F. (2002). Funkční systémy lidského mozku. Psychiatrie, pp. 60-65. 

Koukolík, F., & Drtinová, J. (2006). Vzpoura deprivantů. Praha: Galen. 

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification with Deep 

Convolutional Neural Networks. NIPS 2012, Neural Information Processing Systems. 

Lake Tahoe, Nevada. 

Lake, B. M., Salakhutdinov, R., Gross, J., & Tenenbaum, J. (2011). One shot learning of 

simple visual concepts. Proceedings of the annual meeting of the cognitive science 

society, vol. 33, 33. 

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. 

(1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural 

Computation, vol. 1, no. 4,, 541-551. 



52 

 

Lickson, J. (1974). David Charles: The story of the Quincy Five. Mockingbird Press. 

Lieberman, M. D., Hariri, A., Jarcho, J. M., & Eisenberger, N. I. (2005). An fMRI 

investigation of race-related amygdala activity in African–American and Caucasian – 

American individuals. Nature Neuroscience, 8,, pp. 720–722. 

Light, F., & Kovachich, L. (2020). Coronavirus Outbreak Is Major Test for Russia’s Facial 

Recognition Network. Retrieved from The Moscow Times [online]:  

https://www.themoscowtimes.com/2020/03/25/coronavirus-outbreak-is-major-test-

for-russias-facial-recognition-network-a69736 

Lippmann, R. P. (1988). An introduction to computing with neural nets. ACM SIGARCH 

Computer Architecture News 16, no. 1, 7-25. 

Liu, Z., Luo, P., Wang, X., & Tang, X. (2018). Large-scale CelebFaces attributes (CelebA) 

dataset.  

Loftus, E. F. (1976). Unconscious transference in eyewitness identification. Law & 

Psychol. Rev. 2, p. 93. 

Mysid. (2010). fusiform gyrus (occipito-temporal gyrus). Retrieved from  https://en. 

wikipedia.org/wiki/Fusiform_gyrus#/media/File:Gray727_fusiform_gyrus.png 

Nichol, A., Achiam, J., & Schulman, J. (2018). On first-order meta-learning algorithms. 

arXiv preprint, p. 1803.02999. 

O'Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive 

neuroscience: Understanding the mind by simulating the brain. MIT press. 

Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of 

neocortical expansion during evolution. Trends in neurosciences, pp. 383-388. 

Ranjan, R., Sankaranarayanan, S., Castillo, C. D., & Chellappa, R. (2017). An all-in-one 

convolutional neural network for face analysis. 12th IEEE International Conference on 

Automatic Face & Gesture Recognition, (pp. 17-24). 

Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 

199-226. 

Richeson, J. A., & Shelton, N. J. (2003). When prejudice does not pay: Effects of interracial 

contact on executive function. Psychological Science, 14(3),, pp. 287-290. 

Rolls,, E. T., & Ekman, P. (1992). Facial Expressions of Emotion: An Old Controversy and 

New Findings: Discussion. . Philosophical Transactions of the Royal Society of London 

Series B, , 335,69. 

Rosch, E. H. (1973). Natural categories. Cognitive psychology 4( no 3), pp. 328-350. 



53 

 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations 

by error propagation. . No. ICS-8506. California Univ San Diego La Jolla Inst for 

Cognitive Science. 

Saha, S. (2018). A Comprehensive Guide to Convolutional Neural Networks — the ELI5 

way. Retrieved from https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face 

recognition and clustering. IEEE Conference on Computer Vision and Pattern 

Recognition, (pp. 815-823). 

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. 

Advances in neural information processing systems, pp. 4077-4087. 

Steinkraus, D., Simard, P., & Buck, I. (2005). Using GPUs for Machine Learning 

Algorithms. 12th International Conference on Document Analysis and Recognition, 

(pp. 1115–1119). 

Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 

10,000 classes. In. Computer Vision and Pattern Recognition, (pp. 1891–1898). 

Sung, F., Yang, Y., Zhang, L., Xiang, T., & Torr, P. (2017). Learning to compare: Relation 

network for few-shot learning. . arXiv preprint , p. 1711.06025. 

Thompson, E. (2019). Federal study finds race, gender bias in facial recognition 

technology. Retrieved from USA TODAY [online].:  https://eu.usatoday.com/ 

story/tech/2019/12/19/facial-recognition-study-finds-results-biased-race-gender-and-

age/2704291001/ 

Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - RMSProp,. COURSERA: Neural 

Networks for Machine Learning. 

Ullah, I., Hussain, M., Muhammad, G., & Aboalsamh, H. (2012). Gender recognition from 

face images with local wld descriptor. 19th International Conference on Systems, 

Signals and Image Processing (IWSSIP), (pp. 417-420). 

Urban, M., & Zandla, P. (2018). Poznají nás stroje na každém kroku? Pokrok jde rychle, 

říká odborník na identifikaci tváří. Retrieved from Lupa.cz [online]:  

https://www.lupa.cz/clanky/eyedea-rozpoznavani-obliceju-z-verejnych-kamer/ 

Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one 

shotlearning. Advances in Neural Information Processing Systems, 3630–3638. 

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully 

recurrent neural networks. Neural computation 1, no. 2, pp. 270-280. 



54 

 

Zhou, E., Cao, Z., & Yin, Q. (2015). Naive-deep face recognition: Touching the limit of 

LFW benchmark or not?. arXiv preprint arXiv:1501.04690. 

 



55 

 

Appendix 

Appendix includes the source code of the Prototypical and Siamese networks used in 

experiments. 
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