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Abstrakt

Tato dizertacna praca skiima spracovanie prirodzeného jazyka pomocou rekurentnych
neurénovych sieti. Okrem jednoduchej rekurentnej siete (SRN) pre modelovanie pouzivame
aj novsie modely, medzi ktoré patria siete s echo stavmi (ESN) a siete s explicitnym
pozornostnym mechanizmom (A-SRN). Dizertaénd préca pozostdva z troch hlavnych
casti. Prva cast’ sa venuje modelovaniu nesusednych zavislosti medzi slabikami v rdamci
suvislého ret’azca. Overime hypotézu variability, ktord tvrdi, Ze spracovavanie jazyka
u l'udi sa opiera o nesusedné zavislosti v pripade, ze susedné neposkytuju dostatoénu
statisticku informaciu. Uk&azeme, ze ked’ je variabilita susednych zavislosti prilis vysoka,
tak neurénova siet’ preferuje pouzitie nesusednych zavislosti. V druhej casti sa zameriame
na akviziciu gramatiky zjednodusenych jazykov. Ttto tlohu modelujeme pomocou ESN,
pricom opiseme vplyv roznych vstupnych reprezentédcii na tuspesnost’ modelu. Ukézeme,
ze Statistické vlastnosti vstupnych reprezentacii, vytvorenych predspracovanim dat zo
vstupného jazyka, st len ciastotne zodpovedné za zvySenie uspeSnosti ESN. Druhou
nutnou podmienkou je spravna skdla vstupnych vektorov. V d’alsom texte navrhneme
a implementujeme vytvorenie vstupnej reprezentacie, ktora nesie dostatoéné sémantické
informacie a je vytvorena pomocou viacerych behov siete s echo stavmi, bez nutnosti
pouzitia inych statistickych metdd. Tretia ¢ast’ dizertacnej prace je venovand modelovaniu
jazykom riadenej pozornosti v ramci vizualnej scény. Budeme prezentovat’ viaceré
modely s explicitnym pozornostnym mechanizmom (A-SRN) a porovname ich s modelmi
SRN a ESN. Preskimame vyznam pridanej vizualnej scény na uspesnost’ spracovavania
prirodzeného jazyka a ukazeme, ze situaény vstup pomaha modelom spravne predikovat’
konkrétne akcie a objekty v opisovanej udalosti. Na druhej strane ukazeme, ze jazykovy
opis upriamuje pozornost’” modelu na spravne objekty v ramci vizualnej scény. Vyhoda
nasho modelu spociva vo fakte, Zze umoznuje aj spracovavanie zlozitejsich scén, co
testujeme pouzitim dvoch az troch sicasnych vstupnych udalosti v jednej vizudlnej scéne.

KTicové slova: spracovanie prirodzeného jazyka, rekurentné neurénové siete, nesusedné
zavislosti, akvizicia gramatiky, modelovanie pozornosti






Abstract

This dissertation thesis examines natural language processing using recurrent neural
networks. Apart from the standard simple recurrent network (SRN), we also use more re-
cent models like the echo-state network (ESN) and networks with multiple feedback connec-
tions which model explicit attentional mechanism (A-SRN-based models). The dissertation
thesis deals with three main topics. The first area of interest concerns the non-adjacent
dependencies between syllables in continuous syllable sequence. We model the variability
hypothesis which claims that human readers can focus on non-adjacent dependencies when
the adjacent dependencies do not provide satisfactory statistical information. We show
that when the variability of adjacent dependencies is too high, the neural network prefers
use of non-adjacent dependencies. In the second part, we concentrate on grammar acqui-
sition of simplified English languages. We model this task using ESN and describe the
effect of various input representations on the model performance. We show that statistical
properties of input representations, created by preprocessing of the language data, are only
partly responsible for the improvement of ESN performance. The other necessary condition
is the correct scaling of inputs. Additionally, we propose and implement the generation of
reasonable input representation with the multiple executions of ESN, without the need to
preprocess the language with statistical methods. In the third part of this thesis, we deal
with modelling of the utterance-driven attention within the visual scene. Hence, we focus
on language processing not in isolation but rather in the context of the visual information.
We present several models with explicit attentional mechanism (A-SRN) and compare them
with SRN and ESN. We examine the effect of added visual scene to the performance of
language processing and show that the scene input helps the models to correctly anticipate
particular actions and objects of the described event. On the other hand, we show that
the language drives the model in focusing attention to correct objects from the scene. The
benefit of our model resides in the fact, that it can process more complex visual scenes,
what was tested using up to three concurrent input events within one visual scene.

Key words: natural language processing, recurrent neural networks, non-adjacent de-
pendencies, grammar acquisition, utterance-mediated attention
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Chapter 1

Introduction

Language is an important feature of human intelligence. It gives us possibility to
communicate, allows us to exchange information and experience, describe surrounding
world and make joint decisions (Siskind, 2001). Language markedly separates humans
from other animal species.

Over time, two computational approaches of language modelling have emerged. Sym-
bolistic approach uses for language processing set of rules, operating with finite number
of symbols. Formal nature of symbolistic approach allows us to elegantly describe various
classes of language and prove their properties. It allows also description of complex lan-
guages with possibly recurrent structure. Downfall of this approach is, that it is unclear
how to map existing real world objects to the symbols and how to choose degree of detail
(symbol-grounding problem; Harnad, 1990).

Connectionist (subsymbolic) approach deals with input data using artificial neural net-
works. Neural network is trained directly on input data using general learning procedures,
therefore it does not require task-specific design (i.e. one network can process various data
sets). The advantages of subsymbolic language processing approach are:

e Generalization: neural networks are able to generalize and adapt to the novel
inputs, using their similarities with already learned concepts. Since natural language
is very complex and often uses new words and combination of concepts, this ability
is crucial for its successful processing.

e Learning: connectionist models learn from experience, what enables their improve-
ment also in changing environment. Learning from examples does not require hand-
designed architecture and allows reusability of the model for different tasks.

e Distributed environment: many neural architectures can be executed within dis-
tributed environment what decreases the execution time.
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¢ Biological plausibility: in spite of the fact that artificial neural networks are only
simplified models of real neural networks, they are more biologically plausible than
symbolic systems and therefore allow better understanding of human language pro-
cessing. Neural networks are often used for modeling human behaviour with its strong
and weak properties.

e Modeling of defects: people makes lot of mistakes during language processing. In
serious cases are the individuals unable to perform certain language-processing tasks.
These illnesses are called lesions. Damaging a neural network is often used to model
lesions what helps us to understand why they develop and how they can be avoided
and cured.

Natural language processing domain consists of various subtasks, which can be split
into following categories (Christiansen and Chater, 1999b). On the lower level, people
need to process single words, detect their boundaries in continuous sequences of characters,
learn to comprehend and to pronounce them correctly. Moreover, natural languages have
complicated rules and exceptions mechanisms for processing word morphology. Complex-
ity of these tasks is magnified by fact, that children in early stages of life have no direct
feedback for development of lexical processing skills. The higher level of language pro-
cessing applies to sentence processing. Most important tasks in this domain are: sentence
parsing (syntactic analysis), sentence comprehension and sentence production. Alongside
with these main tasks, we observe supportive subtasks like word prediction and grammar
acquisition. They are used during sentence production (by iteration of word prediction
process) and ease the production and comprehension by accessing correct concepts with a
top-down mechanism. During the last decade, research into human language comprehen-
sion has begun to examine processing of human language in presence of the visual scene.
Visual scene enhances spoken language, providing features of underlying concepts, while
on the other side spoken language drives attention to different parts of the scene. Many
of the cognitive processes can be assessed using the visual world paradigm, which is an
excellent method for studying language, vision, memory and attention and to understand
their mutual interplay (Huettig et al., 2011).

In Chapter 2 we describe neural network architectures which are commonly used in
natural language processing. In chapter 3 we summarize the current state of the research
field for prediction paradigm. In later text, we focus on three of the previously mentioned
subtasks. In Chapter 4 we investigate the performance of the echo-state networks (see
chapter 2.3) in predicting of non-adjacent dependencies and its ability to detect word
boundaries in the continuous sequence of syllables. Chapter 5 uses echo-state networks
to process sentences and acquire underlying grammar. Throughout analysis of the effect
of input representations is presented in this chapter, taking into consideration localist,
random distributed and statistical representations. In the last section of this chapter we
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present technique to create reasonable input representations with the multiple executions
of the echo-state network. In Chapter 6 we model the utterance-driven visual attention
with various recurrent neural network architectures, including A-SRN (see Chapter 2.2)
which uses an explicit attentional mechanism.
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Chapter 2

Neural network architectures

2.1 Simple recurrent network

Simple recurrent neural network (SRN) was developed by Elman (1990) as an extension
of the feed-forward neural network. Elman trained SRN on character and word prediction
tasks and showed that model is able to learn underlying grammar. Architecture of SRN
extends multilayer feed-forward network with additional recurrent layer. State of the hid-
den layer is copied to the context layer and is presented back in next step via a set of
recurrent weights. The activation of simple recurrent networks in time ¢ can be expressed
using formulas:

and(t) = G(Winan(t) + Whiqana(t — 1))
aout(t) = F(Woutahid(t))a

where G(net) is the hidden and F(net) is the output activation function. The most com-
monly used functions are:

net linear function
tanh(net)  hyperbolic tangent
f(net) = 1 Solar si 4
Tre—mer unipolar sigmoi
ﬁ + 1 bipolar sigmoid

SRN can be trained using standard error backpropagation, backpropagation through
time (BPTT; Rumelhart et al., 1986) or real-time recurrent learning (RTRL; Williams
and Zipser, 1989). The latter two algorithms are more computationally demanding but
achieve better results. We have trained SRN with BPTT algorithm which is described in
more detail in Chapter 2.2. The latest and most successful training methods use Kalman
and the extended Kalman filters. However, these algorithms require increased amount of
memory and are computationally very complex, making the training method ineffective for
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Figure 2.1: Architecture of SRN. Activation of hidden layer is copied to context layer and
presented to hidden layer in next step.

tasks which does not require such advanced training procedure or tasks with large data
sets.

Recurrent connection allows SRN to successfully process various time series, including
signal sequences, melodies, simplified natural language and data generated by context-free
grammars. State of recurrent layer represents most current part of input sequence, demon-
strating both markovian and non-markovian behaviour. Cerfiansky and Makula (2007)
have shown that RNN possesses architectural bias and activations of recurrent units exhibit
structural differentiation even before training. The amount of structural differentiation of
untrained RNN is comparable to variable length Markov models. Cerfiansky and Makula
(2007) claimed, that fixed point attractors for each input exist even before training but
they are randomly placed. During training, attractors change their positions to express
characteristics of input data, placing attractors for similar data to the same regions.

2.2 Recurrent network with explicit attentional me-
chanism

We have introduced simple recurrent network with explicit attentional mechanism (A-
SRN) in Svantner et al. (2011b) and further improved it in Svantner et al. (2011a). As the
name suggests, the network architecture is extended with extra connection, which is de-
signed to model attentional mechanism. The network activation is fed back and multiplied
with input, creating a sigma-pi connection. In sigma-pi connection, the weights are applied
to higher level neurons whose activations are computed as the multiplication between the
corresponding activations and inputs (Rumelhart and McClelland, 1986). Based on which
part of network activation is fed back, we can distinguish the following models:
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e A-SRN model (Fig. 2.2) uses output activation to modify network input.

e In case of A-SRN™ model, sigma-pi connection activation from A-SRN is merged
with current input, what decrease the propagation of misleading activation in case
of incorrect network prediction.

e A-SRNj. model (Fig. 2.3) uses hidden activation with extra set of weights, creating
an internal attentional mechanism.

Interpretation

OB} EV
A = ~ N
Wout N .
\Copy
Hidden Layer \\
\
1 \
WinL /" WinS Whid “
¥
Word OB By [o2SMAPH o EV

Visual input

Figure 2.2: Architecture of A-SRN with a language-mediated, top-down attention mecha-
nism. Network output is fed back and multiplied component-wise with the current input
via sigma-pi connection.

A-SRN-based models! process two types of inputs - the linguistic input lj, represents
spoken language and situational input s;, describes visual scene via object (OBJ) and event
(EV) representations (for further details, see Chapter 6). The A-SRN-based models can
also use only one input layer but for the needs of model from Chapter 6 we will describe its
more complex form. Sigma-pi connection alter only situational input s;,, leaving linguistic
input lj,intact. The activation of the hidden layer for all models (including SRN which is
used as reference) is computed as follows:

ahid(t) = O'(WinL.lin<t> + WinS‘S;n(t) + Whid.ahid(t — 1))

/
where s; (1) expresses:

Sin (1) for SRN
v ) osi(t). xag(t —1) for A-SRN
Sll) = v 8in(t) + (1 — ) sin(t). * ague(t — 1) for A-SRN* (2.1)
Sin(t). * O'(Wbck.ahid(t — 1)) for A—SRNbck

'We will use this term to name all three models A-SRN, A-SRN* and A-SRNj.y.
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In eq. 2.1 ‘. % © denotes component-wise multiplication of the two vectors parameter
influence the effect of input and sigma-pi connection activation. The output activation is
similar to one, we could see in SRN:

Aout (t) = [Cout (t), €out (t)] = U(Wout-ahid (t))a

where [u, v] stands for concatenation of vectors u and v. For training A-SRN-based models
we have used BPTT algorithm. It uses the target tgt(¢) and errors f1, f5, f5 for two separate
error propagation paths.? The following algorithm represents training procedure at time ¢
with window of size T' = 3. Steps 2 and 3 are repeated T-times (with index s € [0,T — 1])
before proceeding to step 4. The symbol T denotes transpose operation.

(0) initialization

AW, = 0
AWis 0
AWpiq 0
AWy = 0
AW gy = 0
(1) output weights
f - b (1) — 2o (1)
f = f1. % (agu (1))’
AW gy = AW oy + frapa(t)
f; W/ . fi
fy = 0
======(2) hidden weights ======
fa = fi + 1
fy = f. x (apa(t — s))’
AW, = AW, + 5.1, (t — s)—r
AWips = AWis + o8, (t — 5) "
AWyiq = AWhiq + fr.apa(t —s —1)"
f3 = f5
f = Wi £
f; = 0

2Just in case of A-SRN-based models; in case of SRN, only one error propagation path is used.
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(3) feedback

f) = W, q.f3
f = fi.x(ax(t —s—1)) . xsp(t — s)
AWy = AWx + flapq(t —s —1)"
f) = W
======(4) weight change ======
WinL = Wi + aAWjp,
Wins = Wins + aAWig
Whid = Whia + aAWhiq
Whek = Wha + aAW g
Waut = Wou + AW
(5) end

In the above equations, s; (¢ — s) follows the definition from eq. 2.1 and subscript X in
step 3, is notation for output or backward layer, based on type of the model (A-SRN or
A-SRNy respectively). In case of SRN, step 3 is not executed. Model A-SRNT is trained
in the same way as A-SRN.

A-SRN-based models have been used to model explicit utterance-driven visual attention
(Svantner et al., 2011b), exhibiting more biologically plausible behaviour compared to a
simple recurrent network.

Interpretation

0B8] EV
A
Wout
Wbck
Hidden Layer Feedback
Q OB EV
A
WinL / WinS Whid lcopy
I
A
Word OB By [o2SMAPH o EV

Visual input

Figure 2.3: Architecture of A-SRNj model with an internal explicit language-mediated
attention mechanism. The hidden layer activation is fed back to input via extra set of
weights W.
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Figure 2.4: Architecture of ESN. Only dashed connections are adjusted during training.
Weights in the hidden layer form a dynamical reservoir.

2.3 Echo-state networks

The model introduced by Jaeger (2001) was designed to predict the next input in signal
sequences using a more effective training procedure. Echo-state network (ESN) architecture
is almost similar to SRN with one crucial difference — recurrent and input weights are not
trained (as we can see in Fig. 2.4). Hidden neurons form a dynamical reservoir whose
complex dynamics can be easily mapped to the output with a single layer neural network.
This allows the usage of linear regression instead of less efficient gradient training methods.
Echo-state networks can be extended with optional direct input-output connection and/or
feedback connection from output to hidden layer. Optional direct input-output connection
is trained. Network activation is expressed as:

ahid(t) = G(Winain(t) + Whigania(t — 1) + Wieou (t — 1))
Aout (t) == F(Wout [ain(t)a ahid<t>])7

Hidden activation function G(x) is mostly represented by bipolar sigmoid or tanh func-
tion, while output activation function F'(x) by identity, hyperbolic tangent or sigmoid.

In order for the ESN to work, the reservoir must express contractive dynamics satisfying
the echo-state property: “if given a long enough sequence, the network will always end up
in the same state, regardless of the starting state’ (Tong et al., 2007). The resulting state is
therefore determined only by the input sequence. Over time, there were discussed several
approaches how to achieve the echo-state property. Jaeger (2001) has shown that reservoir
which has spectral radius (the largest absolute eigenvalue) of the weight matrix A(W) < 1,
leads in most cases to echo-state property. To achieve this, the components w; ; of weights
from matrix W are adjusted according to the formula

!
Wy j

A (W]

W; 5 = Ab
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where A\(W’) is the largest eigenvalue of the original matrix and Ap is the desired spectral
radius. However, it was shown that A(W) < 1 is not a necessary nor a sufficient condition of
echo-state property. What we can only claim is, that echo-state property is violated for zero
input if A(W) > 1 using reservoir with tanh nonlinear neurons (Lukosevicius and Jaeger,
2009). To fulfil an echo-state property, we need to provide the reservoir weight matrix
whose greatest singular value meets the condition 0(W) < 1 (Jaeger, 2001). Similarly, also
maximum singular value of the matrix can be altered to the desired value by modifying
the components w; ; of weights from matrix W

w ;
Wi = Op——=——.
J oD o (W/)
Before training, both W;, and Wy;q weights are usually initialized as sparse random
matrices. Only output weights W, are adapted during ESN training. Apart from gradient

training methods, we can use linear regression, by solving the equation:

Atgt = W outAhid
W —1
out — Atgt Ahid7

§RTXN §RTXN

where Apq € is a collected matrix of reservoir activations and Ay € is a
matrix of target activations (considering N as the number of neurons in reservoir and 7" as
the data set size). Since Ayq is not a square matrix we must compute its pseudoinverse
AL instead of inverse A};il. Pseudoinverse computation has high numerical stability but
is memory demanding for larger data sets. To resolve this problem we can alter previous

equations as follows:

AtgtA}Tid - WoutAhidAgid
Woue = AtgtAﬂ—id(AhidAﬂ—id)_l (2.2)

The use of eq. (2.2) decreases memory usage because the matrix ApqAj, € RV but
the drawback is that numerical stability of the solution is decreased. This can be corrected
by Tikhonov regularization (Lukosevicius and Jaeger, 2009).

W = AtgtA}—lrid(AhidA}—lrid + o),

where o = 0.5 is the regularization factor and I € RY*V is the identity matrix. Matrices
A AL, and ApgAlL, can be rewritten as:

T

AtgtAIid = Zatgt(t)agid(t)
t=1
T

AnaAfy = D ana(b)agy(t),
t=1
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Output Layer
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Figure 2.5: Architecture of self-organizing map. Similar inputs are mapped to neighbouring
output neurons.

where aw(t) € RV and ayq(t) € RV are target and reservoir activations in time ¢,
respectively. These equations remove memory requirements and allow processing of large
data sets. Additionally, ESN can be tested during training to get preliminary results.

Echo-state networks are very popular in prediction of the next input from the symbol
sequences (for example, Cernansky and Makula, 2007). Recently, they were applied also
to language domain (Frank, 2006a,b; Tong et al., 2007)). It was shown that ESN has the
ability to predict upcoming words, to adapt to long distance dependencies and to facilitate
acquisition of grammar structure.

2.4 Self-organizing map

Self-organizing map (SOM) shown in Fig. 2.5 was introduced by Kohonen (1990). Each
input activates certain area of network’s output what results in topological organization of
input vectors (similar objects are grouped together in the resulting map). To achieve this
behaviour, the model uses unsupervised learning, selecting winner for each input. After
activation, winner’s weights and weights of its surrounding neurons are adapted, while
other weights are left intact. To find the index i* of the winner we use the formula:

i* = arg min;||x(t) — w;]|, (2.3)

where x(t) is current input, w; is the weight vector for i-th neuron and ||.|| denotes the
Euclidean norm. After selection of the winner, surrounding weights are changed using the
formula:

Aw; = a(t)h(i, ") (x(t) — w;),

where «(t) expresses learning rate at time t. Neighborhood function h(i,i*) between i-th
neuron and the winner, can be expressed by two possible distances:

B, ) = e A7)/ ®) Gaussian distance
0 1iff du(i, 7*) < A(t),0 otherwise Manhattan distance,
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Figure 2.6: Architecture of auto-associative network. This particular network encodes
agent-action-patient triplet into one 64 dimensional vector using input matrix We,.. AAN
inner representation can be decoded using output weight matrix W g

where d(i,1*) denotes Euclidean distance and dy(,7*) denotes Manhattan distance between
positions of i-th neuron and the winner in the two-dimensional rectangular map. Size of
affected neighborhood is let to decrease during training. In case of the Gaussian distance
this is done by function o(¢) and in case of Manhattan distance by decreasing function
A(t) . Learning rate is also time-dependent, mostly expressed by functions a(t) = 1/t or
a(t) = exp{—k.t} for constant k.

Self-organizing maps are suitable for visualization of high-dimensional data , using their
topological mapping property. They can be used also for preprocessing of complex data,
where topological organization eases the later data processing (Svantner et al., 2011a). Ad-
ditionally, more advanced SOM architectures (see Section 2.6) are also used for processing
and visualization of data sequences.

2.5 Auto-associative network

Auto-associative network (AAN) (Cottrell et al., 1989) is a feed-forward network with
one hidden layer. During training, every input is presented also as a target, what forces
network to create its compressed representation on the hidden layer. Auto-associative
networks are therefore often used to reduce dimension of object representation (Cottrell et
al., 1989). Original representation can be afterwards easily decoded with the AAN output
layer. Activation of AAN is expressed as:
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Figure 2.7: Architecture of RecSOM network. Activation of hidden layer is copied to the
context layer and presented to hidden layer in next step.

ahid(t) = G(Wencain<t))
Aout(t) = F(Waecania(t))

Auto-associative network is often trained with back-propagation training algorithm.
Similar inputs tend to have similar AAN codes what leads to resembling behaviour as we
could see in self-organizing networks. Use of AAN can be found for example in Svantner et
al. (2011b), where we trained the network to create representation of visual event, which
respects order of the event constituents. Introduction of the recurrent layer helps auto-
associative network to process sequential or structured data. Recurrent auto-associative
network (RAAM) was successfully used for this task in Farkas and Pokorny (2009).

2.6 Recursive self-organizing map

RecSOM architecture was presented by Voegtlin (2002) as an extension of SOM. In
each time step, the activation of the output layer is copied to the context layer what allows
model to remember previous inputs. Activation of i-th neuron within RecSOM network
can be expressed as:

yi(t) = exp{—di(t)},
where
di(t) = alx(t) — wil|* + Blly(t = 1) — e|*
Parameters a > 0 and > 0 influence effect of input and context respectively. Context

layer is created in each time step as direct copy of the output layer. After selection of
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Figure 2.8: Architecture of SardNet network. Previous winners remain activated also after
presenting next input. Their activation is decayed by decay factor k.

the winner, the weights w; are adjusted similarly as in SOM and context weights c; are
adjusted using formula:

Ac; = ()i, ") (y(t = 1) = )

RecSOM is often used to represent symbol sequences. Resulting representations are
organized in Markovian manner, mapping subsequences with common suffix close to each
other (Tino et al., 2006). Vanco and Farkas (2010) compared RecSOM with other recursive
SOM models (SOM SD, MSOM) on more complex tree data structures.

2.7 SardNet model

Sequential Activation Retention and Decay Network (SardNet) was introduced by
James and Miikkulainen (1995). It originates from SOM architecture, leaving previous
winners activated also during succeeding inputs. However, previous winners activation is
decayed via formula y; := ky; using decay factor 0 < k < 1. Moreover, each winner is
removed from competition and cannot represent later inputs, allowing its neighbours to
represent similar future items of sequence.

SardNet can be used only for finite sequences, whereas all other models with self-
organization also for infinite sequences. Another difference is that a sequence in SardNet is
represented as a distributed pattern (of winners), while in the other models the sequence
representation is localist.

SardNet is suitable for representation of symbol and word sequences because gradually
activated neurons are able to memorize all items of sequence. Additionally, information
about order of presented items is retained too. SardNet was used by Mayberry and Miikku-
lainen (2003) and Farkas and Crocker (2006) in memorizing of word sequences task. Farkas
and Crocker (2006) used the combination of RecSOM and SardNet named RecSOMsard
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Figure 2.9: The architecture of RecSOMsard network. RecSOMsard is a combination of
RecSOM and SardNet model.

for word prediction task. In RecSOMsard, output of RecSOM is transformed to the output

with mechanism used in SardNet. The model was able to effectively predict words, proving
that models with an unsupervised module are applicable in this domain.
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Chapter 3

Prediction paradigm in natural
language processing

We can split the natural language processing domain into two main parts. Lexical
processing is responsible for word reading, morphology and pronunciation. The higher-
level language processing operates on the words and it participates in sentence parsing,
comprehension, word prediction and production. Next chapters focus on the prediction
task, because we believe that it eases the parsing and comprehension and enables the
language production.

3.1 Syllable prediction

The first attempt to model the syllable and word prediction was made by Elman (1990).
He trained the simple recurrent network (SRN) to predict the next characters of a simple
artificial language. Input of the network was represented by a sequence of concatenated
English words (without space between them). The network showed the ability to detect
word boundaries at locations of high entropy, demonstrating that word segmentation is
facilitated by prediction mechanism. Moreover, according to Mintz et al. (2002) and Saffran
(2002), the statistical learning plays an important role in syntax and language morphology
acquisition.

A more complex subtask in language processing is the utilization of non-adjacent de-
pendencies between syllables. The non-adjacent dependencies are often used in the natural
language, for example representing the common number or tense of the subject-action pair
(e.g. in the sentence Peter has arrived). Pena et al. (2002) experimented with persons
and came to the conclusion that people are not able to generalize!, using only statistical

ITo use known dependencies with the novel paddings. In the sentence Peter has arrived, the padding
is expressed by syllables ‘arriv'.
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information from the language and must utilize additional cues (like pauses between words
and phonological characteristics) via algebraic computational (i.e. rule-like) mechanism.
Gémez (2002) reproduced these experiments and showed that inability of generalization
was caused by characteristics of the used language. Language used in Pena et al. (2002)
exhibited only small variability of the padding, what caused that people could rely on
adjacent dependencies. The variability of the padding is defined as the number of possible
subsequences between the dependent words. Pena et al. (2002) have summarized these
findings as the variability hypothesis. Onnis et al. (2003) and Onnis et al. (2004) have
further extended the variability hypothesis, stating that word generalization occurs when
variability of padding is zero or large. They showed on the input data used in Pena et al.
(2002), that people are able to simultaneously segmentate the words and generalize using
novel paddings. These findings prove that statistical properties of the input language are
sufficient to generalize under certain circumstances.

The segmentation of words and the variability hypothesis was successfully modelled
using simple recurrent network by Cerndk (2005) and Farkas (2009). Cerndk (2005) has
additionally modelled both tasks using ESN, being successful only in the case of word
segmentation. In case of variability hypothesis his model was unsuccessful because the
reservoir, as it turned out, was not carefully chosen and initialized.

3.2 Next word prediction

Recurrent neural networks have proven to be a successful modelling tool for natural
language processing also on the sentence level. Elman (1991) extended his work and trained
an SRN in the next word prediction task. Since then, the SRN has been often used for
processing language data (e.g. Lawrence et al., 2000; Christiansen and Chater, 1999a).
Elman (1991) demonstrated, that the SRN is able to learn an underlying grammar, when
trained on (simplified) English sentences. Moreover, SRN was able to create meaningful
context-dependent representations of the words at its hidden layer, despite the fact that it
was trained on localist inputs.

Simple recurrent network was able to process complex sentences only after gradual
increasing of complexity of sentences during training. This result corresponded to the ’less-
is-more’ hypothesis introduced by Newport (1990). According to this hypothesis, children’s
ability to learn the first language to a greater degree of fluency, is caused by infant’s limited
cognitive abilities. Elman (1993) modelled this hypothesis and showed that memory span
impairments at the early stages of child’s life and its gradual development also facilitates
development of primary language. However, Rohde and Plaut (2003) argued against this
hypothesis by claiming that gradual growth of the sentence complexity and memory span
impairments are not advantageous but in fact harmful for language acquisition.
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Elman’s results were repeated by Tong et al. (2007) who additionally compared SRN
with an echo-state network. His findings show that the ESN exhibits similar performance as
the simple recurrent network. However, it has been argued that the SRN was trained using
BPTT training method which does not guarantee best possible results. SRN trained for
this task with extended Kalman filter exhibit superior performance, while the performance
of ESN is only similar to performance of common statistical methods (like variable-length
Markov models).

Cernansky et al. (2007) showed that activations of recurrent units lead to structural dif-
ferentiation even before training (architectural bias). Amount of structural differentiation
of untrained RNN is comparable to variable length Markov models. They claimed, that
fixed-point attractors for each input exist even before training and that they are randomly
placed in the state space. During training, attractors change their positions to express
characteristics of input data. Attractors for similar data are placed to the same regions.

Farkas and Crocker (2006) used an alternative approach to modelling the word pre-
diction task. Instead of using supervised learning algorithms, they used a combination
of recursive self-organizing map (RecSOM; Voegtlin, 2002) and SardNet (James and Mi-
ikkulainen, 1995). They argued, that self-organizing models are more biological plausible
and can be easily extended also for more complex languages. After development of inner
self-organized representations, these were mapped to predicted words via supervised me-
chanism. The model had performed in the simulating word prediction task and displayed
high robustness after lesioning the hidden layer.
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Chapter 4

Syllable prediction

In this chapter we will examine the effect of adjacent and non-adjacent dependencies
on the syllable prediction task. We will model the variability hypothesis (Pena et al., 2002)
using echo-state network trained on a simple artificial language processed at syllable level.
Results of this chapter come from Farkas and Svantner (2007).

4.1 Experiments

As input data, we will use artificial language concatenated from three syllable words. In
total, we will use 3 different input sets S1, S2, S3 with different size of lexicon. The input
words are created from 3 different word frames A; X;B;: ba_te, gu_do and pi_ra, which are
used with same probability. Input sets S1, S2, S3 are created as all possible combinations
between word frames and padding sets X1, X2, X3 which we can see in Table 4.1. Syllables
from the word frames are never used in the padding. According to Pena et al. (2002),
we can divide the words into 3 different groups. The grammatical words (GW) are valid
words from input sets S1, S2, S3 with the transition probabilities' P(X;|A4;) = 1/]X]|,
P(B;|A;) = 0, P(B;|X;) = 0.33 and P(A4;|B;) = 0.5 (because words frames were not
allowed to repeat consecutively). Since the input is the sequence of concatenated input
words the model may incorrectly detect word boundaries. In this case the part words (PW)
are created. More formally, the PW is composed from the last (third) syllable of one word
and first two syllables of second word or from last two syllables of first word and first
syllable of the second word. For example in input:

gudidobaditepidiragudidopidirabaditepidira,

are some PWs marked with bold and every other grammatical word is overlined. Since the
PWs represent alternative possibilities of word division, they can be used for the evaluation

1 P(A|B) stands for the conditional probability, that event A occurs given that B has occurred.
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Set  Content

X1 di

X2 di, ku, to, pa

X3 be, bi, bo, bu, by, ta, ti, to, tu, ty, ga,
ge, gi, go, gy, da, de, di, dy, pa, pe, po,
pu, py, re, ri, ro, ru, ry

Table 4.1: Padding sets for input languages S1,52,S3. S1 set represents padding set with
no variability (1 syllable), S2 contains four syllables and S3 represent padding set with
high variability (29 syllables).

of word segmentation. If the model prefers the GWs over PWs it is able to correctly segment
words from the input sequence.

Rule words (RW) are words with schema A;A;B; or A, B;B; (e.g. bagute or pidora from
the S1 = {badite, gudido, pidira}). Rule words contain syllables from the word frame
also in the padding, so we can use them as a generalization of GWs. They have used
transition probabilities P(A;|4;) = P(B;|A4;) = 0 and P(B,|A;) = P(B;|B;) = 0, with the
only dependency between non-adjacent syllables. Rule words have never been used during
training and they contain only non-adjacent dependencies in opposition to the part words,
so they are suitable as generalization test for matching the non-adjacent dependencies.
More formally, if the model counts the adjanced dependencies it should prefer PW over RW
in case of small variability of the padding. In case of counting non-adjacent dependencies
it should rely on most statistically reliable dependencies, which are in this case P(B;|A;).
This will allow to create correct segmentation of the words (both GWs and RWs).

4.2 Model specification

The task was modelled using ESN. Its task was to predict next syllable within the
continuous sequence. The syllables were encoded with one-hot encoding, creating 7, 10
and 35-dimensional input and output vectors for S1, S2, S3 respectively. The input layer
weights of the ESN were set to -0.1 and 0.1 with same probability and reservoir was
randomly initialized to contain 50 neurons and have spectral radius \,,., = 0.8. Its sparsity
was 80%. The output layer weights were randomly initialized from interval [-0.5,0.5] and
altered with the standard delta rule with learning rate & = 0.1. As an activation function
for reservoir neurons we have used unipolar sigmoidal function and for output neurons we
have used softmax function. To evaluate the network preference between two words we
have used following procedure:

e we choose N words and N non-words for N=20
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Figure 4.1: Segmentation performance of grammatical words for three input sets with
different syllable padding variability.

e for each word, we compute its value: after resetting the reservoir state (to isolate input
from previous activations) the first two syllables are presented to the input. Value
of the word u is defined as the sum of activations of output neurons corresponding
to the next syllables which will be presented at input in second and third step:
u=u(2) + u(3).

e we choose N words with largest activation and find how many of them belong to word
category (GW or RW) and how many belong to non-word category (PW).

4.3 Results

To test segmentation performance of the ESN model, we evaluated network preference
between grammatical GW and part words PW. The model was able to segmentate words
successfully for all three input sets as we can see from the Figure 4.1. The average result
for S1 was 73%, for S2 65% and for S3 75%.

To test the preference of non-adjacent dependencies we evaluated the model with rule
and part words. In S1 the preference in favor of the rule words was 5.5%, in S2 42.5%
and in S3 66%. In contrary to the results presented in the Cerndk (2005), that modelled
this task using only small reservoir, we have confirmed the hypothesis of variability for the
large padding sets.

Our results does not fully confirm the hypothesis of variability as was predicted by Pena
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Figure 4.2: Segmentation performance of rule words for three input sets with different
syllable padding variability.

et al. (2002) for zero variability. In this case, the preference of rule words is too small.
However the preference of RWs for zero variability was shown in the Onnis et al. (2003,
2004) just in case of segmentated input, what simplifies the task significantly.

4.4 Discussion

Learning of the dependencies between elements of sequences occurs rather unconsciously
in the form of implicit learning (Cleeremans et al., 1998). Earlier research had pointed out
that the people are computing only adjacent dependencies. However, the more recent
research shows that also non-adjacent dependencies are used. This method is more com-
binatorically complex, growing exponentially with the size of the padding. Therefore we
can assume that the usage of non-adjacent dependencies is possible only under certain cir-
cumstances. It was assumed that these circumstances are valid only in presence of certain
additional markings in the text (for example pauses and word segmentation). However,
Onnis et al. (2004) has argued that non-adjacent dependencies are used also in continuous
sequential input if the variability of the padding is large enough. Our experiments has
confirmed this hypothesis for the recurrent neural networks which processes single syllable
at time and use the statistical properties of the input text stream.
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Chapter 5

Next word prediction

We have focused our work on two areas of natural language processing on sentence
level - modelling of grammar acquisition based solely on language input and modelling of
utterance-driven attentional mechanism. This chapter is dedicated to grammar acquisition.
We will model next word prediction task using a simplified English language. Results of
this chapter come from Svantner and Farkas (2009b,a) and Svantner (2010).

5.1 Experiments

5.1.1 Elman’s language

The input data were generated by a stochastic context-free grammar, very similar to
one used in Elman (1991) and Tong et al. (2007). The grammar uses a lexicon of the

A

|£] = 26 words which consists of 2 proper nouns, 4 nouns, 7 verbs ! and inputs ., ‘who’
denoting end-of-sentence marker and conjunction, respectively. Input grammar is defined
in Table 5.1. The words can be differentiated into 6 possible categories: proper nouns,
nouns, special category for end-of-sentence marker and 'who’ and three categories for verbs.
These comprise verbs with prohibited object, verbs with mandatory object and verbs with
optional object.

The grammar generates the context-free language whose sentences often contain distant
dependencies between words. For example, in the sentence 'Boy who hits John lives.” has
the most distant dependency padding of 3 words (between boy and lives). This recursive
structure is very complex to process and multiple embeddings absent in the spoken natural

languages (Karlsson, 2007).

!Both nouns and verbs are presented in singular and plural forms thus creating 8 and 14 inputs,
respectively.
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S — NP VP .

NP —  PropN | N| N RC

VP — V]|VNP

RC —  who NP V | who VP

PropN  —  john | mary

N —  boy | girl | cat | dog | boys | girls | cats | dogs
\Y% —  chase | feed | see | hear | walk | live | hit

chases | feeds | sees | hears | walks | lives | hits

Constraints:

- verb number agreement between N and corresponding V

- verb in RC — who NP V rule must allow a direct object

- verbs fall into 3 categories:
- require direct object: VP — V NP : (hit, feed, chase)
- optionally allow direct object: VP — V | V. NP : (see, hear)
- preclude direct object: VP — V : (walk | live)

Table 5.1: Input grammar used for generating the basic language.

5.1.2 Extended language

Previous grammar is able to construct complex recursive sentences, but it uses just only
a small word set. We have extended the grammar to use a more realistic lexicon, extending
its size four times. To maintain ratios between different word groups, each of them? was
enlarged by the same factor. The rules of the grammar were similar as in previous language
- the grammars were distinguished only by terminal rules and constraints. We can find
altered rules of extended grammar in Table 5.2.

For both languages we have generated a corpus of 5000 sentences, which was then
randomly split into training and test sets by ratio 90:10. The corpus contained 75% of
complex recursive sentences, in which the rule NP—N RC was applied at least once. The
average length of the sentence for both languages was over 8 words, not counting the
end-of-sentence marker.

5.2 The model

To model the grammar acquisition, we have used the echo-state network. ESN was
trained to predict next symbol of presented word sequence using randomly initialized reser-
voir with spectral radius of A, = 0.98 and sparsity 27%. As an activation function for

2Except trivial " and 'who’ groups.
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PropNg ~ —  john | mary | kate | steve | anna | alice | bob | martin

boy | girl | cat | dog | man | woman | rabbit | lion | wolf
| bird | bear | mouse | king | queen | soldier | doctor |

Ng —  boys | girls | cats | dogs | men | women | rabbits | lions
| wolves | birds | bears | mice | kings | queens | soldiers
| doctors

hit | hits | chase | feed | see | hear | walk | live | think
treat | like | love | admire | pet | read | write | count |run
| hate | beat | poke | hug | swim | understand | know |
v R defend | remember | entertain | educate | chases | feeds
g | sees | hears | walks | lives | thinks | treats | likes | loves
| admires | pets | reads | writes | counts | runs | hates
| beats | pokes | hugs | swims | understands | knows |

defends | remembers | entertains | educates

Modified constraints:
- verbs fall into 3 categories:
- require direct object: VP — V NP :
(feed, hit, chase, treat, like, love, pet, hate, beat, poke, hug, defend)
- optionally allow direct object: VP — V | V NP :
(see, hear, admire, understand, know, remember, entertain, educate)
- preclude direct object: VP — V :
(walk, live, think, read, write, count, run, swim)

Table 5.2: Input grammar used for generating the extended language.
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reservoir neurons we have used tanh function. Output neurons used linear activation func-
tion. Word inputs and outputs were encoded with localist (one active neuron for each
word) or distributed codes. Localist representation gave us 26 and 98 dimensional input
and output, for simple and extended languages respectively. The distributed codes formed
representations of various lengths. We will describe them in a more detail in further text.

Due to the lexical ambiguity in forthcoming text, more candidate words are consistent
with the grammar, used for generating of the sentences. For this reason, a recurrent
network which uses localist representations on the output and is trained for the next word
prediction task, learns to approximate true posterior probabilities of the following words
rather than representation of the next word. We will name the posterior probabilities
according to Tong et al. (2007) as ground truth probabilities. They can be computed from
the underlying grammar. The processing of ambiguous sentence can be seen in Fig. 5.2.

Usage of distributed word representations for both inputs and targets requires subse-
quential transformation of the network output to meet the definition of the probability
distribution. The weighted average of representations of possible words can be computed
as

p’; = L.pc,

where L is a matrix of word representations (in columns) and pg are column vectors for

ground truth.

Since the network tries to predict a weighted average of candidate word representations
al,, for the purpose of using evaluation measures defined below, we need to convert the
output vectors back, to obtain posterior probabilities a/ , of all words in the lexicon. This

is achieved by the formula
—1
a:)ut = L ‘agut7

where L~! is the inverse of L. In case of a rectangular matrix L, we have used the
pseudoinverse LT intead of L1,

5.3 Performance measures

To evaluate the network performance, we have used two general (NNL and cos) and
three linguistically oriented measures (MPR, VAR, AUC) which have been discussed in
Tong et al. (2007).

Cosine between ground truth and the network output is defined as

/

]
/ pG'aout

COS a = -
(Pe: Bow) = oT Tabal
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Acronym Description

NNL Normalized negative log-likelihood is the standard statis-
tical measure used for symbolic sequences.
COS Cosine between the network output a], and ground

truth vectors pg.

MPR The mazimum prediction rate expresses the number of
cases when the network’s most predicted word is consis-
tent with the grammar.

VAR Verb agreement rate measures the network ability to pre-
dict long-distance dependencies.

AUC Area under the receiver operator curve (ROC) uses the
assignment of the words into various semantic categories
and provides more details about network’s predictions.

Table 5.3: Quantitative measures used for evaluating model’s performance.

NNL is computed with formula

T
1
NNL = = ;bgc al . (se),

where T" is number of words in the testing set, |£| is size of the input language and a,(s;)
is the network prediction probability corresponding to the next word (symbol) in the test
sequence. The optimal prediction (i.e. if the model predicts the ground truth) results in
the language entropy and the model tries to reach this value from above. In case of our

data set, the estimated entropy equals 0.574. MPR is computed as:
MPR = Nypr/7T,

where Nypr is the number of cases when pg(s*(t)) > 0, considering s*(¢) as the word
corresponding to the most active neuron of the output layer in time ¢.
Verb agreement is computed as:

VAR = N{V/Ny,

where Ny is the number of the all verbs in the corpus and N&N is the number of cases
when the verbs with the correct number are predicted.
AUC is computed as:

AUC = % Z (R(x2) + R(x1)).(x2 — x1),

x€(0,1]
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Figure 5.1: ROC curve for different input representations for both simple and extended
language.

where R(z) is the value on the ROC curve using z in 0.001 steps. To plot ROC curve we
divide the words into 10 semantic categories (nouns, proper nouns, 6 verb groups, who and
end-of-sentence marker) and threshold the network’s output (using a parameter 6 €[0,1] in
0.001 steps) to determine which kinds of words are “possible” and which are “impossible”.
For this, we compute hit and false alarm rates for each category. True positives (hits) occur
when the mean activation of a feasible class is above 6, while false positives (false alarms)
occur when a class is impossible despite being its average activation above 6. Dividing
the count of true positives by the number of currently possible classes yields the hit rate,
while the false alarm rate is formed by dividing the false positives by the count of currently
impossible classes. The ROC is obtained by plotting the hit rate as a function of the false
alarm rate. The example of the receiver operator curve curve can be seen in Figure 5.1.

5.4 Basic results

In the fist part we will investigate the performance of ESN on the basic and extended
languages. The results show that the model relatively successfully predicts future words of
language and is able to acquire properties of an underlying grammar. These findings are
supported by both statistical (COS, NNL) and linguistic measures (MPR, VAR, AUC).
Model’s performance has decreased during processing of the extended language. The com-
plexity of the language caused that ESN was able to assign words into desired categories
only to lesser degree of accuracy.

As we can see from Figure 5.3, the input and hidden representations of the ESN do not
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Model NNL COS MPR VAR AUC

ESN 50 0.686 0.831 0.856 0.805 0.874
ESN 300 0.666 0.848 0.884 0.839 0.899
ESN 1000 0.664 0.837 0.897 0.861 0.901

Table 5.4: Performance of ESN for the basic language.

Model NNL COS MPR VAR AUC

ESN 50 0.701 0.781 0.782 0.743 0.838
ESN 300 0.687 0.792 0.832 0.816 0.88
ESN 1000 0.699 0.734 0.791 0.833 0.876

Table 5.5: Performance of ESN for the extended language.

carry any semantic information. After the training, the output layer activations separates
the words into semantic categories. The activations were obtained similarly as in Elman
(1990), by taking the average activation of the particular layer for given word.

5.5 Role of input representations

In the later work, we have focused on the effect of various input representations on
ESN performance during language data processing. Apart from localist input and output
representations, we have explored three types of distributed word representations: one
with random components, ESN' based and WCD based representations. The latter two
are created by corpus preprocessing with statistical methods, while random representations
are represented by vectors whose components are uniformly drawn from the interval [0, 1].
To investigate the effect of vector dimensionality we have generated random vectors with
26 and 52 components.

ESNT word representations, introduced in Bullinaria and Levy (2007) and applied
in Frank and Cerfiansky (2008) are based on word co-occurrences. The j-th component of
i-th word is computed as
N(z,7) + N(j,19)

WENTNOND)

(5.1)

where N is the number of all words in the corpus, N(7,j) is the number of times when
word with index ¢ immediately precedes word with index j and N(¢) is the number of
occurrences of the word with index 7 in the corpus. ESN™ representations (matrix Lggy+)
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Figure 5.3: Hierarchical cluster diagram of the input, hidden and output representations
for ESN model and simple language. Words connected with the lines more to the left are
more similar. We can see grouping of words based on their semantic properties.

reflect only word neighbourhoods, ignoring their mutual position. As we can see from its
definition, components of this representation are not normalized and can contain values
larger than one. To equalize the scale of ESNT with other examined representations, it
was normalized to Ly norm (city-block distance).

WCD representations (Li et al., 2004) improves ESN™ in two ways. It evaluate left
and right co-occurrences separately, hence distinguishing mutual positions of words. Ad-
ditionally, they evaluate also non-adjacent word co-occurrences, taking into consideration
contexts of assumed length X.

X-1 X-1
=" BN ) and 1 =37 BEN(0) (5:2)
k=0 k=0

In previous equations, Ni(v,w) is the number of cases when distance of words v and
w 3 is k, X is the context width and 3 is a context-decay parameter. Both 1} and 1}

vectors are normalized to L; norm to become probabilities. Additionally, also concatenated
1L IR

7, 1] with 52 components are evaluated, creating the matrix

word representation vectors |
LYEP . To describe different properties of our models, we use the following notation:
CLz,CRx,CLRx denote WCD with left, right and both contexts respectively, with context

size of x, Ry are ESNs with random vector representations with vector size y.

3Number of words between them.
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Model NNL COS MPR VAR AUC

CL1 0.658 0.841 0.885 0.833 0.887
CR1 0.653 0.836 0.892 0.838 0.891
CLR1 0.651 0.842 0.895 0.832 0.891
EN 0.653 0.835 0.896 0.862 0.900
R26 0.658 0.844 0.878 0.853 0.897
R52 0.653 0.847 0.885 0.858 0.905

Table 5.6: Performance of ESN with distributed representations without scaling.

Model NNL COS MPR VAR AUC

CL1x10  0.628 0.880 0.920 0.873 0.918
CR1x10  0.625 0.872 0.918 0.884 0.923
CLR1x10 0.614 0.883 0.919 0.875 0.928
ENx10 0.632 0.867 0.915 0.893 0.921
R26x10 0.662 0.858 0.862 0.833 0.906
R52x10 0.663 0.861 0.858 0.840 0.907

Table 5.7: Performance of ESN with distributed representations scaled by the factor of 10.

For the purpose of studying of the effect of vector scaling, all the representations were
scaled up in a component-wise manner to increase the discrimination of words. Motivation
for this step was the fact that the input weights of the ESN are not trained and therefore
the model cannot use the inputs in the most effective way. Our notation is as follows: xZ
means scaling the representation vector by a factor of Z and EN is the normalized version
of the ESNT model (original ESN™ has scaling of order 10).

Table 5.6 shows that differences between normalized ESN' and WCD representation for
left, right and both contexts are very subtle. However, as seen in Table 5.7, the scaling of
components improves performance of all models and emphasizes differences between them.
With larger scaling, the differences between the model with random representations and
semantic representations are magnified — the largest contrast is evident in case of linguistic
measures (MPR, VAR, and AUC). These differences are also illustrated in Figures 5.4, 5.5
and 5.6. Somewhat surprisingly, the context size and the size of the representation vector
do not play any visible role in model’s performance.

As we can see from Figure 5.7, the input and hidden representations of ESNT model
carry slight semantical information, in contrary to ESN representations (see Figure 5.3).
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the performance of ESN. Input representations were rescaled with the factor of 10.
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Figure 5.7: Hierarchical cluster diagram of the input, hidden and output representations
for ESN' model and the simple language. Words connected with the lines more to the left
are more similar.

Additionally, the output layer representations create better semantical clusters.

5.6 Construction of distributed representations using
ESN

The next possible step how to improve the language processing capabilities of the echo-
state networks, is to construct distributed input representation using the recurrent neural
network. Another instance of the echo-state network, which uses only localist input and
output representations, can be used for this purpose. This setup frees us from using the
statistical language preprocessing techniques. ESN stores inner representations within its
output layer weights W, (because only these weights are actually trained). These weights
can be directly used as the word representation matrix Lggys of the ESN2 model. The
transposed matrix L Ly, can be used similarly as we have used matrices Lggy+ and LWEP.

During the creation of the ESN2 representations, we must take into consideration size
of hidden layer during first pass of network. When first instance of ESN had reservoir
with n neurons the ESN2 representation will have n + || + oo components (using ESN
implementation which have direct connection between inputs and targets and take into
account threshold of the output layer).

Table 5.8 shows that ESN2 representations improved the performance of the ESN and
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Model NNL COS MPR VAR AUC

ESN 0.652 0.858 0.877 0.864 0.910
ESN* 0.633 0.886 0.89 0.882 0.926
ESN2-28  0.624 0.891 0.901 0.849 0.926
ESN2-327 0.622 0.888 0.903 0.858 0.930

Table 5.8: The performance of various ESN models for simple language.
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Figure 5.8: Hierarchical cluster diagram of the input for ESN2 model and simple language.
Words connected with the lines more to the left are more similar.

were even more successful than ESNT model. Usage of the larger reservoir in the first
pass (300 neurons) had only slight significance over the usage of reservoir with only 1
neuron, showing that the network with very small reservoir is able to provide sufficient word
representations. All input representations were rescaled by the factor of 6.0 to magnify the
differences between compared models.

Figure 5.8 shows that the input ESN2 representations carry very similar semantical in-
formation as we could see in ESN* model. These were created without an offline statistical
method.

5.7 Summary

This chapter was dedicated to the description of grammar acquisition process for sim-
plified context-free language. To model this task we have used the echo-state network.
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Although its performance is inferior compared to the SRN*, but it has very effective train-
ing method and therefore allows processing of the larger languages. However, the usage
of extended language leads to deteriorated network performance, showing that ESN in its
basic implementation suffers from the size of input language. This fact could be caused
by usage of the small training corpus (we have used 5000 sentences, for both simple and
extended language).

In further work, we examined various types of input and output representations in
ESN and their effect on network performance. Apart from localist and random distributed
codes, we evaluated language dependent representations, which were developed by the
preprocessing of the input corpus. We compared different methods for forming semantic
word representations - two methods with statistical preprocessing (ESN*' and ESNycp)
and one with solely ESN-based representation (ESN2). Networks with various semantic
representations showed, somewhat counter-intuitively, very similar performance, ignoring
the size of input representation, method used for its creation, the size and type® of context
during preprocessing.

The most visible effect on the ESN’s performance had the scale of the input repre-
sentations. Network performance was improved, revealing the differences between models.
The larger scale of input representations had favored the representations developed by the
statistical and ESN-based preprocessing over the symbolic (localist or random codes) ones.
This shows that previous results from Frank and Cernansky (2008) were caused not only
by usage of semantic information in word representations but also by the correct scaling of
the input vectors (because the ESNT representations have, given their definition, a large
scale). This fact is the consequence of the ESN’s simplified training method - untrained
input weights cannot correctly modify contribution of the inputs and therefore the input
representations needs to be correctly initialized.

4when trained with an extended Kalman filter
Sthe type of context (left, right, both) and presence of the word order.
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Chapter 6

Modelling of utterance-driven visual
attention

In previous chapters, we have considered language processing as an independent do-
main. However, human language typically does not occur in isolation. It is connected to
surrounding word, most commonly using visual context as source of data. Results of this
chapter come from Svantner et al. (2011b), Svantner et al. (2011a) and Svantner (2011).

6.1 Current state of the research field

During the last decade, research into human language comprehension using the visual
world paradigm has revealed that spoken language can guide attention in a related visual
scene. Moreover, scene information can immediately influence comprehension processes
(Tanenhaus et al., 1995). Findings have revealed rapid and incremental influence of visual
referential context (Spivey et al., 2002; Tanenhaus et al., 1995) and depicted events (Knoe-
ferle et al., 2005) on ambiguity resolution in online-situated utterance processing. Further
research demonstrated that listeners even anticipate likely upcoming role fillers in the
scene based on their linguistic and general knowledge (Kamide et al., 2003). Knoeferle and
Crocker (2006) identified several cognitive characteristics based on the above mentioned
findings, claiming that situated language comprehension is incremental, anticipatory, inte-
grative, adaptive, and coordinated, which led to the proposal of the coordinated interplay
account (C1A). In more detail, the interpretation of utterance should be developed after
each word (language comprehension is incremental), with ability to predict succeeding con-
stituents of target utterance (anticipatory). Moreover, the language comprehension should
adopt multiple information sources simultaneously (integrative), exploiting relevant infor-
mation as soon as it is accessible (adaptive). Moreover, the information sources can depend
on each other temporarily (language comprehension is coordinated).
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The recent CIANET model (Mayberry et al., 2009) instantiates the C1A’s proposal and
accounts for a range of observed empirical findings. CIANET is a recurrent sigma-pi neural
network that models the rapid use of scene information, exploiting an utterance-mediated
attentional mechanism. The model was shown to achieve high levels of performance (both
with and without scene contexts), while exhibiting hallmark behaviors of situated compre-
hension, such as incremental processing, anticipation of appropriate role fillers, as well as
the immediate use and priority of depicted event information through the coordinated use
of utterance-mediated attention to the scene. Other models which link language with the
visual world can be found for example in Roy (2005) and Yu et al. (2005).

6.2 Experiments

In the following two chapters, we will investigate a more general network architecture
that learns to adapt the explicit attention mechanism. Attention mechanism helps the
network to focus on described event and predict its upcoming relevant constituents. Our
implementation, in contrary to former models, is able to process more complex scenes'
and allows inhibition to operate at both the object and event levels (inhibition in CIANET
operates only at event level.).

The network architecture is based on a simple recurrent network (SRN) and recur-
rent network with explicit attentional mechanism (A-SRN-based models). The networks
reconcile an incrementally presented utterance with a representation of the current visual
context to predictively recover the described event representation. Language is presented
in form of short sentences and the objects and events in the visual world are encoded by
scene representations. In each trial, the scene representation is presented at the visual
input and the associated sentence is presented at the linguistic input, one word a time.
The network’s task is to produce the relevant scene representation at the output. This
process is mediated by the hidden layer that combines scene-related representations with
the symbolic language. The target is available at the output during the entire sentence
processing. The explicit feedback (from the output or hidden layer) is added to the net-
work using a sigma-pi mechanism to model the process of focusing attention to relevant
constituents shown in the visual scene and mentioned in the associated sentence.

6.2.1 Scene representations

The scene representations are postulated to exist at two levels — the object-level (OBJ)
and the event-level (EV). The objects may be the constituents of the events — corresponding
to physical agents/patients that can be focused on, whereas the event level refers to specific

IThe attention mechanism in CIANET is restricted to favor one of the two concurrent events.
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actions in the concrete context (with given semantic roles, i.e. known agent and patient).
The combination of both levels of representation is hence assumed to constitute a semantic
representation of an event. The scene is assumed to consist of multiple events that may or
may not share a constituent (e.g. an agent of one event is a patient of the other event or
events share common patients), plus random count of distractors (see Fig. 6.1).

Figure 6.1: Example of a scene consisting of two events (boy chases dog) and (girl looks-at
boy) and two distractors (house, sparrow). Both events share the constituent (boy).

Objects

Objects include human agents (e.g. toddler, woman), animate agents (e.g. dog, don-
key) and one artificial agent (robot) that can be involved in various meaningful activities,
with or without a patient. Agents can operate on machines (forklift, bulldozer)?, on objects
(e.g. barrel, house) or food items (e.g. apple, juice). The actions include moving (e.g. walks,
sits), physical manipulation (e.g. lifts, holds), socially oriented activities (e.g. greets, looks-
at) and sustenance actions (eats, drinks). Agents and patients are manually assigned binary
features that encode various physical and functional properties and form 40-dimensional
vectors cy and cp, respectively. For further details see Tables 6.4 and 6.3. Each object
can take a role of a distractor, denoted as cp, using the same representation vector. Ana-
logically, actions are described by 16-dimensional vectors of binary features cy. Actually,
action encoding consists of only 8 binary features (see Tables 6.1 and 6.2), but the vectors
were doubled to increase the differentiation of compressed event representations, performed
by EV module.

We used the standard self-organizing map to learn the localized representations of ob-
jects. The SOM is constructed in advance, using only agents ¢y, patients cp and distractors

2In fact, these can serve as agents of some actions, too.
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walk 10100000
run 10101000
sit 10000O0O00O0 A mat
meditate 0 0 0 0 0 0 1 0 apimate
lift 11111100 B requires physical contact
push 11111000 C  motion
pull 11111010 D transitive
touch 11010100 E requires physical effort
hold 11011000 F temporary
point-at 0 0 0 1 0 0 0 0 G ego-centered (towards oneself)
look-at 1 001 000 0 H creates flow (liquids)
greet 00010100
hit 01111100
chase 10111000 Table 6.2: Verb feature labels. The labels
eat 10000110 can be linked with the Table 6.1.
drink 10000111
Table 6.1: Feature vectors for actions.
A small K animal U vehicle e four-legged
B small-to-medium L artefact V  juicy f winged
C  medium M  food-stuff W  container g wheeled
D very small N  male X structure h  causal agent
E large O female Y dessert i instrument
F  medium-to-large P canine Z staple j manipulate crates
G very large Q  feline a drink k demolish
H animate R bird b self-moved 1 store objects
I inanimate S exotic c stationary m  store liquids
J human T machine d two-legged n storage
Table 6.3: Object feature labels. The labels can be linked with the Table 6.4.
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dog 0100000100100 OO0O10O0OO0OD0O0O0O0OO0OTOOOOD1I1OOD1OOODOOOO0OO0 O
cat 10000001001 00O0OO0ODO1I 0O0OO0OO0DOOOT ODOOO0O1001000O0O0D0OO00O0 O
sparrow 0 0 01 000 1001 00 O0OO0OO0OO0O100O0OO0OO0OUOOOOD10O0O0OO0O100OO0OO0OO0OO0O0 O
elephant 0 0 0 0 1 00 1 001 00 00 00O0O1000O0O0O00D0D0100100000000 O
donkey 0010000100100 OO0OO0OO0OO0OO0OD0ODO0OOOOTOOOOD1IOODIOOOOOOOO O
robot 001000OO0OO0O1001000O0O0O0O0OO0O1O0O0OO0OUOOOOD1I1O1O0O0O0OO0O1O00O0O0 O
forklift 0000010010010 00O0O0O0O0OO0O0O11O0O0OUOOOO0O100O0010110O0O00O0
bulldozer 0 0 0 0 1 0 0 0 100 10 0000000100 0000100001010100 O
apple 0001000O0DO0O0O0ODO1 OOOOOODOO11O0 OOOODOD1000O0O0OO0GOOO0CO O
crate 0010000010010 00O0O0O0OO0D0OO0OO0O11 0OOOODOD1000O0O0OO0GOO0O1O0 O
barrel 0010000010010 00O0O0O0OO0O0OO0OO0O11 0OOOODOD1000O0O0OO0GOO0OO0O1 O
wardrobe 0 0 1 0 0 00 0 100 10 00O00OOO0OOT1 00O00O01000000O0000O0 1
car 0000O0O10OO0O1001000O0O0O0OO0O0O110O0UO0OOO0OO0O1O0OO0OO0CO10100O0O0 O
house 0000O0OO0O101001000O0O0O0OO0D0OO0OO0OO0O1O0O0O0O0100000O0GO0O0OO0CO0 O
cake 0001000O0OO0O0O0OO1T 0OOOOOOOOOOUO1IOODOOOOGOOOOOOOCO O
meat 0001000O0OO0O0O0OO1T 0OOOOOOOOOOUOOI11O0OO0O0O0OO0OOOO0OO0GOOO0OCO O
milk 0001000O0OO0O0O0OO0O1T 0OOOOOOOOOOUOOOILIOOOO0OOOOOGOOOCO O
juice 0001000O0O0O0O0OO1 OOOOOODOO0O10 OOO1O0OOOOGCOOOOGOOOCO O
toy 1000000010010 00O0O0O0O00O0O0O0OOO0OO0010000010000 O

Table 6.4: Feature vectors for objects. Each object has associated 40 dimensional vector of
features. Features are represented by ’is present flag’ - if the object exhibit given feature,
the relevant dimension of its vector is set to 1, otherwise it is set to 0.

cp as inputs, one at the time. Actions are excluded from SOM training, they are included
only in event-level representation. The SOM is trained to provide a topographically orga-
nized map of objects according to their semantic features. Each object is represented in
the SOM by three most active units, focused around the winner, all other units are set to
zero. The index of winner i* was calculated with formula 2.3, having x(t) € {ca,cp,cp}.
The activity of the three most active units was rescaled such that yp,, = 1. Resulting map
for different objects can be seen in Fig. 6.2. The SOM size was chosen to have 64 units to
allow unambiguous learning of each object (by assigning it a separate winner).

The purpose of using three most active units (instead of just a winner) is to allow the
activation overlap between similar objects with neighboring winners (this actually helped
the model to generalize better. The scene representation at the object level contains the
superimposed representations (in SOM) of all objects in the current scene (i.e. all being
simultaneously present) plus a few distractors resulting in SOM activation:

cl=cV+. el e ey,

m m

where m and n denote the number of different objects and distractors in the scene, respec-
tively.
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Figure 6.2: SOM representations of all objects used in the simulations. Topographic order
according to semantic similarities is evident. Localist nature of representations allows their
combinatorial use without causing interference.

Events

To obtain representations e;, of events, AAN is pretrained off-line on vectors [ca cv
cp| to form the compressed distributed representations at the hidden layer with 48 units.
Patient cp is optional, so its components are set to zero in case of its absence. The input
size dimension for training AAN was 40+16+40=96 dimensions. The functionality of a
trained AAN was checked via accuracy of compressed representations using the encoding
and decoding of novel agent-action-patient triplets. The accuracy reached almost 100% for
testing data.

Once the AAN is trained, the event-level representation corresponding to a scene is
taken as a superposition of all events in the situation, resulting in the vector:

all _ (1)

€, = e, —|—...+ei(f)

The vector components are constrained in the interval [0,1]. Some components of the
event vector could become larger than one after superposition (i.e. if both events had the
same unit very active), therefore all components were divided by the value of the most ac-
tive component. Using the superposition is analogous to that used in CIANET — it encodes
simultaneous information provided to the subject as the visual input. However, in CIANET
the representational media for two events are separated whereas in our models the medium
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is shared. Unlike localist representations for objects, the superposition of distributed event
representations leads to an overlap between the two codes which expectantly makes the
decompression task more difficult. We experimented with decreasing this overlap by ma-
nipulating the profile of the sigmoidal activation function (gain and shift) of the hidden
units of AAN in order to get sparser compressed codes, but this had no significant effect.

6.2.2 Linguistic representation

The lexicon consists of 40 words, with one-to-one mapping to the objects and actions.
Words are treated as symbols and are assigned one-hot codes with 40-dimensions creating
an input l,. The sentences have a SV(O) form, such as toddler looks-at crate or woman
walks.

6.3 Model and network training

6.3.1 Model

To model utterance-mediated visual attention we have used a SRN, echo state net-
work and recurrent networks with attentional mechanism (for more information see chap-
ters 2.1, 2.3 and 2.2). All models use two output slots: ¢,y is the object-level output
that tries to activate the target objects, taking part in the described event, while e,y pre-
dicts the representation of the target event. Together, the network output (predicted scene
interpretation) is given as agut = [Cout, €out]. The models have no linguistic output.

In total, we have experimented with five models. Beside the standard SRN, ESN
and A-SRN we have explored also A-SRN™ model, which was motivated by our initial
observations about the effects of feedback mechanism and was designed to help the network
avoid undesired object inhibition. A-SRN™ guarantees that input representation remains
preserved to a certain degree (we used v = 0.3 in Eq. 2.1) which is desirable in cases when
output inhibition incorrectly suppresses valid inputs, hence hindering the correct output

of the network. In the terms of an architecture, A-SRN™ falls between A-SRN and SRN.

The last model, A-SRNj.., which is shown in Fig. 2.3, uses an alternative, internal atten-
tional mechanism, that is driven by direct connections from the hidden layer. It modulates
the input similarly to A-SRN but allows a different flow of error during training by using
an extra set of weights to separate the output representation (the scene interpretation)
from the attentional information.
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6.3.2 Network training

We have systematically looked for optimal network parameters which were then used
in testing the models and performing comparisons as described below. The hidden layer
of all networks was chosen to have 150 units, except the ESN where we used 300 reservoir
neurons. Reservoir of ESN was initialized to have largest singular value 0,,,, = 0.95 and
sparsity 10%. As an activation function for both hidden and output neurons we have used
sigmoidal function, except ESN model where we used bipolar sigmoidal function for the
reservoir neurons. Networks were trained with BPTT algorithm by propagating the error
after each word (algorithm can be found in Chapter 2.2) , using the learning rate 0.01.

We have generated 10,000 scenes, each of which was associated with two events. Model’s
attention was driven by linguistic input to the single, major event of each situation. All
generated events were consistent with the world, obeying semantic constraints. With each
scene representation, a number of distractors (ranging from 0 to 3) was added to the input,
taken from the pool of remaining agents/patients. Randomly chosen 70% of situations
were used for training and the remaining 30% for testing. Data sets were distinguished by
major events used in the scenes.

6.4 Model evaluation

In further text we will evaluate performance of various models trained for utterance-
driven visual attention task and we present measures used in this evaluation. To investigate
model’s performance, we need to evaluate both components of network’s output (OBJ
and EV). For testing the accuracy of event level output e,,; we decode corresponding
output part (using the hidden-output weights of AAN) and count the percentage of correct
decodings in the test set. Regarding of object-level output c.., we compare the output
with all possible combinations of OBJ representations (in SOM), i.e. cyy. Analogically,
we count the percentage of matches (for both agents and patients). The standard cosine
measure is applied for both EV and OBJ outputs. All measures can be evaluated after
each word presented, to capture the progress during sentence processing. We looked at
the output accuracy at the end of sentences and also on network’s anticipatory behaviour,
that is, its prediction of upcoming constituents during sentence processing (i.e. predicting
an action when reading a subject word and predicting a patient when reading a subject or
action words).

The illustration of a trained A-SRN during processing at the sentence boy chases dog
is shown in Fig. 6.3, and corresponds to the scene in Fig. 6.1. OBJ-related graphs contain
88 units, EV-related graphs contain 48-dimensional vectors, reshaped to 8 X6 matrix for
convenience. On the right, OBJ input is the composition of various objects (including
distractors), EV input is the superposition of two events. Both inputs are presented to the
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Figure 6.3: Example of A-SRN activation during sentence processing for sentence Boy
chases dog. We can notice improvement of output activation compared to targets for both

EV and OBJ output parts. 67



network at the sentence beginning. On the left, both targets comprise only information
about the target event (and the pertaining objects). At the bottom, both input become
overriden by the the feedback attentional mechanism that filters out irrelevant objects and
non-target event information. Visual inspection of the network outputs (in the middle)
reveals that they match well with both corresponding targets.

6.5 Performance measures

We explain all measures used in Tables 6.6-6.13. Symbol 'x’ refers to the stage process-
ing in a sentence (if x=1, the first word is as the input). All measures share the property
that the closer the value to 1 (from below), the more accurate the value.

Acronym Description

COS cosine between the target situation vector and the net-
work output (both OBJ and EV parts concatenated)
EV quantifies the accuracy of network output by decoding

it at sentence end; successful if both objects and action
match the targets

EVal prediction of action when reading a subject; important
measure since action cannot be retrieved from OBJ (un-
like objects)

EVpx prediction of the patient before the sentence end

EValw predictions of the possible actions from output after the
first word; action is correctly decoded when it is consis-
tent with the world (i.e. it exists in the corpus in the
given context)

EVpxw  predictions of possible patients; successful if consistent
with the world (i.e. it exists in the corpus in the given
context)

EValg action predictions; considered correct if the action was
present in the current situation (in visual input)

EVpxg predictions of patients; assumed correctly decoded if it
was present in current situation (in visual input)

OBJx prediction of agent/patient pairs; successful if both ob-
jects match the target

Table 6.5: Quantitative measures used for evaluating model performance.
Measures starting with EV- are related to event-level while measures starting with OBJ-
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are related to object level. Event-level measures are calculated from e, while object level
measures are calculated from c,,;. The symbol x € {1,2}. For model evaluations, we have
used the measures listed in Table 6.5.

6.6 Evaluation properties

Results in all tables refer to the testing data. We focused at three factors when eval-
uating model performance. First, we compared the accuracy of four models at the end of
sentence; second, we manipulated the availability of the scene information during training
and investigated its effect on model behavior; third, we looked at predictive properties of
the model, i.e. the anticipation of upcoming consituents before the sentence end.

All results shown in tables are averages of 5 simulations, all with standard deviations
below 0.02. Standard deviation was larger only for results with fully omitted visual scene
inputs, with highest values reaching 0.1.

6.7 End-of-sentence behaviour

Model’s ability to yield correct interpretation of the event, mediated by linguistic ut-
terance, can be evaluated only at the end of sentence. Table 6.6 shows that all models have
learned to generate correct output with high accuracy for both parts of its representation.
SRN was observed to perform sufficiently what suggests that the feedback mechanism used
in A-SRN-based models is not crucial for this relatively simple task. However, the feedback
mechanism used in A-SRNyg improved the performance to nearly 100% accuracy.

Model CoS EV OBJ

SRN 0.995 0.985 0.986
A-SRN 0.981 0.899 0.949
A-SRN*  0.986 0.949 0.976
A-SRNpqc  0.995 0.996 0.992
ESN 0976 0.915 0.971

Table 6.6: Model performance with respect to the target event, evaluated at the end of
sentence.

In the case of trained A-SRN, we have examined its behavior and found out that it
might be the suboptimality of its strict attention mechanism that sometimes inhibits (via
sigma-pi connection) the target objects/actions at the input, hence reducing the output
accuracy towards the end of sentence. To test this hypothesis, we introduced the model
A-SRNT and its performance was observed to be expectedly better than A-SRN.
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As we could see in chapter 5.5, it is crucial for echo-state networks to correctly initialize
input representations. The correct scale of the representation can be applied to input
weights Wy, with similar effect. We have applied the scale to the input weights Wj,;, and
Wi,,s and found out that the need of its correct initialization in this task is even more
important, because of extensive input preprocessing and different scale of both types of
inputs. Best results were achieved with ESN with 0% sparsity for both input matrices and
scaling factor of visual input 0.1.

6.8 Restriction of situational input

We have restricted the availability of the visual input during training, either completely,
or by randomly choosing 50% of sentences (in each training epoch). The purpose of this
manipulation was twofold: to simulate the lack of visual input (for example, to simulate
mere listening about the given event) but also to force the network to rely more on the
linguistic pathway in predicting the output. The models were then tested on two types of
novel inputs — those with and those without available visual inputs. Corresponding results
are shown in Table 6.7.

The simulations reveal, that partial omission of scene inputs during training positively
affects model accuracy, especially that of A-SRN. Interestingly, A-SRN yields a better
performance also on testing data patterns with corresponding scene inputs, compared to
the training mode with 100% availability of scene information (Table 6.6). The ESN
achieved imperfect performance because of alternating visual inputs. Input matrices which
are not trained, cannot provide sufficient dynamics of reservoir, necessary to represent
arbitrary presence of visual input. To achieve best performance, we have rescaled visual
input of ESN with factor 0.1.

The complete removal of the scene input during training lead to excessive bonding be-
tween visual contexts and spoken language resulting in good performance for data without
visual scene input (see EV® and OBJ¢ in Table 6.7). However, when testing the network
with available visual inputs, the results have deteriorated (both measures EV & OBJ),
showing that the network does not have the ability to correctly comprehend the described
event within the visual world. Because of the top-down attentional mechanism, A-SRN-
based models could handle this type of testing much better, possibly taking advantage of
the initial output representation evoked by the (sole) linguistic input and fed back as the
scene input that eventually contributed to higher accuracy at the sentence end. On the
other hand, the ESN was not able to cope with completely novel visual inputs and failed to
comprehend described event. The output layer could not match novel states in reservoir® to
the trained patterns, what caused low performance of the ESN. Best results for ESN were

3 Affected by novel inputs, which were not modified by static input layer.
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achieved with 90% sparsity for linguistic weight matrix and the scaling factor of linguistic
input with value 10.

Model % cos EV OBJ EVe OBJe

SRN 50 0.995 0.995 0.989 0.995 0.992
A-SRN 50 0.991 0.989 0.988 0.991 0.990
A-SRN* 50 0.993 0.992 0.990 0.995 0.994
A-SRNpg 50 0.997 0.998 0.994 1.000 1.000

ESN 50 0.980 0.920 0.980 0.790 0.900
SRN 0 0.929 0.504 0.627 0.999 0.997
A-SRN 0 0963 0.769 0.823 0.998 0.994
A-SRN* 0 0.947 0.671 0.688 1.000 0.994
A-SRNpge 0 0970 0.863 0.822 0.999 0.999
ESN 0 0.510 0.090 0.100 0.950 0.970

Table 6.7: Model performance with respect to the target event for 50% and 100% empty
situation input, evaluated at the end of sentence. Performance was computed for the test
data with full (EV, OBJ) and empty (EV¢, OBJ®) scene input.

6.9 Anticipation of upcoming constituents

Tables 6.8-6.12 refer to the prediction accuracy (constituent anticipation) during sen-
tence processing. All five models predict the target action (EVal) with ~50% accuracy
(Table 6.8). These predictions are mostly consistent w.r.t. depicted scene (~75%, Table
6.10) and almost always consistent with the world knowledge (~97%, Table 6.9) .

Prediction of the patient can be assessed at two steps. Upon reading a subject (EVpl),
the predictability of the patient is around 50% w.r.t. the target but grows over 80% w.r.t. for
both world knowledge and the depicted scene. Prediction of a patient one step later (EVp2)
grows to about 65% w.r.t. target (except ESN), to about 95% w.r.t. the world knowledge
and to 85% w.r.t. the depicted scene. ESN model exhibited deteriorated performance,
namely for the prediction of patient w.r.t target and depicted scene during presentation of
the action.

Prediction at the level of agents and patients (OBJx) is slightly less accurate. Upon
processing the first word, the accuracy of predicting both objects remains at around 50%
(having agent accurate but the patient inaccurate), and only grows to ~60% when process-
ing the verb. Also for this task, the ESN provided worse prediction abilities as the other
models.

Models with omitted scene-related inputs (Table 6.11) exhibit decreased prediction
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Model EVal EVpl EVp2 OBJ1 OBJ2

SRN 0.522 0.575 0.706 0.501 0.625
A-SRN 0.503 0.510 0.645 0.452 0.588
A-SRN* 0491 0.517 0.667 0.484 0.608
A-SRNpa  0.498 0.545 0.697 0.479  0.597
ESN 0.489 0.447 0.553 0.252 0.302

Table 6.8: Network anticipation of upcoming constituents with respect to target.

Model EValw EVply, EVp2y

SRN 0.975 0.872 0.964
A-SRN 0.971 0.836 0.939
A-SRN*  0.969 0.843 0.952
A-SRNyp  0.971 0.857 0.963
ESN 0.964 0.783 0.915

Table 6.9: Network anticipation accuracy with respect to world knowledge.

Model EValg EVplgy EVp2g

SRN 0.765 0.841  0.883
A-SRN 0.742  0.806  0.856
A-SRN*  0.732  0.815  0.864
A-SRNp, 0.754  0.830  0.894
ESN 0.753 0.814  0.778

Table 6.10: Network anticipation accuracy with respect to consistency with the depicted
scene.

ability because of missing visual scene information. When no situation inputs are presented
during training, model does not rely on this type of information, thus ignoring it also for
test set with visual information available. In addition, the prediction in the data set without
the visual input was not achieved by any model.

To describe anticipation abilities of the models with restricted scene input in more
detail, we have additionally examined their performance w.r.t. world knowledge. This
method is similar with evaluation of prediction accuracy used in Chapter 5. According to
Table 6.12, the usage of partly omitted scene inputs does not interfere with anticipation
w.r.t. world knowledge, in opposite to anticipation w.r.t. target. In almost all cases the
networks successfully predict suitable actions and patients during sentence processing. The
smallest prediction ability was observed during prediction of more distants constituents
(i.e. anticipation of patient during processing of the agent; measure EVply,).
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Model % EVal EVpl EVp2 OBJ1 OBJ2

SRN 50 0.509 0.521 0.681 0.449 0.549
A-SRN 50 0.475 0.456 0.639 0.423 0.506
A-SRN* 50 0492 0.477 0.664 0.454 0.569
A-SRNpa 50 0.489 0.556 0.675 0.492 0.561
ESN 50 0.460 0.410 0.490 0.190 0.210
SRN 0 0.201 0.039 0.074 0.015 0.031
A-SRN 0 0.203 0.033 0.085 0.006 0.022
A-SRN* 0 0.183 0.039 0.090 0.005 0.016
A-SRNpg 0 0.201 0.042 0.080 0.015 0.020
ESN 0 0.013 0.050 0.060 0.010 0.010

Table 6.11: Network anticipation of upcoming constituents with respect to the target for
models with omitted scene inputs (tested on data with available visual scene).

Model % EValy EVply EVp2y EValj, EVplj, EVp2j,
SRN 50 0.975 0.851 0.965 0.999 0.608 0.954
A-SRN 50 0.971 0.819 0.951 0.999 0.592 0.938
A-SRN* 50 0.970 0.838 0.958 1.000 0.601 0.854
A-SRNpg 50 0.970 0.869 0.961 1.000 0.609 0.884
ESN 50 0.960 0.750 0.890 0.990 0.340 0.810

SRN 0 0.966 0.635 0.840 0.913 0.743 0.845
A-SRN 0 0979 0.601 0.873 0.930 0.226 0.880
A-SRN* 0 0.950 0.604 0.889 0.894 0.602 0.848
A-SRNpe 0 0.964 0.671 0.862 0.917 0.208 0.841
ESN 0 0.800 0.690 0.720 0.990 0.630 0.890*

Table 6.12: Network anticipation of upcoming constituents with respect to world knowledge
(tested on data with omitted scene inputs).

6.10 Processing situations with multiple events

To simulate a more realistic world environment, we created a data set with multiple
events per visual scene. Each scene contained two or three events (with 50:50 ratio) and a
random number of distractors. Similarly as in the previous text, the network task was to
select the target event mediated by the utterance.

Tables 6.13 and 6.14 show that all models were able to process situations with multiple
events, having surprisingly better performance at the end of sentences. Complexity of
visual scene has caused that models had to rely on linguistic inputs resulting in similar
behaviour as we could see in case of restricted scene input (Section 6.8). On the other
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Model CoS EV OBJ

SRN 0.995 0.989 0.989
A-SRN 0.986 0.957 0.970
A-SRN*  0.989 0.981 0.984
A-SRNpae  0.995 0.997 0.993
ESN 0.975 0.918 0.962

Table 6.13: Model performance for multiple events per visual scene evaluated at the end
of sentence.

hand, prediction accuracy suffers from multiple object and event possibilities, resulting in
deteriorated performance. Anticipation w.r.t. world knowledge expectedly is not affected
by the presence of multiple events but the anticipation w.r.t. depicted scene is aggravated,
because of numerous object combination within the visual scene.

Model EVal EVpl EVp2 OBJ1 OBJ2

SRN 0.463 0.447 0.586 0.343 0.486
A-SRN 0.426 0.347 0.508 0.207 0.411
A-SRN* 0450 0.363 0.523 0.293 0.437
A-SRNy  0.447 0.430 0.558 0.348 0.460
ESN 0.438 0.380 0.469 0.163 0.199

Table 6.14: Network anticipation of upcoming constituents w.r.t. target for multiple events
per visual scene.

Model EValy EVply EVp2y EValg EVplg EVp2g
SRN 0.980 0.861 0.954 0.776  0.781 0.846
A-SRN 0.975 0.798 0.938 0.708  0.698  0.795
A-SRN*t  0.977 0.806 0.942 0.766  0.719  0.811
A-SRNyqc  0.978 0.843 0.953 0.769  0.789  0.842
ESN 0.973 0.770 0.913 0.769 0.814  0.776

Table 6.15: Network anticipation of upcoming constituents w.r.t. world knowledge and
depicted scene for multiple events per visual scene.

6.11 Hidden-layer activations

If the network is able to correctly predict output, this ability should imply some orga-
nization of the network’s internal representations at the hidden-layer. We performed an
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analysis of the hidden representations, using the traditional technique, first presented in
Elman (1990). That is, the training data was again presented to the trained network in a
single sweep, the hidden activation were recorded, and then reordered with respect to the
same input word, and averaged over contexts. Like Elman, we could observe some degree
of internal organization between words, albeit to a lesser degree. However, there two dif-
ferences. First, out network was not trained on a next-word prediction task but shooting
at a static target. Second, out linguistic input is modulated (and noised) by situational
inputs. The example of a hierarchical cluster diagram is shown in Fig. 6.4. The order in
other three models was somewhat less evident.
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Figure 6.4: Hierarchical cluster diagram of hidden-unit activation vectors of a trained
A-SRNy. model with the completely available scene input.

6.12 Analysis of attentional mechanism

To analyse attentional mechanism more deeply, we compared altered sigma-pi scene
input with the current target. Sigma-pi connection, driven by network output, filters irrel-
evant objects within visual scene, what causes larger correlation between altered input and
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target event vectors. To test this hypothesis, we have used the standard cosine measure,
comparing event part (EV), object part (OBJ) of the mentioned vectors and their con-
catenation (EV-OBJ). As we can see in Figures 6.5-6.7, the A-SRN and A-SRN™ models
indeed increase similarity between mentioned vectors. In case of A-SRN, the average cosine
decrease during processing of the second word, what is consistent with our observation that
output attentional mechanism can misguide network by activating incorrect event. This is-
sue is resolved in A-SRNT model. The results in Figure 6.7 shows that the A-SRNy, uses
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Figure 6.5: Cosine between modified sigma-pi scene input vector and target visual scene
vector during sentence processing with A-SRN network. During processing of the first
word, the network uses unmodified input.
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Figure 6.6: Cosine between modified sigma-pi scene input vector and target visual scene
vector during sentence processing with A-SRN™ network.

different type of attentional mechanism, which does not predictively filter the objects and
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events in input visual scene. In fact, it inhibits the visual input significantly (Figure 6.8),
resulting in decreased cosine between input and target vectors (Figure 6.7). The network
probably uses its hidden layer more extensively to memorize the visual scene and in later
sentence positions focus on the language-output mapping since network outputs are more
accurate (as shown in previous sections).
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Figure 6.7: Cosine between modified sigma-pi scene input vector and target visual scene
vector during sentence processing with A-SRNj.. network.

6.13 Discussion

This chapter describes situated language processing using the visual world paradigm.
We compared SRN and ESN with several recurrent neural network models with an explicit
attentional mechanism to appreciate the role of the feedback in sentence comprehension
task. All models can almost perfectly learn to generate the end-of-sentence representa-
tion that is interpreted as the sentence meaning in the visual context. Having read the
sentence, each network correctly selects the target scene event and its corresponding con-
stituents (agent/patient). To a certain degree, all networks also demonstrate predictive
behavior reflected by the ability to anticipate upcoming constituents. SRN performs ex-
pectedly very well, but we have shown that adding an explicit attentional mechanism
(in A-SRNy) results in slight improvement of the performance. The availability of the
attentional mechanism helps A-SRN models to perform better on testing data with and
without the scene information when trained on inputs with restricted scene information.
From the cognitive perspective, A-SRN’s attentional mechanism helps the network focus
on the relevant scene event and incorporates into the model the visual attention system
on an abstract level, and reveals similar anticipatory shifts in visual attention that have
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Figure 6.8: Example of A-SRNyq activation during sentence processing for sentence Girl
looks-at robot. We can notice significant inhibition of the scene input with the activation
of the explicit hidden attentional layer.
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been found using the visual world paradigm (Knoeferle et al., 2005; Knoeferle and Crocker,
2006). Ome exception is the A-SRNyq model which probably uses its hidden layer more
extensively to memorize the visual scene. Its attentional mechanism inhibits the visual
input in later sentence positions, probably using the language-output mapping to process
the last words of sentence more effectively. On the other side, the ESN have exhibited
deteriorated performance in many subtasks which was caused in most cases by inability to
cope with alternating inputs.

We have shown that models are able to process linguistic utterances also without visual
data but adding scene input helps network to correctly emphasize described event within
visual world and enables anticipation of particular upcoming event constituents. A-SRN-
based models differ crucially from CIANET (Mayberry et al., 2009) that served as our
motivation, in their potential to deal with complex visual scenes containing more than two
events. This property allows describing more realistic world scenes and deal with complex
(possibly recursive) sentences with multiple relations between their constituents. Regarding
the world complexity, we expect that the benefits of the A-SRN model (i.e. anticipation of
objects in the scene) may in fact increase as the knowledge of the network scales up, that
is, when there’s a larger difference between what the network learns during training, and
what is currently depicted when processing a given sentence.
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Chapter 7

Conclusion

This thesis covers several subtasks of natural language processing. In the first part
(Chapter 4) we have explored the non-adjacent dependencies in the artificial syllables
language, showing that also echo-state networks are able to satisfy variability hypothesis.
Moreover, our modelling confirmed that ESN is able to find the places of high entropy
within continuous sequence of syllables, therefore splitting the sequence into words.

In the second part (Chapter 5) we have focused on higher language processing. We
have trained echo-state networks on next word prediction task within recurrent sentences
of simplified English language. We have extended the grammar acquisition tasks performed
in Tong et al. (2007) for more complex input language. Although, input language used
in Tong et al. (2007) has rich recurrent structure, lexicon it use has only 24 input words.
We have extended this language to use lexicon with 96 words and showed that ESN is
able to process also more complex languages. However, its performance has deteriorated.
Our assumption is that the combination of recurrent structure with larger lexicon size
creates too large corpus, what prevents ESN to successfully process all possible sentence
combinations.

To increase performance of echo state-networks we have used various input representa-
tions in addition to frequently used localist encoding. These comprise random distributed
representations and representations obtained by corpus preprocessing. ESNT model, in-
troduced by Bullinaria and Levy (2007), use simple analysis of word neighbourhood, while
WCD representations (Li et al., 2004) take into consideration also larger contexts and or-
der of the neighbouring words. Our results confirm findings from Frank and Cernansky
(2008), that using distributed representations obtained by preprocessing of corpus increases
performance of ESN. However, deeper analysis conducted in Svantner and Farkas (2009a),
shows that ESNT model takes advantage also from larger scale of generated representa-
tions. Normalized ESNT and WCD representations exhibit comparable performance to
the one observed in random distributed and localist representation. The increase of scale
of representations distinguish the performance of ESNT and WCD compared to random
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distributed and localist models. These findings led us to conclusion that performance of
echo-state networks depends also on scale of presented inputs and for different tasks we
need to scale input independently. This fact is logical, since input weights of ESN are not
trained and network cannot adjust them to its needs. On the other hand, the effect of
larger neigbourhood contexts and the order of words, have shown surprisingly only subtle
impact on ESN performance, even for the larger input scaling. In the further work, we
have generated reasonable input representations using the multiple executions of the ESN.
The echo state network which used these representations achieved similar performance to
ESNT and ESNy¢p models.

In the third part (Chapter 6) we have explored the impact of visual scene on lan-
guage processing and modelled attention incurred within visual world. Recurrent neural
networks (namely SRN, A-SRN and ESN) have been trained to filter described part of
visual scene and provide its representation on output. All networks showed almost perfect
end-of-sentence performance, correctly choosing described event and its objects. Our im-
plementation allows processing of more complex visual scene (as opposed to CiaNet; May-
berry et al., 2009), which comprises multiple concurrent events. None of the models had
any problems with this modification either. To model off-line description of visual event,
we have removed the visual input in randomly selected scenes, what resulted in better
end-of sentence behaviour. This can be explained by reinforced utterance-output mapping
during removal of visual scenes. However, removal of all visual inputs caused that networks
have exhibited deteriorated performance during presence of the scene in testing data. In
addition, visual input allows to predict particular action and objects of described event
even before end of utterance. It eases language processing and shows that models are in
addition to network shown in Chapter 5 able to filter object within complex visual scene,
focusing attention on important part of the scene.

Echo-state network did not successfully model all of previously mentioned behaviour.
Namely in prediction task and partly present visual input environment was its performance
deteriorated. ESN was not able to cope with variable visual input, even after proper
input scaling. To explicitly model attentional mechanism we have introduced A-SRN-
based models. These have shown comparable performance to one of simple recurrent
network in all previously mentioned tasks, exhibiting superior performance during omitted
visual input. In addition, A-SRN-based models offer better characterization of attentional
mechanism, exhibiting all of its desired properties.
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Resumé

Tato dizertacna praca sa zaoberda spracovanim prirodzeného jazyka pomocou
rekurentnych neurénovych sieti. V prvej casti upriamujeme pozornost’ na lohu
predikcie nasledujuicich symbolov v prirodzenom texte. V kratkosti rozoberame aktudlny
stav tematiky a opisujeme architektiry neurénovych sieti, ktoré sa pri spracovavani
prirodzeného jazyka pouzivaji. Medzi najpouzivanejsie patria jednoducha rekurentnd siet’
(SRN, obr. 2.1) a siet’ s echo stavmi (ESN, obr. 2.4).

Kapitola 4 je venovana predikénej tlohe na trovni slabik umelého jazyka. Na
jednoduchom jazyku, pozostavajicom zo zret’azenych trojslabi¢nych slov, sme modelovali
predikciu nasledujuicej slabiky, ktora vyuziva susedné aj nesusedné zavislosti medzi
jednotlivymi slabikami (Farkas a Svantner, 2007). Ukézali sme, Ze siet’ s echo stavmi je
schopnd spravne rozdelit’ slova na miestach s vysokou entropiou. Siet’ bola navyse schopna
zohl'adnit’ aj nesusedné zavislosti medzi slabikami pri velkych vyplniach, umoznujic
generalizéciu (pouzitie znamych zdvislosti aj pri novych vyplniach).! Tym sme ¢iastocne
potvrdili hypotézu variability, ktora hovori, ze I'udia dokazu generalizovat’ v pripade vel'mi
vysokej alebo nulovej variability slabik (vyplne) medzi nesusednymi slabikami.

V kapitole 5 sme modelovali spracovavanie viet a akviziciu gramatiky pomocou sieti s
echo stavmi (Svantner a Farkas, 2009b). Model bol trénovany na tilohe predikcie d’aldieho
slova vo vetach dvoch jednoduchych prirodzenych jazykov, vychadzajucich z anglictiny.
Ako zékladni ddtovi mnozinu sme mierne upravili jazyk (Tong a spol., 2007), ktory mé sice
bohati rekurzivnu struktiru, ale vyuziva iba malo slov. Z tohto dovodu sme ho rozsirili,
pridanim vécsieho slovnika a ukazali sme, zZe siet’ s echo stavmi je schopnd spracovavat’
aj o nieco zlozitejsie jazyky (¢o do velkosti slovnika). Musime vSak podotknut’, ze jej
uspesnost’ sa pri pouziti zlozitejsieho jazyka znizila. Predpokladame, ze zvacSenie slovnika
v kombinacii so zlozitou rekurentnou strukturou viet, viedlo k vytvoreniu mnozstva vetnych
kombinacii a siet’ nebola schopna spravne zovseobecnovat’ z dovodu, ze sa pocas trénovania
stretla iba s malou ¢ast’ou z nich.

Pre zvySenie tuspesnosti siete s echo stavmi sme pre jej vstupy vyskusali rozne
reprezentacie. Okrem lokalistickych a nahodnych distribuovanych kédov sme pouzili

I'Napriklad, ako vyplii medzi zavislymi slabikami *Pudia’ a ’ji’ vo vete ’Ludia sa pozeraju na oblohu.’
povazujeme cast’ vety ’sa pozera’.
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reprezentdcie, ktoré vznikli Statistickym predspracovanim textu. Model ESN*, ktory
bol navrhnuty v Frank a Ceriiansky (2008), pouziva jednoduchi analyzu, zalozeni na
pocetnosti spolo¢nych vyskytov slov v rdmci textu. WCD reprezentacie (Li a spol., 2004)
st ziskané vel'mi podobnou metédou, avsak zohladnuju aj poradie v ramci spolocnych
vyskytov a umoznuju pouzitie vacsich kontextov medzi skimanymi slovami. Nase vysledky
potvrdzujui zistenia z Frank a Cerniansky (2008), ze pouzitie distribuovanej reprezentacie
ziskanej Statistickym predspracovanim textu (ESNT a WCD reprezentécie) zvysuje
tispesnost’ siet{ s echo stavmi. HIbsia analyza vSak ukdzala (Svantner a Farkas, 2009a),
ze zvySenie uspesnosti sieti s echo stavmi bolo z casti sposobené zmenou $kély vstupov.
Po normalizécii vstupov (Skédla vstupov bola znizend) bola uspesnost’ sieti s echo
stavmi pouzivajucich reprezentacie ziskané pomocou Statistického predspracovania textu
porovnatelna s modelom vyuzivajucim lokalistické a ndhodné distribuované koédy. Tieto
zistenia nas viedli k zaveru, ze uspesnost’ sieti s echo stavmi zalezi okrem iného aj na
skéale vstupnych reprezentacii a pre rozne tlohy potrebujeme zistit’ aj spravnu skélu
vstupov. Tento fakt je logicky, ked’ze sa vstupné vahy v siet’ach s echo stavmi
netrénuju, a teda ich siet’ nie je schopna upravit’ pre svoje potreby. Ostatné variacie
vstupnych reprezentacii nepriniesli pozadované zvysenie uspesnosti sieti s echo stavmi.
Medzi skimanymi bola velkost’ kontextu medzi zavislymi slovami a poradie slov. V
d’alsom vyskume (Svantner, 2010) sme vytvorili sémantické reprezentécie vstupnych slov
pomocou viacnasobného spracovania textu pomocou siete s echo stavmi. Ukazali sme,
Ze tieto reprezentacie umoznuju dosahovat’ podobné vysledky ako reprezentécie vytvorené
Statistickym predspracovanim textu. Ich vyhodou je, ze mozu byt’ modelované iba pomocou
neuronovych sieti, ¢o je biologicky prijatel'nejsie.

V kapitole 6 sme neskumali jazyk iba ako samostatni entitu ale Studovali sme ho
v kontexte vizudlnej percepcie. Opisali sme vplyv vizualnej scény na spracovavanie
prirodzeného jazyka a modelovali sme upriamovanie pozornosti na objekty vizualneho
sveta. Ulohou rekurentnych neurénovych sieti bolo spoznat’ na opisovanti udalost’ v
ramci vizualnej scény a poskytnut’ jej reprezentaciu na vystupe (Svantner a spol., 2011b).
Jednotlivé modely sme trénovali na vstupnych datach s vizudlnymi scénami, ktoré
obsahovali dve alebo tri sucasné udalosti. Udalosti boli zakédované pomocou auto-
asociacnej siete a ich kody boli scitané po zlozkach, aby vytvorili udalostni cast’
reprezentdcie scény. Vsetky objekty scény? boli upravené pomocou samoorganizujicej
sa siete, ktora mala za uilohu vytvorit’ podobné reprezenticie pre objekty s rovnakymi
sémantickymi vlastnost’ami (obr. 6.2). Vysledné reprezentécie boli nésledne séitané po
zlozkéch a vytvorili objektovu cast’ reprezentacie scény. Jazykovy vstup opisujici ciel'ovi
udalost’ bol predstaveny postupne v podobe lokalisticky reprezentovanych slov. Vsetky
siete boli na konci opisu schopné vybrat’ spravnu udalost’ a urcit’ vsetky objekty, ktoré

2Pocitajic aj distraktory, ktoré slizili na skomplikovanie scény.
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sa v nej podiel'ali. Nasa implementécia, na rozdiel od Mayberry a spol. (CiaNet; 2009),
umoznuje modelovat’ pozornost’ aj v zlozitejsich vizualnych scénach, ktoré pozostavaju z
viacerych sicasnych udalosti.

V d’alsom vyskume sme z ¢asti vstupnych dat odstranili vizualne vstupy. Motivaciou
tohto kroku bola snaha o modelovanie opisu aktualne nepritomnej scény. Uspeénost’
modelov sa zvysila pri koncoch viet, ¢o bolo sposobené posilnenim zavislosti medzi
jazykovym opisom jednotlivych scén a ich vizudlnou reprezentaciou pocas trénovania.
Vynechanie vizualnych vstupov zo vSetkych scén vSak sposobilo zniZenie tuspesnosti
vsetkych modelov, lebo dochddzalo k priliSnému naviazaniu vystupnych reprezentacii na
opis. Opétovné predstavenie vizualnych vstupov v testovacej mnozine zvysilo chybovost’
modelov. Siete boli schopné do urcitej miery predikovat’ budice akcie a objekty v rdamci
aktualne opisovanych udalosti. Tato schopnost’ zefektiviiuje spracovanie jazyka a ukazuje,
ze rekurentné neuronové siete si schopné odfiltrovat’ nepodstatné objekty z vizualnej scény;,
a preto st vhodné na modelovanie pozornostného mechanizmu.

Siete s echo stavmi nedokazali uspeSne modelovat’ vsetky vysSie spominané
podilohy (Svantner, 2011). Znizenti tspe$nost’ zaznamenali menovite pri iastocne
pritomnom vizualnom vstupe a pri predikcii. Siete s echo stavmi sa totiz nie si schopné
vysporiadat’ so zmenou casti vstupov, dokonca ani po spravnom preskalovani ich vstupnych
reprezentacii.

Okrem standardnych modelov (SRN, ESN) sme pre tuto tlohu vyvinuli siet’ A-SRN
(obr. 2.2), ktord na modelovanie pozornostného mechanizmu pouziva pridavné rekurentné
spojenie, priamo ovplyviujice vstupy siete (Svantner a spol., 2011b). A-SRN siet’
dosahovala podobnu uspesnost’ ako SRN vo vsetkych spominanych tlohach a ukazala
takmer bezchybné vysledky pri podilohe s ¢iastoéne pritomnymi vizudlnymi vstupmi. Jej
rozsirenie, model A-SRNy. (Svantner a spol., 2011a), ktorého architektiru mozeme vidiet’
na obr. 2.3, pouziva jednu skrytu vrstvu navyse, ktord predstavuje explicitny vnutorny
pozornostny mechanizmus. Zlozitejsia architektira umoznuje modelu A-SRN,., dosahovat’
lepsie vysledky takmer vo vSetkych podilohach. Siete A-SRN detailnejsie charakterizuju
pozornostny mechanizmus a modeluju vsetky jeho pozadované vlastnosti.
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