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Abstrakt

Učenie posilňovaním (reinforcement learning, RL) predstavuje skupinu metód strojového

učenia, ktoré sú schopné učit’ sa priamou interakciou s prostredím, bez predpripravených

trénovacích dát. Navyše, náročnost’ mnohých úloch, plynúca z ich vnútornej hierarchickej

štruktúry, inšpirovala záujem o oblast’ hierarchického RL, ktoré vnáša dekompozíciu úlohy

priamo do výpočtových modelov. Modely HRL zvyčajne pozostávajú z nižšej úrovne, tzv.

schopností, ktoré vykonávajú jednoduchšie behaviorálne úkony, a vyššej úrovne, ktorá využíva

tieto schopnosti na riešenie hlavnej, kognitívne náročnejšej úlohy.

Napriek tomu, že rôzne modely HRL využívajú odlišné prístupy k architektúre, identifiká-

cia a učenie schopností ostáva kl’účovou výzvou tejto oblasti. Väčšina výskumu sa zameriava

práve na tento problém, využívajúc širokú škálu automatizovaných metód. Väčšina z nich

pritom vytvára schopnosti, ktoré sú predtrénované a počas učenia hlavnej úlohy ostávajú

nemenné, čo však môže vyústit’ do suboptimálnych riešení.

V tejto práci prinášame návrh nového prístupu adaptívneho učenia schopností (Adaptive

Skill Acquisition, ASA), ktorého ciel’om je práve problém suboptimálnych predtrénovaných

hierarchií. Táto metóda je navrhnutá ako univerzálny komponent, ktorý môže obohatit’

existujúce metódy o novú funkcionalitu. ASA počas učenia analyzuje správanie hlavného

agenta a identifikuje potenciálne schopnosti, ktoré mu chýbajú na efektívne splnenie úlohy.

Tieto chýbajúce schopnosti sú následne natrénované a integrované do hierarchického systému,

čo umožní zlepšit’ jeho celkovú úspešnost’. Okrem tohto nového prístupu prinášame taktiež

aj prehl’ad a analýzu existujúcich metód tradičného aj hierarchického RL.

Experimenty, ktoré boli vykonané v dvoch fundamentálne odlišných prostrediach, demon-

štrujú širokú použitel’nost’ metódy ASA. Pridanie novej schopnosti do hierarchie významne

zvýšilo celkovú úspešnost’ modelu, pričom agenti využvajúci ASA konzistetne dosahovali

lepšie výsledky než bez neho. Testy s jednotlivých častí ASA ukázali vysokú robustnost’

komponentu na identifikáciu chýbajúcich schopností, avšak poukázali aj na to, že zložitejšie

stratégie na integráciu nových schopností neprekonali základnú metódu. Porovnávacie testy

tiež potvrdili, že ASA prekonáva predchádzajúci podobne zameraný model.

Kl’účové slová: hierarchické učenie posilňovaním, schopnosti, adaptívne učenie schopností
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Abstract

Reinforcement learning is a class of powerful machine learning methods capable of learning

by direct interaction with an environment instead of pre-collected datasets. At the same time,

the nature of many tasks with an inner hierarchical structure has evoked interest in hierarchical

RL approaches that introduced the two-level decomposition directly into computational

models. These methods are usually composed of lower-level controllers – skills – providing

simple behaviors, and high-level controller which uses the skills to solve the overall task.

While various models of hierarchical reinforcement learning use different architectures,

the skill discovery and acquisition remains the principal challenge of this field. Most of

the relevant research is focused on resolving this issue, using a broad spectrum of automated

methods. Majority of them produce skills that are pre-trained and fixed before the main

learning process starts, which may lead to suboptimal skill set, and thus inefficient solution of

the overall task.

In this thesis we propose the Adaptive Skill Acquisition framework (ASA) aimed to resolve

the problem of inefficient hierarchy. It is designed as a universal pluggable component capable

of augmenting the existing solutions by new functionality. ASA can observe the high-level

controller during its training and identify skills that it lacks to successfully learn the task.

These missing skills are subsequently trained and integrated into the hierarchy, enabling better

performance of the overall architecture. Besides our new approach, we also provide a review

and analysis of available methods for both traditional and hierarchical reinforcement learning.

The conducted experiments on two fundamentally different environments demonstrate

the broad applicability of ASA. Embedding the new skills into the hierarchy significantly

improves the performance of the overall model, and the ASA-enabled agents exhibit consistent

advantage to the baseline. Further ablation tests reveal that the identification of a missing

skill is exceptionally robust even with imperfect data, but on the other hand, the elaborate

strategies for skill integration do not outperform the baseline ones. A comparative study also

confirms that ASA can surpass the previous similarly-oriented model.

Keywords: hierarchical reinforcement learning, skills, adaptive skill acquisition
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Introduction

As an approach inspired by the natural knowledge acquisition process, the reinforcement

learning (RL) is gaining significant interest in both research studies and practical applications.

This biologically motivated approach aims for learning by direct interaction with the environ-

ment, providing an on-line improvement of the learned model. At every time-step an agent (in

machine learning context) receives an observation – e.g. sensory input; executes the selected

action – e.g. motor activation; and receives a reward signal. However, this reward signal

reflects not only the quality of the last action, but instead it can describe agent’s success over

longer period of time. Additionally, in sparse-reward environments, this reward signal can be

withheld for a long time – as an extreme, yet not rare case, we can imagine an agent playing

a chess game, receiving the reward only at the end of the match. The reward signal must

hence be propagated to earlier actions, adjusting them accordingly to their contribution to

the overall success or failure.

This uneasy task of reward propagation initiated a research field of reinforcement learning.

The key early contributions by Bellman (1957a), and Howard (1964) provided the fundamental

concepts upon which all subsequent research has been founded. Successful algorithms such

as SARSA and Q-learning were developed based on the dynamic programming (DP).

DP-based approaches could however only cope with discrete state spaces. To address

this issue, function approximators were introduced into the RL framework, enabling it to

work in continuous environments as well. Further leap was accomplished by Williams (1992)

REINFORCE breakthrough followed by popular actor-critic architecture, which allowed

continuous action spaces as well. Subsequent research based on these revolutionary ideas

brought impressive results, with applications vastly surpassing human-level performance in

numerous cases.

Despite the recent progress in traditional or ‘flat’ RL, these approaches still struggle to

solve a task composed of several layers of abstraction. An example may feature a walking

robot tasked with solving a simple maze. A two-layer hierarchy can be observed in such case:

the first layer learning the basic motion skills such as walking and turning; and the second

layer may be using these skills to more efficiently solve the higher cognitive task of navigation

within the maze, freeing itself of the peculiarities of locomotion. To render such a problem

1



tractable, hierarchical reinforcement learning (HRL) has been introduced. Despite the fact that

research in this area began only recently within the machine learning community, a diverse

variety of approaches has already been proposed. The common underlying feature is the usage

of skills – actions that are temporally extended in time – forming an implicit or explicit

hierarchy within the task. Acquisition of these skills is the key answer to be resolved in HRL.

The most popular approach for acquiring the skills is to train them in a specialised pre-

training phase. Once it has finished, the skills are ready to be used in the overall hierarchy,

and the main training can begin. However, this two-phased process comes with a caveat. If

the pre-training phase is not absolutely optimal, it can generate an inefficient set of skills.

Some skills can be malformed, or, even worse, a certain useful skill can be missing altogether.

When such incomplete skill set is used in the subsequent main training, the agent is doomed

to find a suboptimal solution.

As our contribution to the field, we introduce the Adaptive Skill Acquisition framework

(ASA). It is tailored to address the problem of a missing skill, and solve it even after the main

training has started. We designed it as a pluggable component, which can be deployed onto

almost any existing HRL architecture, or those yet to come. While the HRL agent is being

trained, ASA can automatically identify that a useful skill is missing, train the new skill,

and incorporate it into the hierarchy. The agent then resumes its training with this enriched

hierarchy, and can solve the overall task more efficiently. The implementation of our approach

is also accessible online1.

In chapter 1 we provide the necessary theoretical concepts underlying all RL tasks –

the Markov Decision Process, its components and properties. Progress in solving traditional

reinforcement learning is covered in chapter 2, including the fundamental concepts and

distinction between different methods. We describe the most important algorithms since

the early research until current state-of-the-art methods. Chapter 3 is dedicated to hierarchical

reinforcement learning. Besides assessing common concepts and motivation, we also provide

a concise survey of HRL research comparing individual methods. In chapter 4 we present

our Adaptive Skill Acquisition approach, covering in details all of its components. In order to

evaluate this approach, chapter 5 describes the conducted experiments and presents the overall

results, which show the performance of our model. Finally, in chapter 6 we discuss the func-

tionality of the overall model, and present some possibilities for improvements and future

work.

1at https://github.com/holasjuraj/asa
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Chapter 1

Markov Decision Process

In order to understand the reinforcement learning in its sheer complexity, first we have to

understand the underlying building blocks. The theoretical foundation is represented by

the model of Markov Decision Process, which we will describe in this chapter.

The proper definition is that Markov Decision Process (MDP) is a type of a problem,

to which Reinforcement Learning provides a toolkit of solutions. More formally, MDP

is an extension of a Markov Process – a series of successive states s0, s1, s2, . . . for which

the Markov property holds:

p(st+1|st) = p(st+1|s0, . . . , st) (1.1)

In its original form, this means that at any given time, st fully represents the state of

the system and consideration of historical states would yield no additional information to

any computations.1 An alternation of simple Markov Process is a Markov Reward Process,

which introduces a concept of immediate (possibly non-deterministic) reward rt at each state

st, along with a discount factor γ ∈ (0, 1]. This enables us to compute the overall score, or

gain, of a particular Markov sequence, as a total discounted reward from the time t onwards:

Gt =

∞∑
k=0

γkrt+k (1.2)

The introduction of less-than-one γ value into the equation helps to prevent infinite sums,

and hence enables us to evaluate infinite-horizon Markov sequences. In addition, setting the γ

discount factor describes whether the agent prefers immediate actions (γ → 0) or overall gain

(γ → 1). Finally, Markov Decision Process adds an option to make actions that influence

further states. To summarize a formal definition, MDP is a tuple 〈S , A, P, p0,R, γ〉, where:

• S is a finite set of states

• A is a finite set of actions
1This concept is not strictly honored in some real-life applications, as we will discuss later.
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• P is a probability distribution describing state transition: p (st+1|st, at) ∼ P

• p0 is a probability distribution of an initial state: p(s0) ∼ p0

• R is a (possibly non-deterministic) reward function: rt = R(st, at)

• γ is a discount factor, γ ∈ (0, 1]

An agent in an MDP system follows an episodic flow, where in each time step t it

obtains a state st, performs an action at, and receives a reward signal rt, forming a history:

[s0, a0, r0, s1, a1, r1, . . .], as depicted in figure 1.1. An agent is responsible for choosing actions,

while the environment provides new states and rewards, according to P, p0 and R respectively.

These iterations repeat until the environment terminates the process, forming a complete

episode (or trajectory, rollout) of the agent. Alternatively, in the case of infinite-horizon

environments, the trajectory may continue indefinitely.

Figure 1.1: Schema of a single episode in Markov Decision Process.

1.1 Policy and its value functions

In every time step, the agent chooses an action a as a reaction to the presented state s. This

process of selection is described by agent’s policy. The policy may be deterministic, yielding

the same action every time when presented with a particular state s, or non-deterministic

which draws an action from a specified probability distribution, given state s. Notation is π(s)

for deterministic policies or π(a|s) generally2.

As an adjustment of a gain from Markov Reward Process, MDP uses state- and action-

value functions. State-value function (or simply value function) defines the expected gain

from state s, supposing that agent is following the specified policy π:

Vπ(s) = Eπ[Gt|st = s] (1.3)

Alternatively, action-value function (or Q-function) defines the expected gain from state s,

supposing that agent firstly chooses action a, and then follows specified policy π:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (1.4)
2A deterministic policy is, after all, only a special case of a broader class of non-deterministic ones.

4



As presented by Bellman (1957a), both state- and action-value functions can be expressed

recursively using immediate reward and expected value of the next step. This approach allows

us to approximate their values iteratively. The Bellman Expectation Equation3 states that:

Vπ(s) = Eπ[rt + γVπ(st+1)|st = s]

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1)|st = s, at = a]
(1.5)

These equations became a cornerstone for almost all subsequent Reinforcement Learning

methods, as we will discuss in chapter 2.

1.2 Alternatives of MDP

In addition to the classical MDP problem, many off-springs were introduced to help formally

describe various real-world problems. These diminish the constraints pertaining to classical

MDP, in order to address a specific problem, and they can often be combined. However, all

of them need to be accounted for when designing an algorithm, as they usually introduce

additional complexity to the problem.

1.2.1 Continuous state and action spaces

Most common generalization of MDP removes the constraint of having finite sets of states and

actions. Instead, they can be infinite and even non-discrete, allowing the introduction of both

continuous state representation and continuous actions. This version of MDP is frequently

used in robotics, where a physical agent moves in an obviously continuous environment, and

its actions typically include applying torque to the joints, drawn from a continuous interval as

well. It is also common to see environments in which only the state-space is continuous but

the action-space is discrete, such as controlling a game with a joystick (four discrete actions)

given a raw pixel data from screen as the input (high-dimensional continuous state).

1.2.2 Partially observable MDP

In a classical setup of an MDP problem, an agent receives state st which fully represents

the state of the environment. However, this may not be always possible to achieve, as

the environment may be too vast, or simply due to limitations of agent’s sensors. An example

would be a robot with a front-facing camera that is not able to see the state of an environment

behind him. Such setup is called a Partially observable MDP, or POMDP.

3There is another variant called Bellman Optimality Equation, both of which are often referred to as simply

Bellman equation.
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As a formalization of this concept, a space of observations O is introduced. In each time

step, agent receives an observation o with probability Ω(o|s), and a probability distribution

of states – called a belief – must be maintained. Having a belief instead of an actual state,

the whole problem can be easily viewed as an action selection in a belief space, which can be

solved by the traditional MDP methods.

1.2.3 Semi-MDP

In the real-time applications, time flow is also continuous, suggesting that time-steps in

discrete-time MDP should be broken down to infinitesimals and form a continuous action

selection. This, however, is not achievable in real life, as every action selection and action

performance takes non-zero time.

In contrast to classical MDP, Semi-Markov Decision Process (SMDP) considers the vary-

ing length of each action, and so it models the continuous-time scenario a bit better. Formal

definitions are altered to reflect this concept:

• Transitional distribution P yields a probability of a transition to the next state s′ at time

τ: p(s′, τ|s, a)

• Reward function R considers the duration of an action: r = R(s, a, τ)

• Discount factor γ is scaled with respect to duration: γτ

• Value functions are adjusted accordingly: Vπ(s) = Eπ[R(s, a, τ) + γτVπ(s′)]

Vπ(s) = Eπ[R(s, a, τ) + γτVπ(s′)]

Qπ(s, a) = Eπ[R(s, a, τ) + γτQπ(s′, a′)]

1.2.4 Universal MDP

The Universal MDP (UMDP) is a subclass of the MDP family, even though its name sug-

gests the opposite relation. Its universality lies in its ability to reach any arbitrary goal in

the environment, given that the goal is specified to the agent. Most common example of such

an approach can be found in the field of robotics, when the robot is trained to move to any

location specified by the user.

In UMDP, the state space is partitioned into two components: S + = S × G, where

s ∈ S is the actual state of the environment, and g ∈ G represents the goal state. Al-

though G can be constructed arbitrarily, the most common case is to see G ⊆ S , e.g.

s = [position of robot, joints torques], g = [desired position of robot]. Unlike state s which

changes with each step, the goal g is chosen at the beginning of the trajectory and then stays

fixed until that trajectory terminates.
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The concept of UMDP is useful in spatial tasks, where the goal state can be easily for-

mulated by specifying desired coordinates. However, the MDP covers a wide variety of

problems where no such formulation is feasible, or might not exist at all. Such problems range

from collecting a resource in a spatial environment (e.g. gather coins), through stabilising

a closed-loop system (e.g. balance a two-wheeled robot), to so-called multi-armed bandits

– single-action environments for reward maximisation (e.g. advertising placement on web-

sites). Furthermore, the final goal state certainly cannot be specified in the infinite-horizon

environments.
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Chapter 2

Reinforcement Learning

After properly defining MDPs as a problem, we can now investigate the methods used to solve

this problem, i.e. various Reinforcement Learning principles and algorithms.

2.1 Fundamental concepts

When applying the MDP theoretical base into real-life cases, Reinforcement Learning (RL)

did not follow a rather linear path. Instead, a variation of different concepts was introduced,

each of them aiming to resolve a particular real-world challenge that previous methods could

not. These concepts could be – and often were – combined to make the algorithms more

robust. This highly non-linear trajectory of research brought up many different (usually

binary) decompositions of RL algorithms: model-based vs. model-free, static vs. active RL,

on-policy vs. off-policy, sums vs. samples, discrete vs. continuous, etc.

We will try to cover the most important ones, in order to better understand more complex

algorithms as well as our motivation for further work.

2.1.1 Model usage

A model in RL is complete knowledge of the underlying MDP, especially the transitional

distribution P and the reward function R. Generally speaking, if an agent has full access to

these properties it is a model-based agent. Such agents can then use the P and R distributions

for computations without actually interacting with the environment. On the other hand, if

an agent can only sample the transitions and rewards by querying the environment, it is

model-free.

There is a branch of model-free algorithms in which the agent builds its own approximation

of the model by observing transitions and rewards it experienced (Kober and Peters, 2012;

Deisenroth et al., 2013). This approach allows to use some model-based methods to bootstrap
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the learning process even in a setup that is actually model-free. One of the first examples was

brought by Sutton (1990) in a form of Dyna-Q algorithm, while recent research successfully

applied this approach even to large-scale problems (Gu et al., 2016).

2.1.2 Sampling vast distributions

Even if the model is known to the agent, it may not be feasible to fully use it. As we have

shown in chapter 1, most of the calculations involve expected values over a distribution – it

may either be a transitional distribution P(s′|s, a), a non-deterministic reward function R(s, a),

non-deterministic policy π(a|s), or frequently a joint distribution of all aforementioned.

Exact computations of these expected values require expanding them into sums (or

integrals) such as
∑

s∈S P(s′|s, a).V(s′). These become computationally impractical in cases

of high cardinality of S or A, or if these are infinite and continuous. In these scenarios, which

form the majority of today’s research, sampling of underlying distributions is used instead of

exhaustive sums. As a result, various approaches use sampled data to improve approximated

variable iteratively.

2.1.3 Policy evaluation

In the task of policy evaluation, also called a prediction task or static RL, we are given

a MDP and a fixed policy π and we aim to find the value function Vπ or Qπ of this policy.

In the simplest setup of finite model-based static RL, the value function can be obtained

by starting with an arbitrary function V (0) and iteratively applying the Bellman expectation

equation. After expanding the expectations into sums, we directly get:

∀s ∈ S : V (0)(s) ← 0

∀s ∈ S : V (k+1)(s)←
∑
a∈A

π(a|s)

r(s, a) +
∑
s′∈S

P(s′|s, a)V (k)(s′)

 (2.1)

After the finite number of iterations, this algorithm is guaranteed to converge into the true

value function of the given policy, i.e. V (n) = Vπ, similarly for the action-value function

Qπ. Algorithms implementing this idea are usually based on dynamic programming, with

computational complexity O
(
|A||S |2

)
per iteration1 suitable only for small setups.

Due to their high computational complexity, dynamic programming approaches tend to

turn unfeasible in case of high cardinality of S or A. In such cases, as well as when the setup

is model-free, we can compute the value functions by simply sampling the P and R. The agent

is interacting with the environment, generating the history [s0, a0, r0, s1, a1, r1, . . .] in each

1For action-value function, the complexity even grows to O
(
|A|2|S |2

)
.
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episode. Using this historical data, we can update an approximated value function V . Two

main approaches are used for such updates: Monte-Carlo and Temporal Difference.

In Monte-Carlo (MC) update method, the agent has to complete the whole episode and

reach a terminal state first. Only then, after episode termination, the gains Gt are computed for

each time-step t, which are used as an unbiased sample of true value function Vπ. Following

the traditional α-step approximation scheme, we obtain:

V(st)← V(st) + α (Gt − V(st)) (2.2)

The drawback of MC methods lies in high variance of Gt as it is subject to a long

trajectory of (possibly non-deterministic) actions. This aspect prevails especially in long-

horizon environments.

Temporal Difference (TD) approach, as opposed to MC, is able to update value function

even during the episode, allowing it to be used for infinite-horizon MDPs. It uses an idea of

Bellman equation, which says that V(st) can be approximated by rt + γV(st+1). TD learning

uses this term (called TD target) as a sample of Vπ:

V(st)← V(st) + α (rt + γV(st+1) − V(st)) (2.3)

The TD target is no longer an unbiased sample of true Vπ, as it bootstraps from the current

imperfect value of V . Despite this drawback, it can be proven that TD-evaluation does con-

verge to Vπ correctly. Additionally, thank to much lower variance of TD target in comparison

with gains in MC, TD-based methods are more widespread. The term of TD error:

δt = rt + γV(st+1) − V(st) (2.4)

was used in subsequent works, as we will discuss in sections 2.2 and 2.3.

TD-λ approach comes as a combination of MC and TD methods. TD takes a single-step

lookahead, considering only one reward rt, while on the other side of the spectrum MC takes

full-episode lookahead, considering all future rewards in form of Gt. A possibility in between

is to take n-step lookahead, considering actual rewards of n steps rt, . . . , rt+n−1. The novel

TD-λ technique combines all aforementioned versions – it forms the target (sample of Vπ) as

a weighted average of all n-step lookahead values, for n ∈ [1,∞).

The key component in TD-λ learning lies in defining an n-step gain quantity combining

exact rewards from first n steps, and approximating the rest by V function:

G(n)
t =

 n−1∑
k=0

γkrt+k

 + γnV(st+k) (2.5)

Note that G(1)
t is equal to standard TD target performing single-step lookahead, while G(∞)

t

represents gain Gt used for a full-episode lookahead in MC method.
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If we take a weighted average of G(n)
t values for all n we get the TD-λ target:

Gλ
t = (1 − λ)

∞∑
n=1

λn−1G(n)
t

V(st)← V(st) + α
(
Gλ

t − V(st)
) (2.6)

where the λ ∈ [0, 1] hyperparameter will tune how much we prefer longer lookaheads

(λ → 1) over shorter ones (λ → 0). By choosing λ correctly we can greatly reduce the

variance in comparison with MC methods, while introducing a smaller bias than in standard

TD-evaluation.

Although we have discussed mostly state-value function approximation in this section,

the same methods with only slight adjustments can be used for action-value function approxi-

mation as well.

2.1.4 Policy optimization

In the previous section we presented various methods for evaluating an existing or fixed policy.

Policy optimization methods (also called the control task or active RL) do not work with

a fixed policy, but rather actively use the evaluations to improve a suboptimal policy, i.e. to

actually teach the agent to perform a given task.

The goal of policy optimization is to produce a policy that maximizes average overall

gain, i.e. to find the optimal policy π∗ = arg maxπ∈Π (Eπ[G0]). For such policy a Bellman

Optimality Equation holds:

V∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

P(s′|s, a)V∗(s′)


Q∗(s, a) = r(s, a) + γ

∑
s′∈S

P(s′|s, a) max
a′∈A

(
Q∗(s′, a′)

) (2.7)

Greedy policy construction

Given any action-value function Q, we can always construct a deterministic policy acting

greedily with respect to that function, i.e. given state s, always choose the action a with

highest value Q(s, a):

πgreedy(s) = arg max
a∈A

(Q(s, a)) (2.8)

This simple policy construction allows us to construct more successful policies by optimizing

the action-value function instead of actual policy.
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Convergence by Contraction mapping theorem

A wide span of RL algorithms can be found to have a common underlying structure that can

be decomposed into two interchanging steps:

1. Policy evaluation acquiring more precise value function of current policy

2. Policy improvement generating more effective policy from computed value function

This iterative framework will converge to optimal policy π∗ and optimal value function V∗ or

Q∗. This can be proved using the Banach fixed-point theorem (Banach, 1922), also known as

Contraction mapping theorem.

Definition. For a metric space X a function f : X → X is called a contraction mapping if

and only if there exists k ∈ [0, 1) such that ‖ f (x), f (y)‖ ≤ k‖x, y‖ for all x, y ∈ X.

Theorem (Banach fixed-point theorem). Let X be a metric space and f a contraction mapping.

Then f defines a unique fixed-point x∗ ∈ X for which f (x∗) = x∗ holds. Furthermore, x∗ can

be found as x∗ = limn→∞ xn where x0 is any point in X and xn+1 = f (xn).

We will review the two interchanging steps to explain how they help to converge to optimal

policy. First, policy evaluation of a fixed policy π is a contraction mapping in the space of

all action-value functions Q, where Bellman Expectation Equation is the function f , true Qπ

is the fixed point, and γ represents a contraction factor k. Subsequent contraction mapping

can be constructed in a space of all policies Π. Starting with any policy πn, we can construct

a new one by evaluating Qπ and acting greedily with respect to it, i.e. πn+1 = πgreedy[Qπ].

Such function f : Π → Π is a contraction mapping, with a fixed point in optimal policy

π∗. Therefore, by starting with an arbitrary policy π0, alternating evaluation of Qπn and

construction of greedy πn+1 will converge to a single optimal policy (Singh et al., 2000).

While we outlined the proof using the Bellman expectation equation and Greedy policy

construction, similar approach can be applied to different algorithms too, as long as the two

fundamental steps fulfill the contraction property.

2.1.5 Exploration vs. exploitation

The Contraction mapping theorem entails a theoretical guarantee of successful convergence.

However, if theory is applied in practice, every state’s Q(s, ·) value has to be updated infinitely

many times. Even if we put an upper limit on number of iterations (resulting in a sufficient

approximation), choosing every state is unfeasible in tasks with high-cardinality S . In

such cases we can sample states by following agent’s trajectories, but we need to ensure

the trajectories satisfy two key functions:
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• Exploration: select as many states as possible to evaluate Q on majority of its domain

• Exploitation: select “good” states as often as possible to improve the policy

These two approaches are in opposition to each other and increasing the priority of one

diminishes the function of the other. A careful balance between those, however, will not only

fulfill the contraction property, but can also significantly speed up the learning process.

Simple, yet efficient exploration strategy – ε-greedy policy – uses the idea of random

perturbations of classical greedy policy. With a probability of (1 − ε), greedy action is chosen,

while with ε probability, a random action is chosen:

π(a|s) =

(1 − ε) + ε
|A| if a = arg maxa′∈A (Q(s, a′))

ε
|A| otherwise

(2.9)

If the ε factor is decreasing over time by a specific schedule, the ε-greedy policy satisfies

the contraction condition, due to the GLIE property (Greedy in the Limit with Infinite

Exploration, Singh et al. (2000)). Hence, convergence to optimal policy is still guaranteed.

If the task at hand features continuous action space A, then Gaussian exploration can be

applied to any chosen deterministic policy π:

πGauss(a|s) = N
(
π(s), σ2

)
(2.10)

where σ can be fixed, but is preferable to be decreasing with time to ensure the GLIE property.

2.2 Discrete-space algorithms

We discussed various fundamental concepts of Reinforcement Learning in the previous section,

outlining most of the key aspects and mathematical principles. With those covered, we can

now join these building blocks – each time in different way – to present the basic algorithms

used for RL control.

As mentioned before, RL-control algorithms commonly share the underlying structure

of interchanging value function evaluation and policy improvement. In the earlier stages of

research, more attention was paid to the former – this only changed after the REINFORCE

breakthrough by Williams (1992).

The algorithms mentioned in this section are mostly suitable for discrete state- and action-

space setups, as they traditionally store computed Q(s, a) values in a form of a lookup table.

To manage continuous (or high-cardinality) state spaces, and especially action spaces, more

advanced algorithms have to be incorporated.
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Policy iteration

The algorithm of Policy iteration (Howard, 1964) represents the fundamental basic of the

RL-control task. Without explicitly mentioning it, we already covered all its essential parts in

section 2.1.4. Policy iteration consists of two alternating steps:

1. Evaluate Qπ by iteratively applying Bellman expectation equation in an inner loop, until

convergence for every state-action pair

2. Create a new policy by acting greedily with respect to Qπ

Value function is evaluated for every state in each iteration, hence no explicit exploration is

needed. On the other hand, this approach limits the algorithm for usage only on small-scale

tasks. Furthermore, it is a strictly model-based approach, unfeasible if the P or R are unknown

or too complex.

Value iteration

The Policy iteration was aiming to learn true Qπ of the current policy in every iteration of

the main loop, which led to exhaustive iterative application of Bellman’s equation in an inner

loop. The Value iteration (Bellman, 1957b), on the other hand, resolves this inefficiency.

Instead of finding the true Qπ, Value iteration only brings its approximation Q of Qπ one

step closer to the true value by applying the Bellman’s equation once. Policy improvement is

again achieved by acting greedily w.r.t. new Q.2

Value iteration brought significantly faster convergence rates in comparison to Policy

iterations, nonetheless other disadvantages of the approach remained.

SARSA

Policy- and Value-iteration algorithms are performing value function evaluation for every state

s ∈ S in each iteration, and thus are limited to small-cardinality state-space tasks. SARSA

approach breaks this limitations by using samples of P and R, obtained as agent’s trajectories.

The name hints the basic idea: agent starts in state s, performs action a gaining reward

r, leading to state new state s′ from which it will perform next action a′. The collection of

s, a, r, s′, a′ is used in SARSA update, occurring after each step of the agent, directly following

Bellman expectation equation:

Q(s, a)← Q(s, a) + α
(
r + γQ(s′, a′) − Q(s, a)

)
Q(s, a)← Q(s, a) + αδt where δt is a TD error

(2.11)

2The two steps can be equivalently rewritten into single one, where we iteratively apply Bellman optimality

equation instead, having an implicit greedy policy. Such approach was used in Bellman’s original paper.
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Given the fundamentals analyzed earlier, SARSA approximates Qπ by sampling the P,R

instead of exhaustive sums, and it does so using Temporal Difference learning (i.e. one-step

lookahead). After evaluation (or rather approximation) of Qπ, the policy improvement is

made by applying ε-greedy policy to current Q. Because SARSA no longer performs full

state-space sweeps, an exploratory policy is needed to cover sufficient area of state space,

hence traditional greedy policy cannot be used.

The idea of SARSA was first published by Rummery and Niranjan (1994) under the name

‘Modified Connectionist Q-Learning’ as an extension of Q-learning for function approximators.

However, when applied to a simple lookup table case, it ideologically precedes Watkins’

Q-Learning.

Q-learning

A subtle but important drawback of SARSA lays in its Q-function estimate. Because of

the usage of exploratory – i.e. inherently non-optimal – policy, the Q-function estimate also

determines non-optimal policy. This can only change after long period of learning, when

the ε-schedule brings exploration in limit to zero.

To overcome this downside, Q-learning (Watkins and Hellaby, 1989) leverages a concept

of off-policy learning. The key idea, adopted in later algorithms as well, is to teach a target

policy π while following a different behavior policy µ. Typically, π aims to reach the optimal

policy π∗, while µ can be non-optimal and provides sufficient exploration.

Similarly to SARSA, Q-learning also collects s, a, r, s′, but the update is performed

utilizing Bellman optimality equation:

Q(s, a)← Q(s, a) + α
(
r + γ

(
max
a′∈A

Q(s′, a′)
)
− Q(s, a)

)
(2.12)

The actions here are drawn from an exploratory policy µ, while Q is approximating

the value of Q∗, i.e. value function of the optimal policy. The choice of µ is much more liberal,

as long as it provides satisfactory balance between exploration and exploitation.

Q-learning successfully tackles various problems of previous methods, and with the help

of function approximators3 it can also be used for continuous state-space environments,

achieving astonishing performance (Mnih et al., 2015). However, it cannot be efficiently

used in continuous action-space environments, due to the need of maximization over A,

which turns into a non-convex optimization. This remains to be the main disadvantage of

the algorithm. While there were attempts to overcome this drawback (Gaskett et al., 1999),

eventually a different approach of policy gradient methods was widely adopted, as we present

in the following section.

3discussed in section 2.3.1

15



2.3 Continuous-space algorithms

A large number of practical applications of RL use a continuous state space or action space.

A robot control is typically continuous in both space and action spaces, and game environments

may employ discrete state space with the number of states as high as 10170 (Go board game)

or more. Such environments cannot be effectively captured in the form of lookup tables,

due to memory and computational limitations. We would like to address this problem here,

presenting more advanced approaches, including state-of-the-art algorithms of recent years.

2.3.1 Function approximators

A rather straightforward way to overcome the memory limitations of lookup tables is to use

standardized function approximators in their place. Instead of storing Q value for each state

separately, approximators allow us to generalize from seen states to the unseen ones. Using

this approach, it is possible to scale-up the previous methods to large problems.

All discrete-space methods described previously use a greedy or ε-greedy policy after

evaluating Q. By definition, this requires maximization over all actions to obtain an optimal

action: maxa∈A Q(s, a). Therefore, if we wanted to introduce continuous action space into

these methods, such maximization would turn into a non-convex optimization over A, being

a computationally complex problem on its own. As a consequence, simpler methods – even

with the help of function approximators – can be used in continuous state-space environments,

but not in continuous action-space ones.

Approximator models

Almost any of the modern approximation models can be used, from linear models through

decision trees up to most frequently used neural networks. Though, a few limitations still

hold. Most importantly, the model has to be able to process non-stationary, non-i.i.d. data.4

This condition arises from the exploration–exploitation framework: the shift from exploration

to exploitation phase effectively causes the distribution from which the states are drawn to

change over time (from the perspective of the underlying function approximator). A certain

degree of plasticity is hence needed.

In terms of input/output, approximators are usually implemented to compute the vector

Q(s, ·) given the state s. In such case, dimension of input is equal to dimension of S , while

the dimension of output is |A|. Alternative approach can be chosen, in which the input is

composed of a tuple 〈s, a〉, and the output is simply scalar Q(s, a). This is usually used if

4This condition is not always honored in practical algorithms, but in such cases, careful precautions are taken

to stabilise the training process.
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the actions logically form a sort of proceeding sequence, while the former is preferred if

the actions are unrelated to each other.

Application to algorithms

The general goal of using approximators in basic RL algorithms is to find a parameter

vector ψ of parametrized function Qψ(s, a) that best approximates Qπ(s, a), i.e. it minimizes

the mean-squared cost function:

J(ψ) = Eπ

[(
Qπ(s, a) − Qψ(s, a)

)2
]

(2.13)

We can use traditional stochastic gradient descent to minimize this function, yielding a

parameter-update step as follows:

∆ψ = α
(
Qπ(s, a) − Qψ(s, a)

)
∇ψQψ(s, a) (2.14)

The last gradient term is model-specific, according to the chosen approximator. The term

Qπ(s, a) is unknown and can be sampled in several ways, the choice of which determines

the resulting algorithm. For Monte-Carlo learning we use gain Gt as a sample of Qπ, for TD

learning (i.e. continuous SARSA) we use TD target, and Q-learning uses the maximized

target. The resulting parameter updates for these three methods are, respectively:

∆ψ = α
(
Gt − Qψ(s, a)

)
∇ψQψ(s, a)

∆ψ = α
(
r + γQψ(s′, a′) − Qψ(s, a)

)
∇ψQψ(s, a) = α δt ∇ψQψ(s, a)

∆ψ = α
(
r + γ

(
max
a′∈A

Qψ(s′, a′)
)
− Qψ(s, a)

)
∇ψQψ(s, a)

(2.15)

Convergence

Unfortunately, usage of function approximators instead of lookup tables often causes the

violation of the contraction property of evaluating Q. In some cases, when alternative TD

learning uses linear function approximators, the contraction is still guaranteed, but for all

known non-linear approximators this does not apply. As a consequence, non-linear methods

can theoretically diverge into ψ = ±∞.

DQN and Experience replay

The divergence of non-linear models does not allow the direct naïve usage of e.g. neural net-

works, as the most popular tool in recent years. However, various batch methods successfully

prevent catastrophic divergence.

In their iconic work, Mnih et al. (2015) presented an approach able to surpass human-

level performance in playing classic Atari 2600 games, gaining interest in both research
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community and public. Their model Deep Q-Network (DQN) was based on Q-learning, using

a convolutional neural network Qψ to approximate over Q. In order to stabilise the weights

ψ, which would otherwise diverse to ±∞, the authors implemented two key stabilisation

concepts: experience replay and target network.

Experience replay helps to decorrelate the trajectories, hence presenting the network

with nearly i.i.d. data. To achieve this, authors perform a mini-batch learning on recently

collected data.

In each step, the agent stores the transition (or experience) tuple et = 〈st, rt, at, st+1〉 into

a dataset D. Then, in the parameter-update step, the Qψ network is trained on a minibatch

of transitions drawn from uniform distribution U(D) over D. This allows the network to

train also on slightly older data, and greatly decorrelates the training examples it receives.

The dataset D is set to a fixed capacity, discarding the oldest transitions once it is full.

The experience replay technique established a new standard subsequently used in many

other methods (Andrychowicz et al., 2017; Levy et al., 2018). One of the notable variants is

Priority experience replay (Schaul et al., 2016), in which the transitions are not chosen from

dataset D uniformly, but proportionally to their TD-error. This prioritises the transitions with

greatest potential for learning improvement, and was shown to accelerate training.

Usage of target network further stabilises the learning by decorrelation of network’s

inputs and targets. We can see from equation 2.15 that the targets, towards which Qψ is

optimised, are highly dependent on the Qψ itself. To break this linkage, authors introduce

a second neural network Qψ to act in the target term of the learning rule. Consequently,

the parameter update slightly changes:

∆ψ = α
(
r + γ

(
max
a′∈A

Qψ(s′, a′)
)
− Qψ(s, a)

)
∇ψQψ(s, a) where 〈s, a, r, s′〉 ∼ U(D) (2.16)

The target network Qψ is set to change at a slower rate than policy network Qψ. A common

practice, used also in this paper, is to periodically set the weights of the target network to

the current weights of the main network, e.g. perform ψ ← ψ once every C episodes. This

ensures stability of the targets, while also ensuring that “fresh” targets are provided for the Qψ

network.

2.3.2 Policy gradient methods

Taking one step further, we approach methods suitable for environments which are continuous

in both state- and action-spaces. The key idea is to represent the policy itself as a parametrized

function approximator5 πθ(s, a) and optimize it with respect to suitable objective function.

Several options for such function are possible, the simplest one being the expected gain:

5We use terms πθ(s, a) and πθ(a|s) interchangeably.
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J(θ) = Eπθ[Gt] = Eπθ

[
Qπθ(st, at)

]
. Other options include average-value Jav(θ) = Eπθ

[
Vπθ(s)

]
or average-reward Jar(θ) = Eπθ[rt]. All of these satisfy the conditions and guarantees in this

chapter.

While optimizing this function, we will make use of the log-derivative trick:

∇θπθ(s, a) = πθ(s, a)
1

πθ(s, a)
∇θπθ(s, a)

= πθ(s, a)
(
∇πθ(s,a) log πθ(s, a)

)
∇θπθ(s, a)

= πθ(s, a) ∇θ log πθ(s, a)

(2.17)

In the last step a reverse of chain-rule was applied to combine the two gradient terms. Using

this trick, we can compute the gradient of the objective function:

∇θJ(θ) = ∇θEπθ

[
Qπθ(st, at)

]
= ∇θ

(∫
S
ρπθ(s)

∫
A

(
πθ(s, a) Qπθ(s, a)

)
da ds

)
=

∫
S
ρπθ(s)

∫
A

(
∇θπθ(s, a) Qπθ(s, a)

)
da ds

=

∫
S
ρπθ(s)

∫
A

(
πθ(s, a) ∇θ log πθ(s, a) Qπθ(s, a)

)
da ds

= Eπθ

[
∇θ log πθ(s, a) Qπθ(s, a)

]
(2.18)

The probability distribution ρπθ(s) describes the probability of the agent appearing in

state s, assuming environment transitions P and the policy πθ. The log-derivative trick helps

us obtain an expected value over familiar term, which we can sample. Incorporating this

knowledge into gradient-ascend scheme (for maximizing the objective function), we obtain

the parameter-update step:

∆θ = α ∇θ log πθ(s, a) Qπθ(s, a) (2.19)

Again, we need to substitute Qπθ(s, a) for a suitable sample or estimate, which leads to

different versions of advanced algorithms.

REINFORCE

The breakthrough in the field of continuous RL was brought by Williams in his most notable

work (Williams, 1992). In the paper, he introduced all principles described in the previous

paragraphs, and suggested the first algorithm according to his findings, bearing a simple name

“REINFORCE”. His work set a ground for most of subsequent algorithms, including current

state-of-the-art methods.

The precise form of the REINFORCE algorithm directly followed parameter update

∆θ above. Using the Monte-Carlo evaluation, he substituted actual gain Gt as a sample of

Qπθ(s, a):

∆θ = α ∇θ log πθ(s, a) Gt (2.20)
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Actor–Critic architecture

Analogically to the variety of discrete-space RL algorithms, we can obtain different policy-

gradient methods by substituting Qπθ(s, a) with different terms, such as gain, TD target, etc.

An interesting approach is to combine a policy-gradient method with function-approximated

evaluation, which leads to the so-called Actor–Critic architecture. The actor is a function

approximator πθ representing the policy itself, while the critic is another approximator Qψ

responsible for evaluation of the states. Firstly proposed by Konda and Tsitsiklis (2000),

the A–C architecture was proven to have significantly lower variance of Qπθ(s, a) estimate,

and hence higher convergence rates.

As the name suggests, Actor–Critic architecture represents a class of algorithms. The first

degree of freedom is in the choice of actor and critic approximator models. Another choice

concerns the time frame of both actor and critic, as they can use either Monte-Carlo, TD or

TD-λ approaches to estimate the gain.

A subsequent research (Sutton et al., 2000) showed that subtracting a state-dependent

baseline function from Qπθ can significantly reduce variance, without introducing any bias.

The state-value function Vπθ comes as the best candidate for the baseline. Furthermore, as we

construct the advantage function as Aπθ(s, a) = Qπθ(s, a) − Vπθ(s), we can show that the TD

error δt serves as unbiased sample of Aπθ(s, a):

Aπθ(st, at) = Qπθ(st, at) − Vπθ(st)

≈ rt + Vπθ(st+1) − Vπθ(st)

= δt

(2.21)

This approach further simplifies the update step to:

∆θ = α ∇θ log πθ(s, a) δt (2.22)

CACLA

The Continuous Actor–Critic Learning Automaton – CACLA (Hasselt, 2012) can be inter-

preted as a variation of previous Actor–Critic architecture with advantage learning. It aims to

resolve one of the traditional drawbacks of gradient-ascend based methods – diminishing pa-

rameter update in case of near-zero gradient values, i.e. on plateaus of value function. The key

difference is that instead of using actual value of δt, CACLA only updates the parameters if

δt > 0, regardless of its absolute value. As summarized by the authors: “... CACLA only up-

dates its actor when actual improvements have been observed, this avoids slow learning when

there are plateaus in the value space and the temporal difference errors are small” (Hasselt,

2012). However, in order for their design to work, the actor choice is narrowed down only to

Gaussian exploration policy.
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Deep Deterministic Policy Gradient

Similarly to DQN in discrete action-space environments, the Deep Deterministic Policy

Gradient (DDPG) by Lillicrap et al. (2016) also showed the great capabilities of training

stabilisation, this time in continuous action-space environments. In fact, the authors of DDPG

directly followed the recipe for success of DQN.

The core of DDPG consists of Actor–Critic architecture with neural networks both for

the actor – πθ and critic – Qψ. Similarly to DQN, the experience replay D is used to decorrelate

the training inputs for both actor and critic, and to present near-i.i.d. data to both networks.

The critic-target network Qψ remained, but since the actor is now also parametrised, a second

actor-target network πθ was introduced. As summarised by the authors, having two target

networks was necessary to have stable targets in order to consistently train the critic without

divergence. Alternating on equation 2.16, DDPG involves πθ into critic’s learning rule:

∆ψ = α
(
r + γ

(
Qψ(s′, πθ(s′))

)
− Qψ(s, a)

)
∇ψQψ(s, a) where 〈s, a, r, s′〉 ∼ U(D) (2.23)

For the actor update, the original (not target) networks are used:

∆θ = α ∇θ log πθ(s) Qψ(s, a) (2.24)

To further stabilise the process, authors update the target networks more smoothly than in

DQN, using a Polyak-averaged (Polyak and Juditsky, 1992) version of the main networks:

ψ← τψ + (1 − τ) ψ

θ ← τθ + (1 − τ) θ
(2.25)

A batch normalization on the inputs and hidden layers’ outputs is also applied as in Ioffe

and Szegedy (2015).

Trust Region Policy Optimization

A novel and superiorly effective approach of Trust Region Policy Optimization (TRPO) was

proposed by Schulman et al. (2015). Based on previous work on Conservative Policy Iteration

(Kakade and Langford, 2002), they developed a practical algorithm that provides explicit

lower bounds on the improvement of expected discounted reward (i.e. gain).

The monotonic improvement guarantee is achieved by indirect optimization of policy, in

which authors maximise quantity Lπ(π̃) instead of true gain Eπ[Gt]. First, they express a gain

of a different policy π̃ using gain and advantage function of an existing policy π:

Eπ̃[Gt] = Eπ[Gt] + Eπ̃

∑
t

γtAπ(st, at)


= Eπ[Gt] +

∑
s

ρπ̃(s)
∑

a

π̃(s, a) Aπ(s, a)
(2.26)
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This equation implies that any policy update π → π̃ that improves expected advantage

at every state s, i.e.
∑

a π̃(s, a) Aπ(s, a) ≥ 0, is guaranteed to improve the performance of

the policy.6 However, since the gain Eπ̃[Gt] is difficult to optimise directly, the authors use

a surrogate quantity:

Lπ(π̃) = Eπ[Gt] +
∑

s

ρπ(s)
∑

a

π̃(s, a) Aπ(s, a) (2.27)

drawing state frequencies from current ρπ(s) instead of ρπ̃(s), which they show is a local

approximation of Eπ̃[Gt] and matches it to the first order.

The monotonous nature of improvement in their step is theoretically achievable, but

practically it does not work for larger steps due to estimation and approximation errors. To

make the improvement steps larger, yet still robust, they introduce a constraint parameter δ on

the KL divergence between the new policy and the old policy, i.e. a trust region constraint:

Dmax
KL (π, π̃) ≤ δ

where Dmax
KL (π, π̃) = max

s
DKL (π(s, ·) || π̃(s, ·))

(2.28)

Maximizing the surrogate Lπ(π̃) subjected to this constraint yields a powerful algorithm,

which offers exceptional performance in a wide variety of tasks. Due to the success of TRPO,

it is widely used in other recent works, for instance 3D object grasping task (Kovács, 2017)

or locomotion skills acquisition (Florensa et al., 2017). An alternative version called PPO –

Proximal Policy Optimization (Schulman et al., 2017) – was used to train emergence robust

locomotion policies in difficult environments (Heess et al., 2017).

6This also illustrates a single step of the contraction mapping in the classic Policy iteration algorithm.
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Chapter 3

Hierarchical Reinforcement Learning

Over the period of its research, Reinforcement Learning successfully went through several

major milestones. The most important ones included the scaling from discrete to continuous

state spaces with the use of function approximators, and from discrete to continuous action

spaces with the Williams’ REINFORCE breakthrough. Scaling up the framework further,

we face new challenges that might be achieved in upcoming years, namely high increase in

dimensions and efficient sparse-reward handling.

3.1 Motivation for hierarchization

The idea of Hierarchical Reinforcement Learning (HRL) offers a possibility to resolve these

open questions. Though coming in different forms, all HRL methods aim to decompose

the whole task into hierarchy of easier ones, e.g. first learn how to accelerate, steer, and

break the car, then learn how to navigate through the city, using the skills acquired earlier.

Hierarchization is mainly driven by three principles that need to be addressed in order to scale

RL further up.

Curse of Dimensionality

The most notable and difficult-to-overcome problem has acquired a name “Curse of Dimen-

sionality”, coined by Bellman (1957a). A large number of approaches – including non-RL

ones – tried to break this curse1 with questionable results.

The key idea of this long-intractable problem is that as number of dimensions grow,

the volume of underlying space grows exponentially, making it harder and harder to search

through. The problem was occurring in earlier applications with discrete spaces too, but it

became much more eminent with the rise of continuous methods. For instance, in robotics
1Some authors got a bit carried away by talking of “exorcising the demon of dimensionality” (Moerman,

2009; Dayan and Hinton, 1993) or other notations.
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we often work with up to 20 or more degrees of freedom, yielding 20-dimensional action

space, accompanied by enormous state space based on the robot’s sensors, which can go

to hundreds or thousands in case of visual input. Evaluating all states quickly becomes

impossible, and sampling must be ensured in a careful way, as RL requires that data must be

collected throughout the whole space.

In robotics or other fields, the task is often rendered tractable by introduction of a hierarchy

to the tasks: the lower layer of hierarchy takes care of the primitives, such as locomotion

tasks, grasping, etc.; while higher levels combine those to perform high-level tasks. However,

if the hierarchy decomposition is designed by the engineer incorrectly, the dynamic learning

capabilities of the system may be significantly restrained. Certain level of autonomy in

learning hence must be assured.

Reward sparsity

One of the key principles hardwired into MDP and RL is that the reward rt is not strictly

associated with current action at, but rather with an indefinitely long sequence of past actions.

The agent must be able to recognize this, reinforcing both current and past actions accordingly.

In an extreme, yet not infrequent case, the reward is only given at the end of an episode when

the agent completes (or definitively fails) the task. Such cases can include playing a board

game, in which the agent keeps getting zero rewards throughout the game, and only gets ±1

reward after winning/loosing the match.

Potential solution, used in numerous flat-RL approaches, is called reward shaping. This

term denotes creating a rather complicated reward function, often composed of several

weighted components and if-else statements. Individual components of shaped reward signal

encourage certain aspects of the behavior that the engineer thinks are important, or, on

the other hand, discourages the agent from unwanted actions. As an example, Popov et al.

(2017) used a reward function composed of five relatively complicated terms which needed to

be carefully weighted in order to train a policy for stacking a brick on top of another one.

On the other hand, Heess et al. (2017) showed that a sparse reward can produce much more

stable and robust policies, as the agent is focused solely on the main task, not on artificial

constrains we placed. Unexpected novel behaviors can also emerge in such conditions.

Furthermore, this approach is highly domain-agnostic – creating a straightforward sparse

reward is often trivial, while the reward engineering requires both RL expertise and substantial

domain-specific knowledge.

Despite the advantages in robustness and simplicity, the reward sparsity comes with

an additional challenge. Successful exploration is particularly difficult in sparse-reward

environments. At the early stages of the learning process the agent observes no rewards,

hence no learning – parameter update – is actually performed. The training can only start
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(a) (b)

Figure 3.1: Initial exploration in flat RL and HRL. The agent is spawned in the middle and

receives zero reward at each time-step. (a) Normal RL: exploration by atomic actions covers

minimal area around the starting point. (b) HRL: exploration using pre-trained skills spans

over significantly larger space (Florensa et al., 2017).

after the untrained policy explores some rewarded state, in pretty much haphazard manner.

The probability of discovering the first rewarded state decreases exponentially with the number

of steps required to get there, and so an effort should be aimed to reduce this horizon.

When the task is decomposed into a hierarchical structure, the lower-level controllers

become responsible for primitive tasks, each of which is several atomic actions long. The main

controller subsequently uses these skills/subtasks/options instead of the atomic actions. As

a consequence, the planning horizon for discovering the first rewarded state is decreased

significantly. This helps to substantially extend the explored area, as shown in figure 3.1.

Reuse of knowledge

Last but not least, hierarchical architecture in RL offers an enhanced knowledge-reuse ca-

pabilities. As many regions of state space resemble each other, it is effective to reflect such

similarity in the policy itself. In the simplest flat-RL scenario, the agent has to learn each

resembling region from the scratch, suffering a great loss in efficiency. On the next level,

general function approximators such as neural networks offer certain degree of knowledge

reusability. However, it is rather emergent, and as such it is not possible to control and difficult

to explicitly exploit.

Certain HRL architectures form a next step of this ladder – using their hierarchical

structure, the knowledge reuse is designed and better targeted. Specific low-level controller

learned to perform certain task, e.g. walking of a humanoid robot, can work in different

regions of space state, since all it needs is a plane to walk on. This can be directly exploited

by the high-level controller which needs to navigate the robot through a maze.
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3.2 Common features in research

Hierarchical branch of RL is still a fairly new, open field of study with a few fixed standards

or baselines. Some features, however, reoccur in numerous research papers concerning HRL,

either strictly specified or implicitly assumed, as previously summarized also by Barto and

Mahadevan (2003), and Dillinger (2019).

Most importantly, all HRL approaches decompose the problem into fixed or adaptive

hierarchy of tasks, such that higher-level tasks can invoke the lower-level ones, just as if

those were their primitive actions, as depicted in figure 3.2b. The high-level task represents

the original problem at hand and is solved by RL agent, typically denoted by πH, while

the lower-level controllers may be fixed, pre-trained, or solved by separate RL themselves,

and they are denoted by πL
1 , . . . , π

L
n . Hereinafter, we will refer to the main problem, solved by

high-level controller, as a core problem or core MDP, while the tasks solved on lower levels

will be called skills or sub-MDPs. Throughout the research field, other names have been given

to skills, such as macros, meta-actions, options, behaviors, temporally extended actions, etc.

From the vantage point of a high-level controller, the skills either augment the action space of

the original atomic actions a ∈ A of the core MDP, or replace it completely. The high-level

controller πH can then at any time t choose a certain skill πL
i as its action: aH

t = πL
i .

It is important to note that as the high-level controller may no longer have access to

perform atomic actions, it might not be able to converge into an optimal solution of the core

(a) (b)

Figure 3.2: Comparison of (a) traditional flat-RL architecture, and (b) typical two-layered

hierarchical RL architecture.
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MDP. If skills aH ∈ AH are fixed and they substitute atomic-action space A, then it is only

possible to find an optimal policy for the high-level MDP 〈S , AH, P, p0,R, γ〉, which is similar,

yet not identical to the original core-MDP. As an example, we can task a walking robot to

navigate through the maze and provide it with two skills: walk forward and turn left, but no

‘turn right’ skill. The high-level controller can still learn a strategy to solve the maze with

given skills, however it will be clearly suboptimal for cases where the robot should have

turned right. This principle of optimality under given hierarchy must be accounted for when

designing HRL architectures (Sutton et al., 1999).

As a reaction, some approaches involve a certain level of autonomy for choosing the skills.

The decision of what behavior is the correct one for a skill is rather difficult one, and techniques

used in resolving it are loosely connected with the field of intrinsic motivation (IM). In flat RL,

intrinsic motivation is usually represented as an internal reward (in addition to the external

reward from the environment), aimed to boost exploration and/or competence for a certain

subtask. HRL approaches capable of autonomously identifying skills often employ similar

techniques – especially specifying a task-agnostic internal reward for training the skills is

widely used. In contrast with popular techniques in flat-RL, HRL skill acquisition usually

falls into class of competence-based IM, as described in Baldassarre (2019).

Due to the usage of skills that are embedded into core-MDP’s action space, or even replace

it altogether, different actions can now take different time to complete. Traditional MDP

does not account for such a scenario. Therefore Semi-MDP framework became a base for

hierarchized RL architectures. Even though SMDP theory allows actions to last arbitrarily

long time τ ∈ R+, truly continuous time is rarely used, and rather a simplified version is

used with integer durations τ ∈ N (Sutton et al., 1999; Dietterich, 2000). As an important

contribution to the field, Sutton et al. (1999) also showed that both Bellman expectation

equation and Bellman optimality equation still hold true in such SMDPs, as the durations

τ can be marginalized out of the sums, surrogated only by the transitional probabilities

p(s′, τ|s, a). This proof allows traditional RL techniques to be used on the core MDP, once

the skills are fixed.

3.3 Research survey

3.3.1 Hierarchies of Abstract Machines

First attempts of reducing the MDP into more compact SMDP came in the idea of Hierarchies

of Abstract Machines (HAMs) by Parr and Russell (1998). In their work, policies considered

by the learning process were constrained by hierarchies of partially specified machines. Each

machine is a stochastic finite state automaton that represents an abstraction over specific sub-
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space of the underlying MDP. Instead of solving the original MDP, a new HAM-induced MDP

was constructed with its action space consisting only of abstract machines, thus significantly

decreasing the size of the problem.

Each machine has to be specified by the designer upfront. Formally, an abstract machine

is a triple 〈µ,I, δ〉, where µ is a finite set of machine states, I is a stochastic function from

MDP states to machine states that determines the initial machine state, and δ is a stochastic

function for choosing next machine states.2 Each machine’s state can be of one of four types:

Action states execute an action in the environment; Call states execute another machine as

a subroutine; Stop states halt the execution of the subroutine; and Choice states nondeter-

ministically select a next machine state. Seen from the perspective of HRL, each machine

represents a stochastic policy (skill) with extra possibilities of calling another policy or halting

its execution. As these policies can take various times to complete, the final HAM-induced

MDP satisfies the definition of SMDP, and can be solved by traditional algorithms.

The most significant drawback of Parr & Russel’s work is the reliance on the predefined

design of the machines. The HAM approach is predicated on engineers and control theorists

being able to design good controllers that will realize specific lower-level behaviors. Should

they fail to do so, the optimal solution of HAM-induced MDP will hit the principle of

optimality under given hierarchy, hence learning a highly non-optimal final policy.

3.3.2 Options

First introduced by Sutton et al. (1999), the Options framework soon set a widely used trend

in the HRL field for the following years. In their paper, authors extended the usual notion of

action to include options – closed-loop policies for taking action over a period of time.

Options consist of three components: a non-deterministic policy π : S × A → [0, 1],

a termination condition β : S → [0, 1], and an initiation set I ⊆ S . An option 〈I, π, β〉 is

available in state st if and only if st ∈ I. If the option is taken, then actions are selected

according to π until the option terminates stochastically according to β. Certain analogy can

be found between options and HAMs, with policy π corresponding to the transition function

δ, I remaining a description of initial state, and β corresponding to stop-states of HAM. On

the other hand, the significant and highly important difference between these two approaches

is that while HAMs replaced the action space, options augment it. Options are presented as

a generalization of actions, hence all original atomic actions are just a special case of one-step

option, which always terminates after the first step (β(·) = 1). This union of traditional MDP

actions and temporally extended SMDP options gave the name to the article “Between MDPs

and SMDPs [...]”, and is depicted in figure 3.3.

2Definition from Hengst (2010), as Parr & Russel did not state a formal definition in their paper.
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Figure 3.3: The state trajectory of an MDP is made up of small, discrete-time transitions,

whereas that of an SMDP comprises larger, continuous-time transitions. Options enable

an MDP trajectory to be analyzed in either way (Sutton et al., 1999).

Despite their similarities, HAMs and options put different emphasis on the approach.

Options were intended to augment atomic actions, as the temporally extended actions executed

by the actions yield an SMDP. As for HAMs, if the collection of machines replace atomic

actions, the SMDP can be significantly reduced. There is a debate about the benefits when

primitive actions are retained. Reinforcement learning may be accelerated because the value

function can be backed up over greater distances in the state space and the inclusion of atomic

actions guarantees convergence to globally optimal policy. On the other hand, the introduction

of additional actions (options) increases the storage and exploration necessities (Hengst,

2010).

3.3.3 MAXQ value function decomposition

Even though Sutton et al. brought significant contribution to the HRL field, both in their

theoretical foundations and practical algorithms, fully adaptable learning of core MDP and

skills at the same time was still not possible. Dietterich (2000) resolved this issue by

learning all involved skills simultaneously with his thorough work on MAXQ value function

decomposition, or MAXQ for short.

In his work, Dietterich (2000) introduced yet another variation of skills, slightly different

from HAMs or options, called a subtask.3 Similar to options, subtasks are perceived as

a generalization of atomic actions, thus atomic actions are just a special case of subtasks.

Each subtask consists of three components: a deterministic policy π that can select actions

according to the hierarchy described below, set of termination states T ⊆ S , and pseudo-

reward function used for learning the subtask. The tasks are arranged in a predefined hierarchy,

forming a directed acyclic graph where the root task represents the core MDP, and each task

(policy) can only invoke its children. Example of such a hierarchy adopted from the original

3Despite their many similarities, we will refer to HAMs, options, and subtasks by their names proposed by

original authors, to emphasize the subtle but important differences between them.
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Figure 3.4: Example of task graph for MAXQ, depicting the taxi problem (Dietterich, 2000).

paper is shown in figure 3.4. The hierarchy describes a taxi problem, in which the agent has to

first navigate to a passenger, pick him up, then navigate to destination and drop the passenger.

Only the leaves of this graph represent atomic actions.

The decomposition of subtasks implies a decomposition of the core SMDP M into

sub-SMDPs {M1, . . . ,Mn}. For each Mi we train a separate policy πi which can only

choose its children as actions – an action space Ai ofMi consists of its child policies, i.e.

Ai = {π j|M j is a child ofMi}. This means that when policy πi produces its action in given

state πi(s) = a, the action itself represents another policy: a = π j. We can then ask child

policy for action in given state π j(s) and so on, until we get to atomic actions returned by

an atomic subtask.

The hierarchy described so far could be easily modeled in previous frameworks, however

this precise definition allowed Dietterich to formulate his value function decomposition.

The hierarchical value function Vπ(i, s) denotes a value of a state s under the assumption that

policy πi is executed until it terminates (i.e. not the whole horizon of core MDPM, only that

ofMi). The quantity Ri(s, a) represents the expected immediate return of action/subtask a

executed from state s within SMDPMi. The key observation is that Ri(s, a) = Vπ(a, s), as

the right-hand side corresponds to a lower-level SMDP. Expanding on this equation in combi-

nation with traditional Bellman equation, we get Dietterich’s value function decomposition

for hierarchical SMDPs:

Vπ(i, s) = Vπ(πi(s), s) +
∑
s′,τ

P
(
s′, τ|s, πi(s)

)
γτ Vπ(i, s′)

Qπ(i, s, a) = Vπ(a, s) +
∑
s′,τ

P
(
s′, τ|s, πi(s)

)
γτ Qπ

(
i, s′, πi(s′)

) (3.1)

This decomposition offers a recursive way to compute the value function of all sub-SMDPs,

as higher-level value function on the left side is expressed by lower-level value functions

on the right side. This allows for learning all value functions simultaneously, upon which

a practical algorithm was presented.4

4The details of the algorithm are rather complex and beyond the scope of this review, for comprehensive

description refer to Dietterich (2000).
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Using MAXQ we can resolve one of the key drawbacks of previous methods – instead of

manually specifying all skills’ policies, the agent is now able to learn all of them in one process.

However, the hierarchy is still to be specified upfront, which may again lead to suboptimal

solutions due to the principle of optimality under given hierarchy. Further problematic (or at

least disputable) aspects stemmed from the analogy with Sutton’s options: subtasks extend

the action space, hence practically expanding the SMDP instead of compacting it.

3.3.4 Methods for automated subgoal discovery

In Sutton et al. (1999) the authors also briefly introduced the notion of a subgoal: “It is natural

to think of options as achieving subgoals of some kind, and to adapt each option’s policy to

better achieve its subgoal.” However, they assumed the subgoals are given and did not address

the larger question of the source of the subgoals.

As adapted by later works, a subgoal is usually understood as a state, or group of states,

with higher importance to the core MDP, and individual skills should be trained to achieve

these subgoals. Setting subgoals is also tightly coupled with specifying the hierarchy. In

the approaches mentioned earlier, the hierarchy and subgoals had to be specified a priori,

which could lead to significant suboptimality if the engineer’s design was incorrect. In

the following sections we examine variety of methods to identify the subgoals dynamically.

For all of these, some common features can be observed. First, almost all relevant work

focused on discrete state-space environments with presented methods that are hardly scalable

to continuous spaces. Second, none of the methods can sufficiently find optimal or near-

optimal subgoals or hierarchical decomposition – they all work rather heuristically, each

emphasizing a different aspect of the problem. This is not surprising, as finding the optimal

subgoals is fundamentally difficult, but it has to be borne in mind that each heuristic does have

its weak spot. Many of the approaches employ the gridworld environment with room-to-room

task to demonstrate the results – it is easy to visualize and it stimulates the idea of skills

having to learn how to exit a room. A sample multi-room environment is shown in figure 3.5.

Figure 3.5: A sample four room gridworld environment, agent’s location is represented by

the black oval (Hengst, 2010).
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An important note is also in place that not all useful skills can be characterised by subgoals.

For example, in an environment with a robot collecting resources within a room, the best skill

is the one correctly operating its locomotion. We can observe a subtle distinction between

subgoal-based and behavioral skills. The former ones are focused solely on reaching a given

subgoal state, terminating when they achieve to do so. Reaching a room or otherwise specified

position is the most common example. The latter ones, on the other hand, perform a useful

behavior which can be applied in any situation, and can be executed for indefinite amount of

time. Such skills usually represent locomotion or sensorimotor tasks.

Region density

McGovern and Barto (2001) introduced an idea that frequently visited states might serve as

useful subgoals, as shown in figure 3.6. The agent will probably repeatedly visit these states

in the future, and may save time by having local policies for reaching them. As illustrated on

a room-to-room navigation task, they map the visitation frequency of states during the agent’s

exploration to recognize regions: “If the agent uses some form of randomness to select

exploratory primitive actions, it is likely to remain within the more strongly connected regions

of the state space (e.g. room). An option for achieving a bottleneck region, on the other hand,

will tend to connect separate strongly connected areas. [. . . ] A doorway links two strongly

connected regions. By adding an option to reach a doorway subgoal, the rooms become more

closely connected. This allows the agent to explore its environment more uniformly.” Their

work laid a base ground for many successor papers, as discussed later.

Instead of using a simple frequency of visits, the authors suggest using an approach based

on multiple-instance learning. Considering each trajectory as a bag of states (or observations),

they split these trajectories into positive ones connecting two regions, and negative ones

staying within a single region. By using the concept of diverse density, we can identify

the states – bottlenecks – that occur in positive trajectories and do not in negative ones, hence

find a suitable subgoal.

Figure 3.6: An example of visitation frequencies in gridworld. An agent starts on the green

tile and aims for the red one, the shades of gray express the visitation frequency of each tile.

The doorway tiles showing the highest frequency present a natural selection for a goal.
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Q-Cut

Another approach was introduced by Menache et al. (2002). The authors build directly on

the previous work of McGovern and Barto (2001), but they treat the whole problem from

the perspective of the graph theory. They treat the whole state space as a graph, in which

vertices correspond to states and edges to transitions between them. Edges are weighted

according to how many times the agent performed such a transition, resulting in a weighted

graph. Such a graph is subsequently fed into standard Max-cut/Min-flow algorithm, which

identifies the area of minimal flow, i.e. the bottleneck. Similarly to McGovern and Barto

(2001), this bottleneck is then used as a goal for new skills.

Behavioral patterns

In their following work, McGovern and Barto (2002) improved their own work of subgoal

discovery via region density. The idea stemmed from expanding their framework but rec-

ognizes the skills directly, instead of using a two-step process of first discovering a subgoal

and then learning a new skill to achieve it. As the agent explores a particular problem, it

keeps a record of states or subsequences that occur relatively frequently in trajectories that

culminate in reward. By searching for frequent patterns within successful trajectories, this

approach can isolate and directly create a new skill.

Predecessor count

Altering the previous framework, Goel and Huber (2003) proposed an approach based on

the number of predecessors of a given state. They define a subgoal state as one satisfying

the property: “the state-space trajectories originating from a significantly larger than expected

number of states lead to the subgoal state, while its successor state does not have this property”.

Thus they introduce a measure Cn(s) representing a number of distinct states occurring exactly

n steps before entering state s, and the overall number of predecessors of a state:

C(s) =
∑
i=1

Ci(s) (3.2)

Targeting the change of C rather then its absolute values, they express the slope of C over

time as ∆t = C(st) −C(st−1). Afterwards they follow their definition of subgoal state – a state

st is marked as a subgoal if its ∆t is significantly grater than ∆t−1. The vague “significance” is

explicitly expressed as a fixed threshold for the ratio ∆t/∆t−1.

IFIGE skill discovery

An approach by Metzen and Kirchner (2013) also employs the graph-oriented approach to

the problem, similar to Menache et al. (2002). The most notable difference in their Incremental
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Force-based Iterative Graph Estimation (IFIGE) is the adaptation to continuous state-space

environments.

The implicit one-to-one relation between states and nodes in the graph used in previous

works does not stand in the case of continuous state-spaces. Hence, the authors designed

an algorithm for construction and adaptation of a graph that would adequately represent a vast

state space and the transitions between its regions. Building on their previous work (Metzen,

2013a), they use an iterative method for adding vertices to the graph, each of which represents

a closely connected subspace of states. These vertices are moved according to the “forces”

that ensure both the sample representation and graph consistency.

When such a graph is built, new skills can be identified. Instead of max-cut algorithm,

the authors employ OGAHC – Online Graph-based Agglomerative Hierarchical Clustering

(Metzen, 2013b) to create a partition of the graph into separate clusters. For each pair of

clusters, a skill is trained to transition from one to another.

Similarly to previous works, IFIGE-based learning employs a developmental stage to train

and fix all the skills prior to training the main task. It is also important to note that even though

this approach can cope with continuous state-space environments, its graph-constructing part

is not applicable to continuous action spaces.

3.3.5 Skill chaining

As most of the previous work was focusing solely on the discrete-state domains, the Skill

chaining algorithm by Konidaris and Barto (2009) set the goal to overcome this drawback.

Although they built on Sutton’s options like others, certain modifications had to be made

to make continuous options feasible. Most notably, the target regions Ti were introduced

to replace single-state targets, as reaching the same state twice is virtually impossible in

continuous domain. Although skill chaining works with the concept of a subgoal and its

automatic identification, the subgoals themselves are treated in rather different, much less

flexible way.

The core of their work is based on the idea that useful subgoals are those likely to lie on

a solution path of the task the agent is facing. Therefore, their aim was to produce a sequential

chain of skills, whose subsequent execution will lead agent to overall goal.

The cornerstone of skill chaining is teaching a skill that reaches target region T , when

the agent is relatively close to it. Given the region Ti, they initialize the agent in the proximity

of this region and learn policy πi to reach the desired region. The initiation points gathered

during the learning are labeled as positive – from where agent succeeded to reach Ti, and

negative – from where it did not. A standard continuous-space classifier is then trained to

recognize the positive initiation points, resulting in approximation of initiation set Îi. As

a result, a skill αi = 〈Îi, πi,Ti〉 was created given only Ti as an input.
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(a) (b)

· · ·

(c)

Figure 3.7: An agent creates skills using skill chaining to reach the goal (light bulb). (a) First,

the agent encounters a target event and creates an option to reach it. (b) Entering the initiation

set of this first option triggers the creation of a second option whose target is the initiation set

of the first option. (c) Finally, after many trajectories the agent has created a chain of options

to reach the original target (Konidaris and Barto, 2009).

The creation of skills proceeds in a backwards-step fashion: first learn a skill α0 to reach

the overall goal, then learn a new skill α1 to reach α0, etc., as shown in figure 3.7. Expressed

formally: first, set the target region of a first skill equal to overall target, i.e. T0 = T , and learn

skill α0 = 〈Î0, π0,T0〉. Then, for each next skill, set Ti = Îi−1 and learn i-th skill αi = 〈Îi, πi,Ti〉.

This procedure generates a chain of skills [α0, . . . , αn] which, when executed in reversed order,

can successfully reach the main goal.

Even though the skills are clearly organized in a well-defined linear structure, they are

subsequently fed as action set into the main controller learned by traditional RL. Thus, they

may not be executed sequentially, for example if the agent learns a better policy for some

parts of the chain. The authors also propose a slightly generalized version of this approach,

where a tree of skills is built instead of a simple linear sequence.

The skill chaining is an interesting concept for HRL decomposition in continuous spaces,

however several shortcomings had to be admitted in the process. Most importantly, the algo-

rithm is well suitable for near-linearly organized tasks, but should fail to achieve reasonable

results if the environment features a high branching factor, or if it is not bounded at all.

The exploration effectively works backwards – from the target to the start – but it is not guided

by the true reward signal. That means that the only “guide” for the learning process has to be

the environment, organized in a friendly way with respect to this algorithm. Alternatively,

one can use the skill-tree version to allow for some degree of branching, although authors

place rather superficial heuristic conditions on the branching process. To sufficiently cover

an unbounded state space, the branching factor would however need to be fairly high – that

would lead to an exponential growth in the number of skills, effectively mitigating the benefit

of reduced SMDP.
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Figure 3.8: The hierarchical structure of HASSLE and HABS: the large gray circles are

the high-level states, the thick black arrows represent the high-level actions. (a) HASSLE:

each subpolicy specializes in one or more of the unique transitions between high-level states

(expressed as •→•). C-values are represented by the thickness of gray lines connecting

subpolicies to unique transitions. (b) HABS: the actions on the high level are classified to

a small set of characteristic behaviors. The classes are each associated with a particular

subpolicy (Moerman, 2009).

3.3.6 HASSLE & HABS

In contrast to previous work, Bakker and Schmidhuber (2004) took a different perspective

to handle continuous5 autonomous HRL. Their main idea comes in the skill subpolicies that

are initially uncommitted to any particular behavior, and they specialize their capabilities

on-the-go. This gave the name to their Hierarchical Assignment of Subgoals to Subpolicies

LEarning algorithm (HASSLE).

The HASSLE architecture is composed of two layers: high-level policy πH and a fixed

number of low-level policies πL
1 , . . . , π

L
n . The low-level state space S L corresponds to core-

MDP state space S , while the higher level uses an a priori constructed decomposition of S

into abstract states sH. The high-level state space S H is therefore different, and much smaller

than S , achieving compaction of the core MDP. The concept of action spaces is however

the most innovative part of HASSLE: on the lower level, actions AL again correspond to

core-MDP actions A. Though, on the higher level an interesting concept is introduced, as

actions AH are identical to the states S H.

At any time-step tH of its time scale, the high-level policy πH receives an observation of

the current state sH
start as its input, and its action is the selection of another high-level state

5Their original paper works with discrete state space, however it is directly scalable to continuous ones

thanks to the use of function approximators.
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sH
goal as the current subgoal. Essentially, it selects the high-level state that it wants to see next.

After πH has selected the next state, aiming for transition 〈sH
start, s

H
goal〉, a low-level policy πL

i

is selected to execute this transition – the process of subpolicy selection is described below.

The job of a low-level policy is to reach the subgoal given to it: its input at each time-step tL

is the actual state stL augmented with a tuple 〈sH
start, s

H
goal〉, and its actions correspond to actual

actions a of core-MDP. The HASSLE architecture is shown in figure 3.8a.

The process of subpolicy selection is tightly coupled with the subpolicy specialization

and assignment to subgoals. Each low-level policy πL
i stores a table of the so-called C-values

of 〈sH
start, s

H
goal〉 pairs, each of which represents the “capability” of πL

i to execute transition

from sH
start to sH

goal. High value of Ci(sH
start, s

H
goal) denotes that policy πL

i is highly specialized in

execution of this transition. When high-level policy πH chooses a new subgoal to be reached,

the low-level execution policy is selected probabilistically according to their Ci values. This

ensures that more specialized policies are selected more often (exploitation), while others are

still allowed to “try” (exploration).

A rigid learning schema was developed to successfully train πH, all of πL
i , and values of Ci.

The high-level policy uses nearly standard advantage learning (generalization of Q-learning),

with an added rule to punish directly inexecutable transitions, e.g. when the agent chooses to

go directly to the room on the other side of the building. Low-level policies also use advantage

learning, with reward signal proportional to whether they reached the desired subgoal or

not. Capability values are simply collected over time, considering also the time πL
i needed to

reach the subgoal. More details can be found in Bakker and Schmidhuber (2004), as they are

beyond the scope of this report.

HASSLE introduced an effective way for simultaneous learning of all involved policies

within continuous spaces. However, just like other approaches before, it did not address

the issue of finding a goal – in their work, the authors use a simple vector quantization method

to divide the whole state space S into subregions representing sH states. Furthermore, as

presented by Moerman (2009), this subdivision may lead to “action explosion” of a high-level

policy. Given S H, there are
∣∣∣S H

∣∣∣2 unique transitions, all of which have to be credited by Ci

values for all subpolicies, as depicted in figure 3.9.

Figure 3.9: Action explosion in HASSLE: the problem size increases, and therefore the

number of higher-level transitions (Moerman, 2009).
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HABS

As a precaution before HASSLE action explosion, Moerman (2009) proposed an alternative

version called Hierarchical Assignment of Behaviors by Self-organizing (HABS). His aim was

to develop skills that are defined relative to the abstract state space, analogous to the primitive

actions in lower state space. As summarized by the author: “A classification algorithm is

used to map the transitions between high level states to characteristic skills. These skills are

then added directly to the high-level policy as high-level actions. By this ‘short circuiting’ of

the HASSLE algorithm, both the capacities and the use of states (subgoals) as actions can be

avoided. The Q-values of the high-level policy now directly determine which subpolicy is

suited for which transition, because the Q-values give the value for a high level action (skill)

in a high level state.”

HABS algorithm reverses the chain that links transitions between subgoals and subpolicies.

In HASSLE, this linkage was determined by the transitions: each policy was specialized to

one or more transitions. Moreover, several subpolicies were allowed to specialize in the same

transition, resulting in the many-to-many relationship. Conversely, HABS does not use

the unique transitions themselves, but rather the direction they represent in the high-level state

space. The transitions are then classified into several groups of similarly-heading transitions,

while each of these groups corresponds to a specific subpolicy, as shown in figure 3.8b.

This way, the linkage is logically determined by the subpolicies, and a simpler many-to-one

relationship is achieved as well.

3.3.7 Stochastic NN skill training

Florensa et al. (2017) proposed a new framework for HRL learning, with quite an unintuitive

name of Stochastic Neural Networks for HRL, which we will refer to as SNN training.

The usage of stochastic networks may be seen merely as a tool, while the approach has much

more to offer from the perspective of HRL, or even general RL. Namely, SNN learning utilizes

the architecture to provide highly increased sample efficiency and offers a new perspective on

skill sharing among different tasks.

At the core sits a relatively simple, two-layered architecture with a high-level policy

(referred to as the manager) and the fixed number of skill policies. However, the authors

consider not only one, but a set of different core MDPs {M1,M2, . . .}. The manager policy is

trained separately for each of these problems, but skill policies are shared among all of them.

To the best of our knowledge, such level of skill sharing between different core tasks has

not been considered before. As an example, we can introduce a legged robot with different

high-level tasks, such as solving a simple maze or gathering food through the space, while

the same skills can be used in all of them – individual locomotion policies enabling the robot
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(a) (b)

Figure 3.10: The architecture of SNN training: (a) Integration of latent code z into input of

skill-learning network. (b) Flow of information in the SNN model. (Florensa et al., 2017)

to walk in the first place. The skills are pre-trained in a pre-training environment, where

the agent can learn a span of skills useful for all downstream tasks. Such an environment

could be an unbounded plane for a robot to learn to walk at.

A factorization of a state space is used as proposed by Konidaris and Barto (2007): for

each MDPMi, it is assumed that the state space SMi can be factored into two components,

Sagent and SMi
rest, which only weakly interact with each other. The Sagent should be the same

for all considered core-MDPs. Intuitively, considering our example of robot who faces

a collection of tasks, the dynamics of the robot are shared across tasks and are covered by

Sagent, but there may be other components in a task-specific state space such as obstacles or

coins, which will be denoted by SMi
rest.

The skill pre-learning process represents the main contribution of SNN learning. We first

need to note that the skills are learned in a simplified pre-training environment mentioned

above, one that features only the state space Sagent. The reward signal is not set individually

for each skill, as that would require precise specification about what each skill should entail.

Instead, a general proxy reward is used to guide learning of all skills. As the authors explain,

“the design of the proxy reward should encourage the existence of locally optimal solutions,

which will correspond to different skills the agent should learn. For a mobile robot, this

reward can be as simple as proportional to the magnitude of the speed of the robot, without

constraining the direction of movement.” In addition to using a single reward signal, SNN

learning also leverages the recent advantages in neural networks, and uses a single network to

train all skills simultaneously. This opposes previous methods based on NN, which always

used separate network for each skill’s policy. Single-network architecture dramatically reduces

the samples needed to train the skills – a near-constant number of samples instead of linear

scaling.

The single skill-learning network receives an input that consists of two integrated com-

ponents: the Sagent, and one-hot encoded latent variable z denoting which skill is being
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(a) (b)

Figure 3.11: The model of a snake (a) and an ant (b), and their learned skills. Each color

represents a region covered by different skill. (Florensa et al., 2017)

learned/used. Two integration schemata have been proposed – concatenation (shown in

figure 3.10a) and bilinear6. The high-level manager network is responsible for selection of

skills in specific core task: it receives full state s ∈ Sagent × SMrest, and outputs the latent code z.

The complete architecture is described in figure 3.10b.

To ensure that acquired skills do not converge into one, SNN approach introduces an addi-

tional component of skill-learning reward signal, which effectively encourages the individual

skills to be distinct. The idea is based on the mutual information (MI) theory: if a skill is

sufficiently distinctive from others, it covers its own region of a state space. Thus, if we can

uniquely identify the skill being used given the region we are in, it means the distinction

is successful and the skill is rewarded more. Formally, maximizing MI is equivalent to

minimizing the conditional entropy H(Z|S ). This yields the final shape of reward signal to be:

rt ← rt + αH. log p(z|st) (3.3)

where αH is a hyperparameter denoting how much we encourage the MI reward component.

For the estimation of p(z|st) authors used a count-based method in the state space, which had

to be discretized to enable greater-than-one visitation counts.

As seen in figure 3.11, MI reward component successfully encourages learning of different

skills. The movement skills of a snake model are all highly concentrated around forward-

backward motion – this directly results from the physiology of the robot. Several different

core tasks were subsequently learned using fixed set of these pre-trained skills – for more

details please refer to Florensa et al. (2017).
6The bilinear integration essentially trains a separate first layer for each skill, while all further layers are

shared.
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3.3.8 HIRO

In previous section we saw a model with one shared network for all skills. The Hierarchical

reinforcement learning with off-policy correction (HIRO) by Nachum et al. (2018) takes it

one step further by having a single skill policy which is parametrised by a goal state.

HIRO is a method based on UMDP (see section 1.2.4) with a two-layered hierarchical

architecture. The high-level policy πH operates on a state-space S from the original core-MDP,

and its actions represent goals for the low-level policy: aH
t = gL

t . There is a single low-level

policy πL whose behavior is parametrised by the given goal. It operates on a state-space

S L = S ×G and produces atomic actions from the core-MDP’s action-space A. The behavior

of such UMDP-based hierarchical architecture, though adapted from a different paper, is

shown in figure 3.12.

When the agent is performing a rollout, the high-level policy πH observes the current

state st and produces a goal gL
t . The low-level policy, observing both st and desired gL

t , then

produces an atomic action at, trying to reach the goal. The goal stays fixed for c time-steps,

during which πL continues to receive observations 〈st+i, gL
t 〉 and producing actions at+i to reach

gL
t . After those c time-steps, πH chooses a new goal gL

t+c, and the cycle repeats. The high-level

reward signal rH
t is equal to the reward from core-MDP, while the low-level reward rL

t+i is

inversely proportional to the distance of the current state st+i from the desired goal gL
t .7

This novel architecture produces a hierarchy in which the low-level policy encapsulates

the complicated task of robot’s locomotion, while the high-level policy can focus on the core-

MDP task. Both policies can learn at the same time, enabling better sample-efficiency of

the method. However, the simultaneous training of both policies introduces an instability to

the training of πH, as its transitions are based on ever-changing πL.

To overcome this drawback, the authors employ an off-policy corrections to the training of

a high-level policy πH. The high-level transitions, collected during the rollout, are represented

by eH
t =

〈
st, gL

t ,
∑

rt+i−1, st+c

〉
. However, the transitions obtained using an older version of

a low-level policy do not accurately reflect the actions (and therefore the resulting state st+c)

that would occur if the same goal gL
t was used with the current low-level policy. Thus, the goal

gL
t from eH

t has to be changed in order to agree with the changed behavior of πL.

In HIRO, the transitions in the experience replay buffer of πH are periodically updated to

contain a modified goal (i.e. high-level action) g̃L
t instead of original gL

t . The g̃L
t is chosen to

maximise the probability of observed low-level actions πL
(
at+i−1

∣∣∣〈st+i−1, g̃L
t 〉

)
for i ∈ {1, . . . , c}.

This probability can be computed exactly, but c evaluations of πL must be executed to do so.

The remaining question is how to choose the g̃L
t that maximises over the given probability

7We abstracted from two aspects of the original approach: first, the goal gL
t is not an absolute position, but

is relative to the current state, i.e. πL is trying to achieve st+c−1 = st + gL
t . Second, πH produces a goal in each

intermediate time-step [t, . . . , t + c − 1], but it is constructed in a way that st + gL
t = st+i + gL

t+i.
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Figure 3.12: Hierarchical architecture of HIRO (Nachum et al., 2018) and HAC (Levy et al.,

2018) demonstrated on the inverted-pendulum task. The goal of core-UMDP is to reach

the yellow dot. The high-level policy πH generates a subgoal gL
t represented by pink dot.

Low-level policy πL then tries to match the current state st+i with goal gL
t . (Levy et al., 2018)

distribution. The authors solve this by sampling 10 candidates for g̃L
t , computing their

probabilities, and choosing the best one. Resulting g̃L
t is then placed instead of original gL

t in

the transition eH
t .

Using this elaborate scheme, HIRO is able to overcome the problem of training with

unstable distributions. Though, computational sacrifices had to be done to achieve this – 10c

evaluations of πL has to be executed for each modified transition eH
t on regular basis.

3.3.9 HRL with Hindsight

The Hindsight Experience Replay (HER) by Andrychowicz et al. (2017) leverages the idea

of experience replay buffer and modifies it to achieve faster convergence in sparse-reward

environments – so far only for flat-RL architecture. Later, Levy et al. (2018) adapted this ap-

proach also for HRL. The key idea of both papers is to insert fabricated experience transitions

into the replay buffer, such that they always terminate with a non-zero reward. Similarly to

HIRO, both hindsight methods rely on being used in UMDP.

Within sparse-reward environments, the agent often struggles to start the learning process.

Until it reaches a rewarded state for the first time, it randomly explores the states, always

receiving zero reward, hence not updating its parameters at all. As the authors explained

by an example: “Imagine that you are learning how to play hockey and are trying to shoot

a puck into a net. You hit the puck but it misses the net on the right side. The conclusion

drawn by a standard RL algorithm in such a situation would be that the performed sequence

of actions does not lead to a successful shot, and little (if anything) would be learned. It is,

however, possible to draw another conclusion, namely that this sequence of actions would be

successful if the net had been placed further to the right”. To tackle this problem, HER method

introduces hindsight transitions that are inserted into the replay buffer. These transitions are

fabricated, but consistent with the learning process, and they always form a trajectory with
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a non-zero reward. In the transitions, they modify the goal to match the actual state the agent

ended up in – i.e. in hindsight, we move the net to the right, which results in us scoring a goal

and getting a reward.

During the training, the agent collects transitions8 et = 〈〈st, g〉, at, rt, 〈st+1, g〉〉, where

reward is computed by traditional reward function rt = R(〈st, g〉, at). In addition to these real

transitions, the hindsight transitions are also generated: ẽt = 〈〈st, g̃〉, at, r̃t, 〈st+1, g̃〉〉, where g̃t

is a hindsight goal and r̃t = R(〈st, g̃〉, at). The hindsight goal g̃t is always chosen in a way so

that r̃t > 0, in the simplest case we use final state of the trajectory: g̃t = sT . Both kinds of

transitions are then added to the replay buffer.

The addition of hindsight transitions ensures that the agent always has data with non-

zero reward in its replay buffer, and so the parameters can always be modified and learning

progresses.

Hierarchic Actor-Critic

Levy et al. (2018) took the idea of HER and implemented it into a HIRO-inspired architecture,

creating a method named Hierarchic Actor-Critic (HAC), also depicted in figure 3.12. It is

based on a multi-level hierarchy, with one UMDP agent at each level, but for the sake

of simplicity we will describe a two-layered version with a high-level policy πH and a low-

level policy πL.

To clarify the explanation, we first revise the nomenclature and inputs/outputs of both

controllers. On the higher level, policy πH receives a state-goal tuple 〈st, gH〉, in which

the goal gH stays fixed during whole episode. It then produces an action, which will serve as

a goal for a low-level policy: aH
t = gL

t . This goal is fixed for c time-steps, during which πL

operates, and the next input for πH comes at time t + c. During the execution of the low-level

policy πL, at time t + i it receives a state-goal tuple 〈st+i, gL
t 〉, and produces an atomic action

aL
t+i ∈ A. Similarly to HIRO, the high-level reward signal is a sum of rewards from core-MDP:

rH
t =

∑c
i rt+i−1. The low-level reward rL

t+i is again inversely proportional to the distance of

the current state st+i from the desired goal gL
t .

The Hierarchic Actor-Critic employs two types of hindsight transitions. Hindsight goal
transitions are a direct implementation of HER approach. The goal in each transition

is replaced by the state the agent actually ended up in. This happens on both levels, i.e.

the following transitions are generated:

ẽH
t =

〈
〈st, sT 〉, gL

t , r̃
H
t , 〈st+c, sT 〉

〉
ẽL

t+i =
〈
〈st+i, st+c〉, at, r̃L

t+i, 〈st+i+1, st+c〉
〉 (3.4)

8Note that since HER is operating in flat-RL, the goal g stays fixed during whole episode.
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As in other HRL architectures that train both levels at the same time, HAC also needs

to tackle the problem of training πH over ever-changing distribution caused by modifying

πL. While HIRO employed a computationally-expensive correction to modify gL
t to simulate

current state of πL, HAC takes this idea further by simulating the optimal πL using a second

type of hindsight transitions.

The purpose of hindsight action transitions is to simulate a transition function that uses

an optimal lower level policy hierarchy. It does so by replacing the high-level action gL
t in

eH
t . We know that the optimal πL would take us from st to st+c if it had been given st+c as

a goal. And so, to simulate this optimal behavior, ẽH
t should contain st+c as the goal chosen

for a lower level, i.e. the high-level action. This further changes the ẽH
t from equation 3.4 to:

ẽH
t =

〈
〈st, sT 〉, st+c, r̃H

t , 〈st+c, sT 〉
〉

(3.5)

Similarly to HER, both the original transitions and hindsight goal transitions are placed

into the replay buffer. However, the hindsight action transition – i.e. substitution of gL
t for

st+c is always performed, and no transitions with original action are saved in the high-level

replay buffer.

The elaborate architecture of HAC enabled it to significantly speed up the training in

multiple robotic environments. However, due to its reliance on UMDP, it is mostly useful

for tasks that require the agent to reach a specific position – generalising to broader range

of environments might not be feasible. Moreover, a rather complicated machinery had

to be implemented to overcome the problem when unreachable goals gL
t are selected by

the high-level agent, which is beyond the scope of this survey. Levy et al. (2018) provides

comprehensive explanation.

3.3.10 Hierarchical Proximal Policy Optimization

By combining several previous approaches and enriching them by own theoretical findings,

Li et al. (2019) implemented an algorithm called Hierarchical Proximal Policy Optimization

(HiPPO). Their key contribution lays in formulating the policy gradient jointly for both

high-level and low-level policies at the same time, and demonstrating that even approximate

version of such a gradient yields an effective training method.

The architecture of HiPPO stems from the one of SNN (Florensa et al., 2017): a high-level

policy πH(zt|st) chooses a latent variable zt every c time-steps. The integer-valued zt essentially

denotes which skill πH chose to use, where zt ∈ Z = {1, . . . , n}. For the next c time-steps,

the low-level network performs actions according to chosen zt, i.e. πL(at+i|st+i, zt). This cycle

repeats until the end of a rollout at time T is reached. In HiPPO architecture, the authors chose

to employ a random length c of skill execution, acting as an external variable not accessible to

44



either policy. Note that this hierarchical policy is more restrictive than others like the Options

framework, where the time-commitment is also decided by the policy.

From the view of underlying core-MDP, we can observe a whole trajectory of states and

actions, denoted by τ = 〈s0, a0, . . . , sT , aT 〉. For the traditional flat-RL scenario, the gradient

of the objective function J(θ), which we use to optimize all policy parameters θ, can be

expressed as:

∇θJ(θ) = Eτ

[
log p(τ) G(τ)

]
where p(τ) = p(s0)

T∏
t=0

p(st+1|st, at)
T∏

t=0

πθ(at|st)
(3.6)

The probability p(τ) of observing a trajectory τ is a key term in evaluating the gradient.

We can extract the product inside logarithm into sum outside of the logarithm, and sample

the state probabilities p(s0) and p(st+1|st, at) from the environment. This yields a familiar

term:

∇θJ(θ) ≈
T∑

t=0

∇θ log πθ(at|st) G(τ) (3.7)

Moving from flat-RL to HRL, the situation gets more complicated, as p(τ) now depends

on both πH and πL. With πH choosing a latent action at time-steps t = kc, k ∈ {0, . . . ,T/c},

and πL choosing an atomic action at each time-step t ∈ {0, . . . ,T }, the overall probability of

observing a trajectory τ can be expressed as:

p(τ) = p(s0)
T∏

t=0

p(st+1|st, at)
T/c∏
k=0

∑
z∈Z

πH(z|skc)
(k+1)c−1∏

t=kc

πL(at|st, z)

 (3.8)

The mixture action distribution, which presents itself as an additional summation over

skills, prevents additive factorization when taking the logarithm, as we performed from

equation 3.6 to 3.7. However, as a key contribution of HiPPO, we can sufficiently approximate

this probability, using only a mildly restrictive assumption.

In a well-trained HRL architecture, we can expect skills to be well specialised. That

means that in every state st, we can expect πH(·|st) to have a high value for one specific zt

chosen by the policy, while all other z ∈ Z \ {zt} will have low values. These low values imply

that contribution of all z ∈ Z \ {zt} to the sum in equation 3.8 will be minimal, and we can

marginalize them out. With the summation out of the equation for p(τ), we can now easily

formulate a hierarchical equivalent for equation 3.7:

∇θJ(θ) ≈

 T/c∑
k=0

∇θ log πH
θ (zkc|skc) +

T∑
t=0

∇θ log πL
θ (at|st, zkc)

 G(τ) (3.9)

The authors proved that this approximation generates an error O
(
|Z|T εc−1

)
, where ε is the

upper bound for non-chosen skills: ∀z ∈ Z \ {zt} : πH(z|st) < ε. This low error was further

backed by empirical data from the experiments.
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With the gradient of policy parameters expressed jointly for both high- and low-level

policy, HiPPO can train both levels at the same time. To do so, the authors incorporated their

gradient rule into Proximal Policy Optimization (Schulman et al., 2017) - an approximate,

more compute-efficient alternative of TRPO. Additionally, separate baselines for each level

were used, which further stabilised the training process. With a complete algorithm, authors

proved the abilities of HiPPO on numerous tasks, surpassing previous approaches such as

SNN (Florensa et al., 2017) or HIRO (Levy et al., 2018).
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Chapter 4

Adaptive Skill Acquisition Framework

One of the most difficult tasks in hierarchical reinforcement learning is undoubtedly construct-

ing a skill set that would be helpful in solving the core task. However, finding the optimal

skills is practically impossible. Designing the skills by hand introduces great architectural bias,

while automated skill training in pre-training phase may not reflect the task’s peculiarities.

These flaws can, in turn, limit the agent’s desired abilities. We would like to contribute to

solution of this uneasy task by introducing an Adaptive Skill Acquisition framework, or ASA

for short.

The principle goal of ASA is to discover imperfections within the hierarchy of policies,

and address them by training a new skill. The novelty of this approach lies in additional

augmentation of existing pre-trained skills according to the real needs of the agent, all in

the midst of training the core task. ASA can observe the high-level controller during its

training and identify skills that it lacks to successfully learn the task. These missing skills

are subsequently trained and integrated into the hierarchy, enabling better performance of

the overall architecture.

4.1 Motivation

Throughout the research field, we can observe several common streams for building up

the HRL hierarchy. In the simplest scenario, Parr and Russell (1998) or Sutton et al. (1999)

created the set of skills by hand-crafting their behaviors, and training them manually as

a series of independent RL agents. The agents were then placed into a hierarchical structure

(tree or directed graph), which was also fully specified by the engineer.

When skills are identified autonomously, majority of previous approaches employ a pre-

training phase (McGovern and Barto, 2001; Menache et al., 2002; McGovern and Barto, 2002;

Goel and Huber, 2003; Konidaris and Barto, 2009; Florensa et al., 2017, and others). During

this phase, the agent typically explores the environment without a reward or using a surrogate
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one, learning only the skills. Once the pre-training is done, the hierarchy of skill policies is

fixed, and the top-level agent is trained.

A class of algorithms based on HASSLE trains the skills based on abstract state space

(Bakker and Schmidhuber, 2004; Moerman, 2009; Dillinger, 2019). Although the skills are

trained jointly with the core task, their usage is limited by the suitability of the high-level

abstraction, created by the engineer. The crucial part of specifying this abstraction is again

performed upfront.

We can observe a common structure in all of these implementations: first create a hierarchy

of useful, yet not necessarily optimal skills, then train the high-level controller atop of fixed

hierarchy. This pipeline, however, can hit problems stemming from the principle of optimality

under given hierarchy (Sutton et al., 1999). It was shown that having the skill set fixed before

training the higher level of a hierarchy can considerably limit the final performance (Levy

et al., 2018).

As an example, we can imagine a walking robot tasked to navigate through the maze, and

provide it with two skills: ‘walk forward’ and ‘turn left’, but no ‘turn right’ skill. The high-

level controller can still learn a strategy to solve the maze with given skills, yet it will be

clearly suboptimal for cases when the robot should have turned right.

We can distinguish between two main imperfections that can occur within the skill set.

Firstly, a skill can be malformed – either through specification of wrong behavior, or due to

failed training of the skill. Amending the aforementioned example, we can provide the robot

with a ‘sit down’ skill, which is clearly useless for the maze-solving task. Malformed skill

does not help the high-level agent to reach the goal. On the other hand, it does not prevent

from doing so either. As the training of high-level agent progresses, it can easily learn to

ignore the useless skills, as we also show in section 5.4. Presence of such a skill hence does

not impact the overall performance too much.

Secondly, a skill can be missing from the hierarchy altogether. Such situations are common

if the pre-training phase was terminated too early, or if it failed to explore a certain subspace.

This problem cannot be overcome by traditional RL methods and predisposes the agent to find

a suboptimal solution. After the pre-training phase has ended, leaving a skill out, majority of

HRL approaches can do little to nothing to resolve this situation.

To address this problem, our Adaptive Skill Acquisition framework aims to identify

whether a useful skill was left out from the initial hierarchical composition. If so, ASA is

able to specify the needed behavior, train a policy to perform it, and integrate the new skill

into the existing hierarchy. This process occurs even after the pre-training phase has finished,

aiming for the challenges that the high-level agent currently struggles with.
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4.2 High-level description

As previously mentioned, the Adaptive Skill Acquisition is a method for augmenting an

existing hierarchy with a new skill. As such, its goal is not to train the complete hierarchy

of agents. Thus, ASA is not a closed, self-contained architecture, but rather a universal

pluggable component that can be used on top of almost any HRL algorithm, enriching it by

new functionality. It has been designed to support a wide variety of existing algorithms, or

those yet to come.

4.2.1 Architectural capabilities

The set of hierarchical architectures ASA can be deployed on spans those from almost all

relevant research – a HRL system consisting of two layers.1 The high-level policy πH can

operate over the original state space S , or compacted Ŝ . Its action space consists of passing

the control to one of the skills, i.e. AH = {πL
1 , . . . , π

L
n}. The lower level contains n pre-trained

skills which operate on the original state and action spaces S and A. When the high-level

controller chooses its action aH
t = πL

i , the chosen skill policy πL
i is executed until a termination

criterion is met.

In order to maximise compatibility, ASA supports a generous class of stopping criteria by

accepting a skill-stopping function in the following form:

f stop
i

(
st−c, aL

t−c, . . . , st, aL
t

)
∈ {true, f alse} (4.1)

By accepting the whole sequence of states and actions from the skill’s execution, f stop
i can be

specialised to almost any function – from fixed- or random-length skills, through state-based

probabilistic functions mimicking skill’s target regions, to surrogate-reward based conditions

used in some algorithms. A separate skill-stopping function f stop
i can be specified for each

skill πL
i , which further broadens the applicability. These loose architectural constraints enable

the usage of ASA in a wide variety of algorithms.

4.2.2 Main logical components

The method by which ASA adds a new skill consists of several subsequent processes. These

can be separated into three key logical components:

1) Identification of a missing skill

During the learning of the core task, the agent must be able to recognize the need for another

skill. By means of self-observation, the agent will try to identify potentially sub-optimal

1ASA can be deployed on multi-layered architectures as well, as discussed in chapter 6.
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sequences of high-level actions (skill invocations) that tend to occur significantly more often.

Such sequences hint at a regularity in the core-MDP that was not discovered by the original

skill building process, and is only modelled using the reoccurring sequence of pre-defined

skills. This sequence will serve as a candidate for training a new skill, capable of solving

the subtask in a more efficient way.

2) Training of the new skill

The reinforcement learning process is guided solely by the reward signal. Therefore, if we

want to teach a new skill to perform certain task, we need to create a reward function R′

that will lead it. Using the newly constructed reward signal, we formulate a sub-MDP that

represents the identified skill. After the complete MDP specification, the problem simplifies

into a standard task of flat reinforcement learning.

3) Integration of the new skill

After the new skill is ready, we can integrate it into the existing HRL architecture. This step

is the only one that is inherently approach-specific, i.e. it might need to be adjusted when

ASA will be used in different architectures. Many algorithms, however, share the usage of

a neural-network based policy at the top level of hierarchy. Integration of the new skill thus

represents adding a new output unit to a partially trained policy network.

These three key logical steps are described in details in sections 4.3 – 4.5.

4.2.3 Properties of ASA

As the research in HRL progresses, individual approaches tend to focus on more difficult

variants of MDPs. With the broader diversity of these difficult problems, some methods focus

only on a single aspect to be solved, e.g. continuity of state space. Contrary to such cases,

we made an effort to support almost any subclass of MDPs. The individual components of

ASA were designed always with more general use-case in mind, so that the limitations in

applicability would be shrunk to minimal.

Continuous spaces

First and foremost comes the differentiation between discrete and continuous spaces. Majority

of research prior to 2009 was focused solely on the discrete MDPs, being easier to control

and solve. Even afterwards, some algorithms considered the continuous state space, but

required a discrete action space in order to work properly (Metzen and Kirchner, 2013).
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Recent approaches eventually moved towards supporting continuity in both state- and action-

spaces. We continue in this trend, with ASA being capable of operating atop either discrete or

continuous environments, with no implementation or configuration changes needed.

Reward sparsity

As discussed in section 3.1, reward sparsity is one of the key motivations for hierarchization

in RL. We also thoroughly focus on working with sparse-reward environments which, though

being much harder to solve, offer the greater research potential. Specifically, ASA considers

this aspect on two levels: Firstly, the core task that agent is trying to solve is assumed to have

sparse rewards, as is common in HRL. Secondly, ASA employs sparse rewards internally

when training a new skill. By doing so, we are able to automatically construct a robust

surrogate reward signal which is agnostic to the core task.

Observation considerations

Partial observation of the state space is a common concept, especially in robotic-based

environments. In such cases, the agent only ingests the data from a camera or other sensors,

which typically do not reflect the state of the entire space. Since this became a new standard,

ASA is also applicable in partially observable MDPs.

Other approaches, on the other hand, enrich the state space even further by adding

a desired goal state. This results in an UMDP-based methods such as Nachum et al. (2018)

or Levy et al. (2018). Our approach does not rely on any kind of additional information

such as these. Theoretically, ASA can be deployed even on UMDP environments without

further modifications. However, ASA does rely on policy πH choosing from n discrete skills.

The aforementioned methods changed this mechanism to πH choosing a goal vector for

a single UMDP-based skill, hence they represent one of the few exceptions ASA cannot be

deployed on.

Model usage

The model-based RL methods assume that a complete knowledge of underlying MDP is

known to the agent, especially the transition distribution and the reward function. It can

subsequently be used to compute the optimal solution. ASA falls into the more general

category of model-free algorithms, which do not access these properties directly, and rather

do so by sampling the environment.

A single limiting factor that ASA needs is the option to initialize the agent in a given state.

This can usually be easily implemented in most of the frequently used environments. In case

it cannot be done, a learned approximation such as in Gu et al. (2016) can be used.
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Types of trained skills

The majority of the current HRL methods use their own approaches to train the skills. As

outlined in section 3.3.4, these approaches fall into two categories. The goal-based skills are

made to reach a specific state, which was identified as one with greater importance, such as

doorway. This type of skills is undoubtedly more popular (McGovern and Barto, 2001; Goel

and Huber, 2003; Bakker and Schmidhuber, 2004; Konidaris and Barto, 2009; Metzen and

Kirchner, 2013; Nachum et al., 2018; Levy et al., 2018).

On the other hand, behavioral skills are crafted to perform a specific behavior which can

be useful in almost any state of the environment. These skills typically do not aim to move

to a specific state, but rather to move in a specific direction within the state space. A typical

behavioral skill is a walking of a legged robot (Florensa et al., 2017; Li et al., 2019).

To the best of our knowledge, there has not yet been a published algorithm that would

be able to train both goal-based and behavioral skills. The distinctive feature of ASA is

the ability to train either one of them. Furthermore, it can do so without the need of changing

any parameters, or even specifying the type upfront. This ability is demonstrated in section

5.3, when trained on two fundamentally different tasks.

4.3 Identification of a missing skill

The first step in the pipeline of Adaptive Skill Acquisition is to recognize that a useful skill

is missing, and to identify what such a skill should do. To achieve this, we use a technique

based on self-observation of the high-level agent.

In order to detect a missing skill behavior, we try to identify potentially sub-optimal

sequences of high-level actions (skill invocations) that tend to occur significantly more often.

Such sequences hint at a regularity in the core-MDP that was not discovered by the original

skill building process, and is only modelled using the reoccurring sequence of pre-defined

skills. Training a skill specialised to handle such regularity may result in a more efficient

behavior to solve it, which, in turn, helps the overall performance of the system.

An example of this principle is displayed in figure 4.1, in which we continue with our

example of a robot in a maze with ‘step forward’ and ‘turn left’ skills, but no ‘turn right’. We

can see in subfigure (a) that the agent is able to train a behavior that would effectively turn it

rightwards – i.e. performing a sequence of skills [step, le f t, le f t, le f t, step]. If this behavior

is used extensively, we should be able to detect that this sequence is executed significantly

more often then any other 5-step sequence (subfigure b). Using this detected inefficient

sequence, we can target it and train a dedicated ‘turn right’ skill, one that would perform

the desired behavior much more efficiently.
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(a) (b)

Figure 4.1: HRL agent in a maze with insufficient skill set: (a) A sequence of skills is trained

to perform a right turn; (b) Inefficient sequence is repeated many times, significantly more

than any other.

Having stated the descriptive definition, we can now define the problem more formally. Let

us denote δ to be an arbitrarily long sequence of high-level actions: δ = [aH
t , a

H
t+1, . . . , a

H
t+m−1],

where m represents its length. Hereinafter, we consider t to denote the timeframe of the high-

level agent, in order to abstract the potentially uneven durations of individual skills’ executions.

We are given a set of trajectories T = {τ1, τ2, . . . }, and our goal is to find a sequence δ∗

which is the most frequent one, i.e. which has the highest probability of occurrence within

the trajectories T :

δ∗ = arg max
δ

(p(δ | T )) (4.2)

4.3.1 Storing frequent sequences

In order to identify the frequent sequences, we first need a way to store their counts, and

periodically update these values. We implemented a custom data structure path-trie based

on lexicographical trees that is able to incrementally add all sequences, and update counts of

those that are already stored. Moreover, our path-trie is both faster and more space-efficient

in comparison with traditional lookup hash-table that is usually used for this use-case.

The path-trie stores data for sequences with a variable length, limiting this length to

a reasonable threshold d. Its core is a lexicographical tree over an alphabet Σ = {1, . . . , n},

where n is the number of current skills. Each node of the tree hence has (at most) n child

nodes – one for each skill. The path from a root to a specific node represents a unique
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Algorithm 1: Inserting new skill sequences into path-trie. Each path-trie node

contains children array, counter, and a set of additional data.

Data: partial trajectory of high-level agent τpart =
[
. . . , aH

t−1, a
H
t

]
Result: all sequences δ ending with aH

t are stored in the path trie

1 procedure insert_new_sequences

2 input: current high-level time t

3 begin
4 node← root of path-trie;

5 for i← 0 to d − 1 do
6 node← node.children [aH

t−i];

7 node.counter ++;

8 node.data← data for sequence δ =
[
aH

t−i, . . . a
H
t

]
;

9 if i + 1 ≥ t then
10 return;

11 end

12 end

13 end

sequence of skills. The difference between traditional lexicographical tree is that path-trie

stores the sequences reversed. The root node hence represents the end of all sequences within

the trie, while individual inner nodes denote their starts. This allows for a faster insertion to

the structure.

The data is populated into the path-trie in a following way. Each time the high-level

agent executes a new action aH
t , the partial trajectory τpart = [. . . , aH

t−1, a
H
t ] is used to store all

new skill sequences of variable lengths that end with aH
t . Iterating over τpart from the end,

we traverse the path-trie, updating the counters of all nodes during the way – as shown in

algorithm 1. The resulting path-trie with the counts in each node can be seen in figure 4.2

(only 5 levels of the tree are shown for clarity reasons).

Since we also need to collect additional information that will be used in subsequent steps

of ASA, each node stores the following data about the sequence:

• the sequence itself2: δ =
[
aH

1 , . . . , a
H
m

]
• number of occurrences: C(δ)

• list of start-states in which each occurrence of δ started: Sstart(δ) =
[
s(1)
start, . . . , s

(C(δ))
start

]
• list of end-states in which each occurrence of δ ended up: Send(δ) =

[
s(1)
end, . . . , s

(C(δ))
end

]
2Note that we overload the notation and reindex the actions to start from aH

1 rather than aH
t , since each

occurrence of δ starts at a different time t.
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Figure 4.2: A path-trie constructed for a trajectory of the agent from figure 4.1b. Number in

each node represent the counter – how many times have such sequence occurred. Highlighted

is the frequently used sequence of skills with the highest count within its level.

Each start-state represents the state before the first action was taken, i.e. s(i)
start = s(i)

1 .

Analogously, the end-state is the state after last action was executed, i.e. s(i)
end = s(i)

m+1.

Using this algorithm for populating the path-trie, we are able to speed up the process after

each high-level action to O(d) time. If a simple hash-table was used, a higher O(d2) time

would be required for the same operation, as the O(d)-long hash function would have to be

computed for each sequence. The space consumption, though being less crucial, was also

shrunk – the path-trie tops up at O(nd), whereas hash-table containing the same data would

take O(dnd) space.

4.3.2 Choosing the best sequence

Once we have collected the desired information about all executed sequences of skills, we

now have to choose the best one. The most frequently used sequence is the most likely one

to execute a recurring, non-optimal behavior. Such a sequence will serve as a candidate for

a new skill, and will be processed in further steps.

The direct naïve approach to pick the most frequent skill would be to rank the sequences

using their counters from the path-trie. The top sequence of this list is the most common

one. However, this approach comes with a caveat – the shorter sequences tend to naturally

occur more often. As an example, we can take an untrained random discrete policy over 3

skills. When this policy is executed for 1000 steps, any two-steps-long sequence is expected

to appear 111 times, three-steps-long sequence would be seen approximately 37 times, and

four-steps-long sequence only 12 times. We can observe this behavior even in real data in

figure 4.2 – the nodes in first or second levels (representing short sequences) have relatively

high counts, while nodes deeper within the trie contain significantly lower values.
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In our approach we account for this problem. Instead of asking ‘how many times has

sequence δ occurred’ we ask a question ‘how much more often then expected do we see δ’. To

answer this question, we introduce a null-hypothesis count CH(δ) for any sequence δ. Given

the set of trajectories T = {τ1, τ2, . . . } that was used to build the path-trie, we compute CH(δ)

as follows:

CH(δ) =

∑
τ∈T

|τ| − |T ||δ| + |T |

 |δ|∏
i=1

p(δi) (4.3)

This quantity represents the expected number of times δ would occur if a random ‘null’

policy was used. However, since we can compute the value of CH(δ) analytically, no tra-

jectories of the null policy have to be actually executed, and thus almost no computational

complexity is added.

After acquiring CH(δ), we use it to normalize the actual count of sequence C(δ) which is

stored in the path-trie. The overall (frequency) score is defined as:

f (δ) =
C(δ)

CH(δ)
(4.4)

Contrarily to the count C(δ), the f -score is no longer prone to prioritize short sequences.

Every sequence with f (δ) > 1 occurs more often than it would do under the null policy.

Hence, the higher f -score the sequence gains, the more likely it is to execute the repeated

non-optimal steps. By choosing the sequence with greatest f -score, we can finally identify

possible candidate for a new skill.

4.4 Training of the new skill

In the previous section we described a way to identify a sequence of skills that serves as

a candidate for a new skill to be trained. Now we need to use the collected information to

construct a formal definition of the identified problem, i.e. create a sub-MDP that represents

the skill we want to train. With the MDP created, we can employ standard RL methods to

train a policy that solves it.

The desired sub-MDP is a tuple of six elementsM = 〈S , A, P, p0,R, γ〉 which have to

be specified. This process, however, needs to have two key properties. Firstly, it needs to

be automated, so that the engineer does not need to interrupt the overall training, tweak the

individual components of sub-MDP, and then initiate new skill training. Secondly, even more

importantly, it needs to be task-agnostic. We cannot pose any assumptions about the nature of

the skill, the behavior it is supposed to learn, or the core-MDP in which our system operates.

To satisfy these conditions, we build the sub-MDP which trains the agent to perform

the same transition from start-state to end-state as δ did, but to perform it more efficiently. By

using the atomic actions instead of a sequence of otherwise-focused skills, the newly trained

agent can take a significantly more directed way towards reaching the desired end-state.
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The easiest components of sub-MDP to be specified are S and A. Since all skills operate

on the state and action spaces of the core-MDP, we can directly use its original S and A. Next,

the discount factor γ, which in sparse-reward environments effectively regulates how eager

the agent is to find a shortest path. The lower value γ has, the shorter paths the agent tends to

choose, but on the other hand, it is also more inclined to failure due to lack of exploration.

Since the engineer already specified γ value suitable for the environment, accounting for

this trade-off, we reuse this value from the core-MDP as well. This default behavior can be

overwritten by specifying a separate γL to be used for new skills, if desired.

Moving on to the dynamics of the system – initial-state probability distribution p0(s) and

transition probability distribution P(s′|s, a). As stated before, our goal is to train the agent to

move from start-states of δ to its end-states. Thus, the most natural initial states of the new

sub-MDP are the collected start-states. During the training of the new skill, we randomly

choose a state s(i)
start from Sstart(δ) and initialize the agent in it. Note that a state can repeat

multiple times in Sstart(δ), which makes it more probable to be chosen. The constructed

probability p′0 thus can be evaluated as:

p′0(s) =
1

C(δ)

∑
s(i)
start∈Sstart(δ)

[
s = s(i)

start

]
1

(4.5)

where [_]1 denotes the indicator function. Finally, since the transition dynamics in which

the agent is trained must be equal to the one it will be used in, we reuse the P from the original

core-MDP.

The last, but certainly the most important element of MDP, is the reward function R(s, a).

We again directly follow our goal of reaching the δ’s end-states. In each episode of the skill-

training process we remember the specific start-state s(i)
start it was initialised in. The agent is

then rewarded only upon reaching the corresponding end-state s(i)
end. Note that the agent is not

rewarded if it reaches any other end-state, as this would cause the agent to be falsely rewarded

if the start-state of one instance of δ is close (or identical) to end-state of different one. We

intentionally train a skill using such a sparse reward, as we want to avoid any engineered bias

caused by more complicated reward shaping.

Reaching the exact end-state s(i)
end, of course, is not possible in case of continuous state

spaces, and an approximate criterion has to be applied. We were loosely inspired by the idea

of end-regions3 by Konidaris and Barto (2009), adjusting it to our needs. The end-region is

a small area within a continuous state space, into which the agent aims to get – as an abstraction

of end-state from discrete-space environments. While Konidaris and Barto (2009) had a whole

set of positive and negative examples of states for an end-region, from which they created

a classifier, we only have one example – the end-state s(i)
end corresponding to start-state s(i)

start.

3Originally named ‘target regions’ – we will use ‘end-regions’ to provide clear analogy to our end-states.
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To remedy this issue, we use a combination of a normalization scheme and distance-based

condition.

First, we adapt a technique from deep learning called batch normalization (Ioffe and

Szegedy, 2015). This technique normalizes each dimension across the samples in a minibatch

to have zero mean and unit variance. In neural networks, it is used to minimize covariance

shift during training. We use it to flatten the difference between relative distances within each

dimension of the state space. After the normalization, we know that the distance between any

two data points (states) averages to ≈ 1 in each dimension.

When we know the approximate scale of each state dimension, we construct the end-region

as a hypercube centered around the end-state s(i)
end, with a side of length 2ε. When the agent

reaches this region, it is rewarded and episode is terminated. This method yields a reward

function:

R′(s, a) =

[
max

d∈{1..dim(S )}

∣∣∣s(i)
end[d] − s[d]

∣∣∣ < ε ]
1

(4.6)

where dim(S ) is the dimensionality of the state space, and s[d] represents d-th dimension of

the vector s. This formulation in practice means that the agent is rewarded if each dimension

of current state s is no more than ε away from the desired value. Since we already know that

all dimensions have the same scale due to normalization, we can share a single ε value among

all of them. Moreover, since we know this scale is based on unit variance, we can easily set

the ε to a reasonable value. With the average distance being 1, setting ε = 0.1 means that

roughly 90% match between state s and desired s(i)
end in each dimension is needed for agent’s

success.

We deliberately chose this hypercube based criterion instead of a simpler Manhattan- or

Euclidean-distance based – i.e. defining an end-region using ‖s(i)
end − s‖2 < ε. The reason is

that such simpler solutions would face a problem in certain scenarios: Let us consider a high-

dimensional state space which contains a binary dimension with significant importance. As

an example, we can imagine a robot for delivering payload, with 20 sensory dimensions, and

the binary dimension being a flag ‘I am holding a payload’. If ε was set too low, the end-region

might get too strict, as the ε-sized error has to distribute over a high number of dimensions.

E.g. for ε = 0.1, states with difference 0.02 in each dimension would be still considered

as failure. On the other hand, if ε was too high, then we might accept even an error in

the important binary flag. Considering the robotic example – if the agent perfected a desired

body position, it would ignore whether it is still carrying the cargo, or had dropped it to

the ground. However, these situations will not happen when using the hypercube based

method. As each dimension is compared separately, neither gets too strict or too lax, since

partial match is required in each of them. Also, the binary dimensions automatically fallback

to exact comparison.
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To summarize the sub-MDP creation, let us revise its individual components. The state

and action spaces S and A, along with transitional probabilities P, are taken from the original

core-MDP. The discount factor γ can be taken as well, or specified separately if desired.

The initial-state probability p′0 is realised by initializing the agent in one of start-states

Sstart(δ). Finally, the reward function R′ is constructed to reward the agent upon reaching

the corresponding end-region. The sub-MDP for the new skill is now complete, and is

specified byMnew = 〈S , A, P, p′0,R
′, γ〉.

Now, as the MDP to be solved is fully specified, the problem of training the new skill

simplifies to traditional flat RL. We train a new agent using standard techniques to solveMnew,

and thus perform the behavior of the identified missing skill. We employed the Trust-region

policy optimization (Schulman et al., 2015) for this task, resulting in a policy πL
n+1 = πL

new for

the new (n + 1)-th skill.

It can happen, however, that the new agent is not trained successfully. While the presence

of malformed skill does not impact the long-term performance of the HRL system, as already

discussed in section 4.1, we can ease up the high-level agent’s life by not including such

poorly trained skill into the skill set. Hence, if a skill is trained with less than 75% success

rate (tunable parameter), the new skill policy is tossed away. Otherwise, it is passed down to

the next step in ASA pipeline.

4.5 Integration of the new skill

At this point in the Adaptive Skill Acquisition process we have already identified what should

a missing skill do, and trained a policy to perform it. The last step is to integrate the new

skill into the overall HRL system. The high-level agent has to be modified so that it can

choose the new skill as well, and sufficient exploration of this skill should be accomplished.

Since the modification of the high-level agent is needed, this step is the only one which is

inherently approach-specific, i.e. it might need to be adjusted when ASA will be used in

different architectures. Nevertheless, we focused on the most common implementation and

created several options that can be directly employed.

Most of the recent HRL approaches utilize one of two paradigms on the top level of

hierarchy. The first branch uses algorithms based on generalised Q-learning, such as DQN,

while the second one utilizes policy-optimization schemes stemming from the actor-critic

architecture. In both cases, the policy or actor, responsible for choosing the actions, is typically

implemented as a neural network. The architecture of this network differs widely, as it is also

dependant on the specific environment and use-case – anything from a simple multi-layer

perceptron to convolutional neural network or recurrent models such as LSTM. However,

its output always directly represents the action to be executed, either as a real-valued vector
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of actions (in continuous-action environments), or one-hot-encoded index of an action (i.e.

classification in discrete-action environments).

The high-level policy in most HRL architectures chooses from a discrete set of n actions

(skills), forming a neural classifier. Therefore, adding a new (n + 1)-th skill to the architecture

essentially means extending the output vector of the policy network by one extra output unit.

As the output layer is almost exclusively a simple, fully-connected one, we aimed our focus

on it.

The output layer of high-level policy network πH can be viewed as a series of n weights

vectors wi and n bias values4 bi, one for each current skill πL
i . Thus, to add a new skill policy

πL
n+1 to the architecture, we have to construct the new weights vector wn+1 and bias bn+1.

Although these weights will get adjusted as the high-level agent progresses in its training,

careful initialisation might considerably help.

We introduce six different integration schemes which create the initial values of wn+1 and

bn+1 – two uninformed and four informed ones. These schemes were constructed with two

key goals in mind: Firstly, we want to enhance the usage of the new skill, in order to support

its successful exploration. As the policy πH is already partially trained, it could happen that

the new skill would not be used after it was created, and the high-level agent would have

no chance to recognize its benefits. Adequate exploration of the new skill is hence crucial.

Secondly, we want to gently ‘nudge’ the high-level agent into using the new skill in situations

it was made for. Since the skill was trained based on a specific sequence δ, it is mostly

probable to help in situations when δ had been previously used. It is important to note that

both of these principles concern only the initial weights of the new skill – they are meant

to kick-start the adaptation of the new skill, but the rest is then left upon the RL algorithm.

Hence, in cases that the skill is not useful after all, the high-level agent is not forced into using

it, but rather learns to ignore it.

4.5.1 Uninformed schemes

We grouped the first two integration schemes under a term ‘uninformed’, as they work solely

with the output layer of πH policy network, and they do not access any additional information.

Random initialization

As the name suggests, this simple scheme initializes the new skill’s weights randomly. It

serves mainly as a baseline, to which we will compare the other schemes. Contrary to all

others, the random integration scheme is the only one which does not enhance the exploration

of the new skill.
4All of the following methods work even if bias is not used, except for bias-boosted random initialization.
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We used normal distribution for both wn+1 and bn+1. In order to initialize the weights to

reasonable values, we draw the new weights from a distribution with same per-dimension

mean and variance as the old weights has.

wn+1 ∼ N
(
mean

(
[wi]n

i=1
)
, std

(
[wi]n

i=1
)2
)

bn+1 ∼ N
(
mean

(
[bi]n

i=1
)
, std

(
[bi]n

i=1
)2
) (4.7)

Bias-boosted random initialization

Similarly to the previous one, the core of this scheme is also a random initialization of the

weights wn+1. However, the bias bn+1 was made significantly greater in order to intentionally

increase the activation of (n + 1)-th unit. This should encourage natural exploration of new

skill by the high-level RL agent.

Since the biases of the original skills can have negative values, we cannot get bn+1 by

simply multiplying the highest bi, as that could result in even smaller activation. Instead, we

add the range of all old bi to their maximum. This ensures that the new value of bn+1 will be

the highest, yet still within a reasonable range compared to original bias values. The weight

vector is generated the same way as previously:

wn+1 ∼ N
(
mean

(
[wi]n

i=1
)
, std

(
[wi]n

i=1
)2
)

bn+1 = max
i∈{1..n}

bi +

(
max
i∈{1..n}

bi − min
i∈{1..n}

bi

) (4.8)

4.5.2 Informed schemes

The more sophisticated informed integration schemes take into account also the additional

information, which we gathered during the skill-identification step. For the new skill πL
new we

consider the sequence δ it was based on, its start-states Sstart(δ) and end-states Send(δ).

In these schemes, more effort is given to using the new skill in correct situations. As

mentioned earlier, the skill should be used in situations when δ had been executed before, as it

was created specifically for these scenarios. To achieve it, we combine the old skills’ weight

vectors w1. . . . ,wn to get the new weights wn+1, instead of randomized creation. The main

aspect, in which these schemes differ, is which skills’ weights are combined, and in what

manner.

Start-states’ skills

The idea of this scheme is to execute πL
new in those states where δ was starting. To achieve

a high activation of (n + 1)-th output for a specific state s, we mimic other output units which

have high activation for the same input state s.
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The start-states are already gathered in Sstart(δ). For each s ∈ Sstart(δ), we can ask the high-

level policy πH which skills it prefers. If the policy strongly prefers to choose one or two

skills, we combine their weights into wn+1, and it will prefer the new skill as well.

We hence construct the new weight vector wn+1 as a weighted average of old weight

vectors w1 to wn (equation 4.9). In this weighted average, the coefficient ci of weight vector wi

is proportional to the probability that high-level policy πH chooses skill πL
i in the start-states

Sstart(δ) (equation 4.10).

wn+1 =

n∑
i=1

ciwi where
n∑

i=1

ci = 1 (4.9)

ci ∝
∑

s∈Sstart(δ)

πH
(
πL

i

∣∣∣s) (4.10)

To compute the coefficients ci, we need to obtain the probabilities πH(πL
i |s). Given that

the policy is realised as a neural classifier, we assume that the output of the last layer passes

through soft-max activation, yielding this probability for each high-level action πL
i . To get all

ci values, we hence need |Sstart(δ)| invocations of the policy network.

First skill from δ

The next integration scheme shares similar ideology with the previous one – execute πL
new in

those situations when δ had been executed. However, we take a bit more direct approach –

we try to ‘replace’ the start of δ with the new skill. We know that each execution of δ starts

with its first action aH
1 being chosen by the policy πH. To integrate the new skill, we now want

the πL
new to be chosen in such cases instead. Hence, to achieve high activation of (n + 1)-th

output in the situations when aH
1 was being chosen, we simply copy its weights into wn+1:

wn+1 = waH
1

+ ε (4.11)

A small white noise ε is added to the new weight vector in order to prevent potential unwanted

effects of two output units having the exact same weights.

Note that this initialization scheme can be considered as a special case of the Start–states

scheme, but computationally much simpler. If πH chooses only aH
1 in all states Sstart(δ), then

these two schemes become equal. Hence we assume that they will yield similar results, despite

the large gap in their computational complexity.

All skills from δ

In the previous scheme we were trying to ‘catch’ the beginning of the δ, and launch πL
new at that

exact time. However, if we miss the beginning, i.e. if the policy πH chooses aH
1 and embark

on the trajectory of δ, we will no longer enhance the execution of the new skill. However,
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the new skill might be useful even if it starts a bit later, i.e. when the agent is in the midst

of execution δ’s actions. Hence, it might make sense to mimic not only aH
1 , but all actions

[aH
1 , . . . , a

H
m] from δ.

In order to account for all actions aH
k from δ, we will again copy and average their weights

using equation 4.9. The coefficients ci will now be proportional to usage of skill πL
i in sequence

δ. Note that an action can repeat several times within δ, in which case it will have greater

coefficient withing the weighted average:

ci ∝

m∑
k=1

[
aH

k = πL
i

]
1

(4.12)

Smoothed skills from δ

In the First–skill scheme we aimed to start the new skill at the very beginning of δ, ignoring

the rest. On the other hand, the All–skills scheme tried to do so at any time during δ’s

execution, even at its very end – when the desired behavior might have been already finished.

To find a middle ground between these two approaches, we also introduce a Smoothed–skills

integration scheme.

Its idea and mechanism is nearly identical to All–skills, but it strongly prefers the first

few skills. We do so by computing an exponentially smoothed average of old skills’ weights,

instead of normal average in All–skills. Having λ < 1, we multiply the coefficient of aH
1 by

λ0, keeping it high, while the coefficient of last action aH
m is multiplied by λm−1, lowering its

effect:

ci ∝

m∑
k=1

λk−1
[
aH

k = πL
i

]
1

(4.13)

The λ hyperparameter can be set to a fixed value, but such setting could have negative

impact on different-sized sequences. If λ was low enough, it would perform desirably on

shorter sequences, but on longer ones it would essentially diminish the effect of later skills

to zero. On the other hand, setting λ high enough would work well for longer sequence, but

on shorter ones it would barely change coefficients of all skills, reverting back to All–skills

scheme.

Since we cannot know the length m of a sequence upfront, we remedy this issue by setting

a value only for λlast. It represents the effect of the last action from δ, i.e. aH
m . From this

quantity, we then compute the actual value of λ as:

λ = (λlast)
1

m−1 (4.14)
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4.5.3 Finalizing the integration

In the previous sections we described how we can create a new weight vector wn+1 that will

help establish the new skill πL
new within the hierarchy. To finalize the skill integration process,

we have to perform the last few technical steps.

As stated in section 4.2.1, each skill within our HRL architecture has a dedicated skill-

stopping function which handles the termination of the skill’s execution. The stopping function

of the new skill will directly follow what the skill was trained for – reaching the end-regions

Send(δ). When the policy achieves to do that, it is terminated. This behavior is hence identical

to terminating the episodes during the skill-training phase, when the end of an episode was

determined by the surrogate reward function R′. By plugging the equation 4.6 of R′ into

the skill-stopping function signature from equation 4.1, we obtain the new skill-stopping

function f stop
n+1 for the policy πL

new:

f stop
n+1 (. . . , st) =

(
∃s(i)

end ∈ Send(δ) : max
d∈{1..dim(S )}

∣∣∣s(i)
end[d] − st[d]

∣∣∣ < ε) ∨ (
c > tmax

)
(4.15)

We also included a condition c > tmax to limit the maximal execution time of the skill, in

case it fails to reach the desired end-region.

Now, with all segments prepared, we can put all pieces together and resume the training

of the high-level agent:

• Include the new skill into high-level agent’s actions:

AH ← AH ∪
{
πL

new

}
• Update the output layer of πH policy network, so that it contains new weight vector:

Wout ← [w1, . . . ,wn,wn+1]

• Include the new skill’s stopping function f stop
n+1 into the hierarchy.

• Reset the path-trie, so that it can collect new data about sequences.

• Resume the training of high-level agent πH, which can now fully use the newly acquired

skill πL
new.
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Chapter 5

Experiments and Results

In order to measure the effectiveness of Adaptive Skill Acquisition, we conducted series of

experiments focused on various aspects of our work. Since the principle goal of ASA is to

enhance the performance of overall HRL system, our primary tool is the comparison between

scenarios in which ASA was or was not used, keeping all other aspects identical. Thus in

each experiment, we ran a simulation of a ‘Base run’ without deploying ASA, and the same

simulation but with engaged ASA mechanism.

The individual experiments were based on three principal questions:

• How much does adding a new skill help in training an overall task?

• How well does ASA identify and formulate a new skill?

• How do different skill integration schemes affect the efficiency in an overall task?

These three questions are addressed in sections 5.3 – 5.5.

5.1 Environments

For our experiments we chose two environments which on purpose differ in numerous aspects,

such as continuity, observability, skill types, etc. The reason for choosing these environments

was to demonstrate that ASA can be used universally, not only in a single type of tasks.

The only common feature of both environments is their reward sparsity. This aspect made

the tasks sufficiently difficult to solve, such that we were not able to successfully train these

tasks by traditional flat-RL (using Schulman et al., 2015). Hence, they represent a suitable

challenge for a HRL agent.

A HRL architecture has been designed for both environments. In order to leverage

the functionality of ASA, we intentionally built these architectures with an incomplete skill

set – leaving one skill out, and observed if ASA can identify the missing skill. However,
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(a) (b)

Figure 5.1: Environments used for experiments: (a) Coin-gatherer map – agent is initiated

in orange area, has to collect coins (yellow dots) and bring them to green drop-off area.

The numbers represent 15 ideal skill regions. (b) Maze-bot – one of six possible mazes that

agent has to solve. The green sphere represents the goal position.

we also considered a scenario of using ASA atop of optimal HRL architecture. Even if it

was used and would (falsely) identify a missing skill, we show in section 5.4 that adding

an unsuitable skill does not negatively impact the performance of the overall HRL system.

5.1.1 Coin-gatherer

The first used environment is a relatively simple gridworld-based one. This conforms with

numerous previous research, when various forms of gridworlds were used to evaluate HRL

algorithms (Sutton et al., 1999; Dietterich, 2000; Menache et al., 2002; Goel and Huber, 2003;

Bakker and Schmidhuber, 2004; Moerman, 2009; Dillinger, 2019, and others). The map we

use is an adaptation of the largest map from Moerman (2009), which is 68 × 46 tiles large, as

shown in figure 5.1a. In this task the agent has to gather all six coins, depicted as yellow dots,

and deliver them to the green drop-off area. However, it can carry only one coin at a time.

The agent can observe the whole state of the environment: its position, whether it is

carrying a coin, and positions of all coins. This makes for a discrete state space with a total

of 4 × 105 possible states. The original action space of the environment consists of four

actions: move north, south, east, or west. The only reward agent receives is when it manages

to successfully deliver a coin to the drop-off area. When all coins have been delivered,

the episode is terminated.

The HRL decomposition we use also resembles various previous approaches (Bakker and

Schmidhuber, 2004; Moerman, 2009; Metzen and Kirchner, 2013; Dillinger, 2019). The map

is divided into non-overlapping regions (marked #1 – #15 in figure 5.1a), and a separate skill is

trained to reach each region. These skills are used to augment the original actions (N, S, E, W),
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which are still available to the high-level agent (as so-called ‘atomic skills’). This resembles

the original notion of temporally extended actions (Sutton et al., 1999). To introduce an

imperfection into the HRL architecture, we left out the skills for regions #14 and #15. The skill

set is thus composed of thirteen goal-based skills and four atomic skills.

As a result, the task that agent faces is a discrete, deterministic, fully observable one, with

the HRL architecture using a high number of 17 skills, which are mainly goal-based.

5.1.2 Maze-bot

The second environment aligns with newer approaches by employing a small simulated robot.

The agent is a vacuum-cleaner-like robot and its task is to navigate through a simple maze

towards its goal position. We constructed a set of six different mazes, altering both structure

and difficulty of the maps – one of them is shown in figure 5.1b. In each episode a map is

chosen at random and the agent is placed at its start. It then has to navigate through the map

and reach the goal position depicted by green sphere.

The agent has a LIDAR-like sensor informing it about obstacles in its proximity, the range

of the sensor is roughly 6 times the robots size. However, the agent does not have any

information about its orientation (compass), or which maze it has been placed into. Hence, it

needs to learn e.g. the ‘follow wall’ strategy instead of blindly memorizing an action sequence

for each map. The atomic action is a vector of torques for the wheels, clipped to [−1, 1]

interval. The agent receives a sparse positive reward of +1 only when it reaches the desired

goal position. All other actions are uniformly penalised with -0.05 reward per step, giving

the agent no information about its progress.

The hierarchical architecture is realised by supplying two locomotion skills: one for

efficiently moving forward a larger distance, and the other one to turn the robot left by 90°.

The skill for turning right is not provided for the agent, representing a missing skill.

In contrast to Coin-gatherer, the Maze-bot environment is continuous in both states and

actions, randomised, and partially observable, with the HRL architecture using low number

of two skills, which are behaviorally focused.

5.2 Implementation and experiments setup

In this section we cover the details about the technical setup of the experiments, agents, and

the training process. The implementation of ASA, which is also available online1, was greatly

accelerated by RL-lab (Duan et al., 2016), and after its discontinuation by the Garage library

(Garage contributors, 2019).

1The most up-to-date version of ASA is published at https://github.com/holasjuraj/asa
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The core of the top layer of our agents was a stochastic categorical policy using a simple

multi-layered perceptron. On the lower level, including the new skill trained by ASA, we used

the same policy architecture for Coin-gatherer environment, and a continuous Gaussian MLP

policy for Maze-bot. All policy networks featured two hidden layers with 32 (low-level) or 64

(high-level) units using hyperbolic tangent activation. The agents were originally trained by

Natural Policy Gradient algorithm (Kakade, 2002), which was later consistently surpassed by

TRPO (Schulman et al., 2015), so we used it for all agents (both high-level and low-level). In

terms of neural networks training, TRPO employs a conjugate gradient optimizer to adjust

the networks’ weights. We used Garage implementations for all these algorithms.

All Maze-bot agents were trained for 80 iterations, Coin-gatherer and all skills were

trained for 300 iterations.2 A batch-training method was used for the training, in which

the policies were updated after a batch of 5000 steps. The maximal length of an episode was

set to 100 high-level steps for Maze-bot and 50 for Coin-gatherer – if this limit exceeded,

the episode was terminated as an unsuccessful run. This choice of the limit is particularly

interesting in Coin-gatherer, since the optimal strategy is 40 steps-long, so the agent had

to follow a near-optimal strategy in order to deliver all coins in time. Finally, the discount

factors were set to 0.99 (Coin-gatherer) or 0.9 (Maze-bot).

The evaluation metric we chose for all models is the average discounted return:

G(π) = Eπ

 ∞∑
t=0

γtR(st, at)

 (5.1)

In our case, the general notion of policy π is represented by the whole HRL system, i.e.

π = {πH, πL
1 , . . . , π

L
n}. We consider it to be the most suitable metric for evaluation, since

the agent(s) were trained by optimising the same criterion.

All experiments were executed 8 times, changing only seed of the random numbers

generator. The results were then averaged over these trials to get a mean performance of each

model. In the figures later in this chapter, we also use a lighter shade to display the 25–75

percentile interval for Coin-gatherer environment, and 5–95 percentile interval for Maze-bot

(since its training was more stable and consistent).

5.3 Overall performance

In Experiment 1, we focused on the most important question to be answered: how much does

adding a new skill help in training an overall task. We ran a Base run simulation, training

the HRL architecture with the pre-trained skill set which was incomplete, as described in

section 5.1. Another simulation was then run on identical setup, but with ASA turned on –

which resulted in ASA identifying the missing skills and adding them into the system.
2Although much fewer iterations would be sufficient for the skills, since they converged relatively fast.

68



Additionally, as a comparative study, we used the same environments to train agents using

HiPPO algorithm (Li et al., 2019). We chose this approach as it is one of few models capable

of skill training even during high-level training, as we do in our approach. It trains the whole

HRL system – i.e. the high-level agent and the skills at the same time, and has been shown

Figure 5.2: Overall performance of ASA in Coin-gatherer environment. The increase gained

by adding the ASA skill resulted in collecting ~1.2 more coins. The equivalent HiPPO model

was not able to train a reasonable behavior – raising number of skills to 50 helped, but still

yielded subpar performance.

Figure 5.3: Overall performance of ASA in Maze-bot environment. The increase gained by

adding the ASA skill resulted in shortening the path by ~16.2 high-level steps. The HiPPO

model again performed worse, as it has probably identified only some of the useful skills.
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to outperform previous similarly oriented approaches. We also tried modifying the latent

dimension dim(Z) = n, which affects how many skills are to be trained. We tried two options

for each environment: setting n to the same number of skills as our ASA agent had (18 / 3

skills), or making the skill set roughly tree times as large (50 / 10 skills). For further details

on HiPPO algorithm, see section 3.3.10.

Figures 5.2 and 5.3 display the overall performance of ASA-enabled agents, in comparison

to the Base runs without ASA, for both testing environments. We can observe in both cases that

adding a new skill identified by ASA consistently and significantly increases the performance

of the agent. In case of Coin-gatherer, this means an increase from an average of 4.4 to 5.6

delivered coins, out of 6 possible. The Maze-bot’s increase by 0.81 in average discounted

return translates to paths shorter by 16.2 high-level steps, on average.

As mentioned before, the two environments use fundamentally different types of skills –

goal-based in Coin-gatherer vs. behavioral in Maze-bot. Since ASA was successful in both

cases, it suggests that it is able to train both goal-based and behavioral types of skills. To

the best of our knowledge, there has not yet been a published model that would be demonstrate

such behavior.

We can also observe that the performance of HiPPO lacks greatly behind the performance

of our models. The slower start of the training can be in large part explained by the fact

that HiPPO starts with untrained skills, in comparison to the pre-trained skill set in the Base

runs. However, even after sufficient time and near convergence, HiPPO still had lower overall

performance than ASA. This suggests that it was not able to successfully identify all useful

skills, and hence the resulting skill set was still incomplete.

The nature of HiPPO can also explain its subpar performance in Coin-gatherer environ-

ment. This algorithm was primarily designed for behavioral skills, while this environment

strongly benefits from goal-based ones. On the other hand, we can see that Maze-bot environ-

ment, which was focused on behavioral skills, enabled the HiPPO agent to score reasonably

well.

Figure 5.4 displays the usage of the new skill which was added by ASA. In both environ-

ments and all seeds the new skill is used reasonably often by the high-level agent, which hints

that the skill was indeed useful. The nearly unchanged values in case of Coin-gatherer also

suggest that the skill integration performed well, and set the new skill to be used in the correct

situations. On the other hand, the rising trend in case of Maze-bot shows that the integration

was not ideal, and weights for the new skill needed to be significantly adjusted by the training

of the high-level agent.
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(a) Coin-gatherer environment (b) Maze-bot environment

youtu.be/5skMETOF28M

Figure 5.4: Usage of the new skill by the high-level agent. (a) The constant trend is a sign of

good skill integration. (b) The large change suggests that strong adaptation was needed, since

the integration was not ideal.

5.4 Quality of the new skill

Since the new skill is the key component of ASA method, in Experiment 2 we aimed to

evaluate its quality and abilities.

First, as a form of empirical example, figure 5.5 shows a sample skill from the Coin-

gatherer environment. When the ASA identified the best sequence δ to be the candidate for

the new skill, we extracted the set of its start-states – scattered through the map, and end-states

– focused mainly in the coin drop-off area, as shown in subfigure (a). A new skill was then

trained using these two sets of states, and its behavior is displayed in subfigure (b).

(a) (b)

Figure 5.5: Example of a skill from Coin-gatherer environment. (a) The set of start-states

(green dots) and end-states (red dots) of the identified sequence δ. (b) Paths taken by the skill

trained from δ – each path starts in in blue and ends in red color.
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In order to rigorously evaluate the quality of the new skill in general, we constructed

the upper and lower bounds for the skill performance. These bounds come in form of an ideal

skill as the upper bound, and a bad skill as the lower bound.

The ideal skills were manually constructed in order to optimally enrich the skill set. In

the case of Coin-gatherer, it was a skill for reaching the regions #14 and #15 (from figure

5.1a). For Maze-bot, it was the skill to turn right. It is important to note that by constructing

these ideal skills manually, we might have introduced an engineered bias to them. Hence,

they might not be the optimal skills per se, but they are as good as we could think of.

On the other side of the spectrum, the bad skills that form a lower bound are constructed

as simple random policies for both environments. Such skills have zero contribution to

the overall system, which is as low as we can get before actively hurting the HRL agent.

Having set the bounds for usefulness of the skill, we can now evaluate how high the

ASA-trained skill stands between them. In the first trial, we kept all submodules of ASA

active (decision, integration, ...), except for the skill training step, which was substituted

by manually constructed ideal or bad skills. The final results for such setup are shown in

figure 5.6. We can observe that ASA-trained skill performs very well, falling short only

slightly behind the ideal skill. If we consider the ideal and bad skills as a range bounding the

fitness of the skill, we can express that ASA-trained skill scored solid 73.2% of the possible

performance in Coin-gatherer, and excellent 88.7% in Maze-bot.

As a form of ablation study, we further disabled the decision element and triggered

the addition of new skills manually. The ASA mechanism then took the imperfect data it had

collected up to the trigger time, and was forced to formulate, train, and integrate a new skill

from these data. In case of manually adding the ideal or bad skills, the skill creation was also

done outside ASA, and we only let ASA integrate it into agent’s hierarchy.

Figure 5.7 shows the results for these manually triggered trials – for ideal, ASA-train,

as well as bad skills. We can draw several conclusions from this series of plots. First and

foremost, we can conclude that ASA is able to formulate a reasonably good skill regardless

of the trigger time. All of ASA-trained skills improved the overall performance significantly,

with the majority of them keeping pace with the ideal skills. The exception to this can be

seen only if ASA was triggered at the very beginning of Coin-gatherer training (middle left

plot). While the new skill was somewhat useful, its speed of convergence was significantly

slower in comparison to the ideal skill (upper left plot). We attribute this effect to the fact that

the high-level agent had not yet learned almost anything up to this point (black Base run line

is nearly zero), and hence the sequences δ consisted mainly of exploration paths.

Secondly, we are able to falsify the hypothesis that any added skill may cause an improve-

ment. We can see from the bottom-row plots that the performance with a bad skill initially

dropped as the high-level agent tried to explore it, and eventually leveled out with the original
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(a) Coin-gatherer environment (b) Maze-bot environment

Figure 5.6: Comparison of ASA-trained skill with a manually constructed ideal skill (upper

bound), and a useless bad skill (lower bound).

(a) Coin-gatherer environment (b) Maze-bot environment

Figure 5.7: Addition of the new skill was triggered manually, and we forced ASA to integrate

an ideal skill (top), ASA-trained skill (middle), or a bad skill (bottom).
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performance when the agent learned to ignore it. However, no significant improvement was

observed in any run. This proves that the success of ASA is not only coincidental.

Finally, the bottom-row plots also show that adding a useless skill does not hurt the model

performance in the long-term view. This information means that even if ASA produced

a malformed skill, its addition to the HRL system would not hurt its final performance.

Hence, ASA can be deployed on any HRL architecture without worries – if the architecture is

suboptimal, ASA will try to fix it, but if it is already optimal, ASA will not break it.

5.5 Integration schemes

Experiment 3 was focused to evaluate the efficiency of individual skill integration schemes

described in section 4.5. We introduced two uninformed schemes – one of which was purely

random, serving as a baseline for comparison. We also constructed four informed schemes,

which leveraged an additional information to better integrate the new skill. Our hypothesis

was to observe substantially better performance in cases when the informed schemes are used.

We executed multiple simulations in which a new skill was created at different times during

the high-level training. The resulting performance of all integration schemes is displayed in

figure 5.8. We can conclude that usage of different integration schemes before (subfigure

a) or at time when ASA decided to add new skill (subfigure b) had negligible effect on

the reward gain or learning speed, disproving our initial hypothesis, since all integrators

exhibited comparable performance to the baseline Random integrator in these situations.

(a) (b) (c)

Figure 5.8: Effect of using different integration schemes during the new skill’s integration

in Maze-bot environment: (a) at 4th iteration, (b) at 12th iteration (ASA decision), (c) at 40th

iteration.
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The only, yet still not very significant difference in learning speed can be observed between

uninformed and informed schemes if we add a new skill much later, i.e. after the training

of the imperfect hierarchy converged to a stable solution (subfigure c). By observing this

phenomenon we found that the later we add a new skill, the more notable this difference is.

We attribute this effect to the naturally decreased exploration in later stages of the high-level

training, which is not supported by Random scheme in contrast to the informed ones. However,

the simple exploration enhancement of the uninformed Bias-boosted integrator did not work

even in this scenario. These findings suggest that more sophisticated directed exploration of

informed schemes does indeed work, but its effects are too week to manifest if the high-level

agent performs a significant exploration by itself.
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Chapter 6

Discussion and Future Work

In the previous chapter we described in detail the results of individual experiments in our

work. Now we can combine the conclusions from individual experiments, and summarize

the functionality of individual components of Adaptive Skill Acquisition. Here we will also

discuss further topics on the applicability of ASA, as well as improvements that can be

implemented in the future.

As described in section 4.2.1, the ASA framework consists of three conceptual steps,

which we will try to evaluate: identification, training, and integration of the new skill. Starting

with the skill identification process, we feel confident to conclude that it works exceptionally

well. This claim can be backed mainly by the results of Experiment 2 (section 5.4) – even

though this experiment tested jointly both skill identification and its training. However,

the skills performed well despite the fact that the trained policy was not always 100% accurate

to the identified behavior, which hints that the skill identification was indeed robust enough.

Although the implementation composed of the null-hypothesis count CH(δ) (eq. 4.3) and the

f -score (eq. 4.4) can be seen as a rather simple one, the underlying idea based on identifying

frequent sequences proved to be a viable road to success. In fact, the simplicity of the approach

can be even recognized as its advantage, considering the principle of Occam’s razor.

Moving on to the skill training phase of the ASA process, we can again conclude that

it performed sufficiently well, though not flawlessly. The MDP constructed in section 4.4,

and especially its reward function R′, well represents the desired behavior of the identified

skill. This can again be seen in the results from Experiment 2, and was also empirically

observed when looking at the behavior of the trained skills. However, having intercepted

the training at various times and observed the partial results, we sometimes noticed that some

of the trained policies failed to achieve the desired behavior. Implementing the filter for

untrained skills helped to prevent integration of such skills, but further steps could be taken to

increase the skill success rate.
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Finally, the skill integration process did successfully incorporate the new skill into the

existing HRL architecture, although its efficiency was far from ideal. As the results from

Experiment 3 (section 5.5) showed, none of the proposed integration schemes was able to

consistently surpass the baseline Random integrator. As a result, substantial adjustment of

the new skill’s weight vectors had to be sometimes performed, as also seen from figure 5.4b.

Therefore, we consider the skill integration to be the weakest point of ASA at this time, and it

would benefit from further improvements.

Although all aforementioned methods described the usage of ASA within a two-layered

architecture, it is worth discussing also the case of multi-layered hierarchies. The vast majority

of research field still focuses on strictly two-level hierarchies (Sutton et al., 1999; McGovern

and Barto, 2001; Menache et al., 2002; Bakker and Schmidhuber, 2004; Moerman, 2009;

Metzen and Kirchner, 2013; Florensa et al., 2017; Li et al., 2019, and others). Nonetheless,

some authors did rather choose a more dynamical multilevel hierarchies (Dietterich, 2000;

Levy et al., 2018). In such cases, the hierarchy can be represented by a tree in which an inner

node acts as a skill of its parent, but is a separate HRL system of itself. Alternatively,

the policies within the same level can be shared, essentially creating a directed acyclic graph

of policies.

Despite having tested ASA only on two levels, we designed it in a way that it could be in

principle deployed on any level of a general multi-level hierarchy. Considering the tree-like

structure of such a hierarchy, ASA can be directly used on any inner node, to which it can

add new skills forming new leaves in the hierarchy tree. Alternatively, the skill-training step

might be changed from a simple flat-RL training to construction of the whole HRL system –

in such a case the ASA would create a whole subtree of policies.

The future work that can be conducted on ASA focuses mainly on its identified weak

point – the skill integration process. New integration schemes can be developed in order to

better enhance the exploration and adaptation of the new skill. We could employ a forced

exploration of the new skill – modify the high-level agent’s choices to force the execution

of the new skill in selected situations. This effect would, of course, decrease over time,

eventually leaving the full control back to the high-level policy.

We also consider using a pseudo-rehearsal method (Robins, 1995) to create the weight

vector for the new skill. Thus, it would be properly pre-trained, instead of static initialisation

used in current version. Since we use a batch-training method, we already gather all training

samples, and no further simulations would be needed to obtain them.
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Conclusion

In the presented thesis we addressed the issue of missing skills within the architecture of

Hierarchical Reinforcement Learning models. As our main contribution, we introduced

the Adaptive Skill Acquisition framework, which is able to dynamically identify that a skill

is missing, and initiates a process to fix such malformed architecture. ASA autonomously

formulates what a new skill should do, trains a new agent that implements this behavior, and

integrates the skill agent into the overall HRL system.

ASA was designed as a pluggable component, and can be used on top of almost any HRL

architecture. Its applicability is enhanced by the low implementation effort that is needed to

incorporate it into a new system. Furthermore, all components of ASA were designed so that

it could be used in wide variety of tasks too. Being capable of dealing with continuous state-

and action-spaces, sparse rewards, partial observations, or model free environments, ASA is

enabled to be work in any use-case.

The capabilities of our approach were demonstrated in two fundamentally different

environments. The Coin-gatherer represents an ideologically simpler, discrete gridworld

task, while Maze-bot employs a simulated robot in a continuous environment. In both

cases, ASA was able to increase the overall performance of the HRL agent, proving its

interoperability among different tasks. Moreover, given the different nature of skills used in

these environments, the results suggest that ASA is capable of training both goal-based and

behaviorally-oriented skills. To the best of our knowledge, there has not yet been a model that

would demonstrate such ability.

Our experiments proved that employing ASA into an imperfect HRL architecture provides

clear advantage to the model. This can be best seen in comparison to the Base runs without

ASA. The results showed that adding a new skill identified by ASA consistently and signifi-

cantly increases the performance of the agent in both environments. Further ablation study

revealed that the skill identification component is exceptionally robust, and able to formulate

useful behaviors even from imperfect data.

We also compared our approach to HiPPO algorithm (Li et al., 2019), which, similarly

to us, adjusts the skills even during the high-level training. This relatively new model aims

to identify and train all useful skills. However, the comparative study showed that ASA
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outperforms this approach by large margin. While the slower start of HiPPO can be easily

explained by its nature (training all skills at once), its premature convergence into suboptimal

solution clearly shows that it is not able to identify all useful skills. These, however, could be

identified by ASA, which in turn resulted in improved performance.

To conclude, we believe we have provided an interesting piece to the mosaic of hierarchical

RL approaches that can be expected in the future to contribute to the development of intelligent

autonomous learning adaptive systems that will serve to the benefit of the whole society in

the technology-rich 21st century.
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