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Abstract

Short documents, such as posts on social media, lack the amount of context needed for
deep learning. Modern systems for entity disambiguation (ED) for short documents
often rely on annotated Knowledge Bases, extensive feature engineering and using sim-
ple machine learning models. We propose a novel approach to ED for short documents
by leveraging representation learning and statistical information about entities from
large amounts of unstructured data. The fact that even just our baseline model, that
uses empirical probability from large unstructured data to select the top entity candi-
date, shows competitive performance to previous research is a clear evidence that such
information is useful for this task. By experimenting with the current state-of-the-art
approaches for ED for long documents, we develop a model that outperforms current
systems on all available datasets for ED for short documents. Additionally, we publish
a new dataset for ED with short documents based on Twitter posts labeled by earlier
research.

Keywords: entity disambiguation, entity embeddings, word embeddings, natural
language processing, social media
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Abstrakt

Krátke dokumenty, ako napríklad príspevky na sociálnych sieťach, neobsahujú dosta-
točné množstvo kontextu, ktoré je potrebné pre učenie hlbokých neurónových sietí.
Moderné systémy pre rozpoznávanie pomenovaných entít v krátkych dokumentoch
sa často spoliehajú na anotované databázy znalostí, rozsiahle inžinierstvo vlastností
dát a použitie jednoduchých modelov strojového učenia. V tejto práci navrhujeme
nový prístup k rozpoznávaniu entít v krátkych dokumentoch, kde využívame učenie
reprezentácií a štatistické informácie o entitách z veľkého množstva neštrukturovaných
dát. Fakt, že už len náš základný model, ktorý používa empirickú pravdepodobnosť
z veľkých neštrukturovaných dát na to, aby vybral najlepšieho kandidáta pre danú
entitu, ukazuje výsledky porovnateľné s predchádzajúcim výskumom, je jasným dôka-
zom toho, že takéto informácie sú pre danú úlohu užitočné. Experimentovaním s na-
jmodernejšími prístupmi pre rozpoznávanie entít v dlhých dokumentoch sme vyvin-
uli model, ktorý prekonáva súčasné systémy na všetkých prístupných datasetoch pre
rozpoznávanie entít v krátkych dokumentoch. Navyše publikujeme aj nový dataset
pre rozpoznávanie entít v krátkych dokumentoch, založený na príspevkoch z Twitteru,
ktoré boli označené v skorších výskumoch.

Kľúčové slová: rozpoznávanie entít, vnorené vektory entít, vnorené vektory slov,
spracovanie prirodzeného jazyka, sociálne siete
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Introduction

With the increasing volume of textual content that can reach terabytes each day, there is
a growing need for automatic methods of text summarization, semantic understanding
and, eventually, question answering. The key step to these goals is entity linking
that reveals the semantics of spans of text that refer to real-world entities. The main
challenge arises from word ambiguities inherent to natural language: surface form
synonymy, i.e., different spans of text referring to the same entity, and homonymy, i.e.,
the same name being shared by multiple entities.

The goal of entity disambiguation (ED) is to resolve potentially ambiguous mentions
of entities to their canonical representations such as corresponding Wikipedia articles
or referent entities in a Knowledge Base, like Wikidata (Vrandečić and Krötzsch, 2014),
DBPedia (Auer et al., 2007) and YAGO (Suchanek et al., 2007).

Popular works usually try to link entities present in long documents with a lot
of context, such as Wikipedia. Two types of information in a document is usually
captured for ED: (i) contextual words surrounding an entity mention and (ii) other
entity mentions that may or may not be in a relation with the current entity mention.

Due to a relatively small amount of such data, it is very difficult to disambiguate
entities in short texts like posts on social media. The entities to be recognized are
often complex and surrounded by highly subjective context. Previous research of ED
for short texts exhausted many different approaches like extensive feature engineering
(Waitelonis and Sack, 2016; Sakor et al., 2019), graph-based algorithms (Yang and
Chang, 2016; Cao et al., 2015) and unsupervised disambiguation methods (Feng et al.,
2018).

However, only a few papers exploit additional data other than short texts with little
context. Structured information present in Knowledge Bases was shown to be useful
for ED for short texts (Sakor et al., 2019). Useful information can be also obtained
using semantic similarity methods trained over large amounts of unstructured data
(Zhu and Iglesias, 2018).

We propose a novel approach to ED for short texts by leveraging representation
learning and statistical information about entities from unstructured and context-
rich data. We find that using complementary or related information can often lead
to achieving state-of-the-art results in machine learning. This approach avoids using
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INTRODUCTION 2

any hand-crafted features and instead focuses on automating the process, which leads
to a generalizable solution that could be extended for use in other domains and for
other languages.



Chapter 1

Related Work and State of the Art

The field of artificial intelligence with focus on understanding natural language is re-
ferred to as natural language processing (NLP). There are many interesting problems
in NLP such as automatic summarization, semantic search and question answering that
rely on determining what entities appear in a given text.

Recognition and disambiguation of potentially ambiguous surface forms of entities
in a natural language text into their canonical representations in a Knowledge Base
(KB) is known as entity linking. It comprises two stages: a) mention detection and
b) entity disambiguation. Some previous efforts focus on end-to-end entity linking
(Kolitsas et al., 2018; Hoffart et al., 2011). In this thesis, however, we follow a series
of research papers on entity disambiguation (ED) only, that assume already discovered
entity mentions. Given a natural language text with detected mentions of interest, we
try to answer which entities from a KB are the mentions referring to.

In the following section, we describe and define the task of entity disambigua-
tion, in Section 1.2 we describe the methodology used in the related literature. Later,
in Section 1.3 , we explain the current state-of-the-art research of ED and compare
the approaches for long (Section 1.3.1) and short textual documents (Section 1.3.2).

1.1 Entity Disambiguation

News articles, blog posts and social media posts all contain references to real world en-
tities recognized by public. For an example of entity disambiguation problem, consider
the following sentence:

Woods is returning to the East Coast after winning the golf tournament in the UK.

The task of ED is to assign entities from a KB to the underlined entity mentions.
Mentions can, generally, be ambiguous. The contextual words and other mentions
from the same document (article, post) are usually used for disambiguating mentions

3
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into correct corresponding entities. In Table 1.1, we show some entity candidates
of the mentions from the above example and the correct entities depicted in bold.

Mention Candidates

Woods Wood, Forest, Tiger_Woods

East Coast

East_Coast_of_the_United_States,

National_Express_East_Coast,

Eastern_states_of_Australia

golf
Golf, Volkswagen_Golf,

Golf_(video_game)

UK United_Kingdom, Ukrainian_language

Table 1.1: Selected entity candidates of mentions from the example. The ground truth entities
in context of the example are depicted in bold.

In this work, we resolve the mentions jointly across an entire document by combining
global information from document-level entity relations with local information captured
from mentions and their surrounding context.

It is worth noticing that previous mention detection might have yielded imperfect
results. In our example, we could argue that the whole span golf tournament might
have been detected instead of just golf. Correct detection could lead to disambiguat-
ing the mention into entities like Masters_Tournament, US_Open_(golf) and
The_Open_Championship (which is the only major golf tournament held in the UK).

1.1.1 Definition

Let ∆ be a Knowledge Base (KB), consisting of a set of entities E , V a finite dictionary
of phrases or names and C a context representation based on a corpus D. Formally,
we seek a mapping F : (V , C)n → En, that takes as input a sequence of linkable spans,
mentions m = (m1, ...,mn) ∈ V along with their context windows c = (c1, ..., cn) ∈ C
and produces a joint entity assignment e = (e1, ..., en) ∈ E . Here n refers to the number
of linkable spans in a document D ∈ D and each context window ci consists of contex-
tual words ci = w1, ..., wK , where K is the size of the context window. This problem
is known as entity disambiguation or link generation in the literature.

We can construct such mapping F in a probabilistic approach, by learning a condi-
tional probability model p(e|m, c) from data and then employing (approximate) prob-
abilistic inference in order to find the maximum a posteriori (MAP) assignment, hence:

F (m, c) := argmax
e′∈En

p(e′|m, c) (1.1)
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In the sequel, we describe how to estimate such a model from a corpus of entity-
linked documents.

1.2 Related work

This section is devoted to a description of the common methodology established in pre-
vious related literature, as well as description of the current state-of-the-art publica-
tions. In the first part, we describe different formulations of the problem of ED and
discuss common methodology and terminology. In Section 1.3.1 and Section 1.3.2, we
discuss different challenges of ED based on the character of the data and address them
in context of the current research.

Existing research often differs in the referent KB that is used as a vocabulary of
entities. A common approach is to use KBs, such as Wikidata (Vrandečić and Krötzsch,
2014), DBPedia (Auer et al., 2007) and YAGO (Suchanek et al., 2007). These KBs,
or Knowledge Graphs (KG), often contain relevant information about entities, such
as description, aliases of the entity and RDF-like triplets (subject, predicate, object),
that can be used for ED. Recent results show that it is possible to achieve good results
on common ED datasets using only Wikidata without other training data (e.g. long
documents with entity mentions, such as Wikipedia) (Delpeuch, 2019).

This approach is difficult to generalize to languages and domains which do not
have KBs or experts available to hand-craft such features. We, in contrast, focus
on automating the process using representation learning.

Using Wikipedia titles as references to entities is a task defined as Wikification
(Ratinov et al., 2011). There is a vast research using Wikipedia as referent KB for
entities. Wikipedia is an available corpus of entity-linked documents. The hyperlinks
are considered ground truth annotations, the mention being the linked span of text
and the truth entity being the Wikipedia page it refers to. One can extract two kinds
of basic statistics from such a corpus: 1) counts of how often each entity was referred
to by a specific name and 2) pairwise co-occurrence counts for entities in the same
documents.

Note that, in this work, we only link mentions that have a valid gold KB entity.
This setting is referred to as InKBevaluation (Röder et al., 2018). Thus, we treat
mentions referring to entities outside of the KB as "non-linkable". This is in line with
a few previous models (Yamada et al., 2016; Ganea and Hofmann, 2017; Kolitsas et al.,
2018). We leave the interesting setting of discovering out-of-KB entities as future work.
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1.2.1 Candidate Selection

Since there are usually many entities in a KB, it is absolutely necessary to choose
a feasible set of potential candidates, eliminating options which are highly unlikely. For
example, the word "Apple" has 52 different entity candidates on Wikipedia (equivalent
to 52 entries on Apple’s disambiguation page on Wikipedia) 1.

This preprocessing step is called candidate selection. Candidate selection is mostly
achieved by performing a heuristic to choose the candidate set by statistics derived
from the training data. In our work, we consider the top entity candidates based
on an empirical entity-mention probability distribution p(e|m) inspired by recent re-
search (Ganea et al., 2016). This distribution is computed by averaging probabilities
from two indexes built from mention-entity hyperlink count statistics from Wikipedia
and a large Web corpus (Spitkovsky and Chang, 2012), and the YAGO (Hoffart et al.,
2011) dictionary where each candidate receives a uniform probability distribution.

Sometimes the candidates can be further reduced to solving a domain-specific prob-
lem, for which only a subset of the general candidates are likely to appear within
the context (Feng et al., 2018). For example, categories of the entity candidates can
be used as additional information for eliminating unrelated candidates.

Thus, after this step, the task of a trainable model is reduced to choosing the best
option among a smaller list of entity candidates Emi

= (e′i,1, ..., e
′
i,k) for each mention

mi. Here, k is a small pre-defined maximal number of entity candidates for each
mention. In what follows, we will discuss two classes of approaches tackling the problem
of choosing the best candidate: local and global modeling.

1.2.2 Local and Global Models

Local models consider the individual context of each entity mention in isolation in order
to reduce the size of the decision space, utilizing clues such as the textual similarity
between the context and each disambiguation entity candidate’s Wikipedia page.

Let ci be a local context of mention mi and Ψ(e′i, ci) be a local score function.
A local model then tackles the problem by searching for the entity candidate e∗i that
optimizes the local score for each i ∈ {1, ..., n} from a document D with n mentions,
namely:

e∗i = argmax
e′i∈Emi

Ψ(e′i, ci) (1.2)

Usually earlier research depends only on local models (Mihalcea and Csomai, 2007;
Milne andWitten, 2008), however, some recent work shines a new light on this approach
(Lazic et al., 2015; Yamada et al., 2017).

1https://en.wikipedia.org/wiki/Apple_(disambiguation)

https://en.wikipedia.org/wiki/Apple_(disambiguation)
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Global models attempt to jointly disambiguate all mentions in a document to arrive
at a coherent set of disambiguated entities, based on the assumption that the under-
lying entities are correlated and consistent with the main topic of the document. This
approach is also often referred to as collective disambiguation or joint entity disam-
biguation.

A global model, besides using local context within Ψ(e′i, ci), takes into account
entity coherence, captured by a coherence score function Φ(e′):

e∗ = argmax
e′∈Em1×...×Emn

n∑
i=1

Ψ(e′i, ci) + Φ(e′) (1.3)

where e′ = (e′1, ..., e
′
n) is a vector of entity candidates for mentions (m1, ...,mn) ∈ D

assigned for evaluation in a given iteration.
The coherence score function, in the simplest form, is a sum over all pairwise scores

Φ(e′i, e
′
j) (Ratinov et al., 2011; Ganea et al., 2016; Globerson et al., 2016; Yamada et al.,

2016) resulting in:

e∗ = argmax
e′∈Em1×...×Emn

n∑
i=1

Ψ(e′i, ci) +
n∑

i 6=j

Φ(e′i, e
′
j) (1.4)

While this approach tends to result in superior accuracy, the main disadvantage
is that the space of possible entity assignments grows combinatorially and the exact
decoding of a global model is NP-hard (Wainwright et al., 2008). As a consequence,
many approaches in this group rely on approximate inference mechanisms (Globerson
et al., 2016; Ganea et al., 2016). Local models solve each mention independently.
Therefore, they are, generally, computationally more effective than global models.

Previous work has investigated different approximation techniques, including: ran-
dom graph walks (Guo and Barbosa, 2018), personalized PageRank (Pershina et al.,
2015), intermention voting (Ferragina and Scaiella, 2010), graph pruning (Hoffart et al.,
2011), integer linear programming (Cheng and Roth, 2013) and ranking SVMs (Rati-
nov et al., 2011). Some recent research explores even deep reinforcement learning for
collective entity linking (Fang et al., 2019).

Another branch of research tries to utilize the weight of a minimum spanning tree
to measure the coherence between entities and, instead of considering all the given
mentions, a pair with the highest confidence is iteratively being selected at each step
for decision making (Phan et al., 2018).

Recently, pretrained embeddings of words (Mikolov et al., 2013a; Pennington et al.,
2014) and entities (He et al., 2013; Yamada et al., 2017; Ganea and Hofmann, 2017)
have been used to model the relations between words and entities in the local context
and relations between entities in the pairwise scores. These approaches often do not
use any other hand-crafted features and are thus generalizable for other domains and
problems.
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Further research improves the techniques of collective disambiguation by modeling
not only coherence, but multiple different latent relations between entity mentions.
While previous works relied on hand-crafted features and relations present in KGs
(Cheng and Roth, 2013), modern approach chooses automating the process by lever-
aging representation learning (Le and Titov, 2018).

The learned relations are represented by relation embeddings. This approach as-
sumes K latent relations and for each entity mention pair (mi,mj) assigns a non-
negative weight αijq to every relation q ∈ (1, ..., K). The pairwise scores are then
simply computed as a weighted sum of all relation-specific scores Φq(e

′
i, e
′
j). Formally:

Φ(e′i, e
′
j) =

K∑
q=1

αijqΦq(e
′
i, e
′
j) (1.5)

In this thesis, we follow the line of research emphasizing representation learning
(Ganea and Hofmann, 2017; Le and Titov, 2018) due to achieving great results by el-
egant automated approach. We will describe our candidate selection process as well
as our choice of local score function Ψ(e′i, ci), pairwise score function Φ(e′i, e

′
j) and

relation scores Φq(e
′
i, e
′
j) in Chapter 2.

1.3 State of The Art

The focus of state-of-the-art research is mostly on long documents, such as Wikipedia,
with rich context and many entity-entity co-occurrences. Disambiguating entities
in short texts like posts on social media suffers from issues like small amount of context
that is highly subjective and only few entities are present in a document2. This makes
ED for short documents a very challenging problem. In this section, we present the cur-
rent state-of-the-art research for long and short documents and compare the underlying
challenges behind the two problems.

1.3.1 Entity Disambiguation for Long Documents

Vast amounts of data provide the perfect conditions for training complex models of NLP
tasks. Entity disambiguation is not an exception. Most of the previous research focuses
on solving ED in long documents. The proposed solution in most cases starts with
candidate selection based on entity-mention co-occurrence counts, such as we described
in Section 1.2.1.

Some research of ED for long documents only uses local models by scoring en-
tity candidates based on local context and possibly other additional information like
Wikipedia pages of the entity candidates, information from KGs or word and entity

2A Twitter post (in ED data) usually contains ∼1.5 entity mentions
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embeddings (e.g. Mihalcea and Csomai, 2007; Yamada et al., 2017). It is very common
to use local models together with global models that also take into account information
such as relations of the different entities in one document and often disambiguate all
entities jointly within a document (Hoffart et al., 2011; Ganea and Hofmann, 2017; Le
and Titov, 2018; Phan et al., 2018; Fang et al., 2019, etc.). The general approach of
using local and global models is described in Section 1.2.2.

For long documents it can be also beneficial not to assume only a single topic, but
rather multiple topics per document. Naturally, topic modeling can be used for entity
disambiguation by attempting to harmonize the individual distribution of latent topics
across candidate entities. Previous research explores applying Latent Dirichlet Allo-
cation (LDA) (Houlsby and Ciaramita, 2014; Pilz and Paaß, 2011) and compare the
resulting topic distribution of the input document to the topic distributions of the dis-
ambiguated entities’ Wikipedia pages.

Despite the dominance of global models in recent years, current state of the art for
ED for long documents reformulates the problem of ED as a type system of hundred
categories of entities obtained from the Wikidata KG (Raiman and Raiman, 2018). In
this work, each entity is assigned a unique ∼100-dimensional vector representing its
membership in each category. The ED system then learns a mapping from a mention
plus its context to the type representation of the ground truth entity. Thus, the system
is a local model using the benefits of lower complexity. It would be interesting to test
this approach for short documents. The system, however, assumes choosing a good
specific set of categories which might not be fully automated. Therefore, we leave this
as a future work.

1.3.2 Entity Disambiguation for Short Documents

Short documents like posts on social media and queries lack sufficient informative data
to describe complex entities, therefore ED for short documents is a very challenging
task. Due to this nature of the problem, few methods have been proposed to solve ED
for short documents.

Previous research mostly relied on massive feature engineering and external hand-
crafted KBs (Cao et al., 2015; Habib and Van Keulen, 2016; Waitelonis and Sack,
2016; Sakor et al., 2019). Other approaches leveraged topic and category information
choosing from entity candidates (Feng et al., 2018; Zhu and Iglesias, 2018).

Using additional data is highly beneficial for such task. Typically, previous methods
(e.g. Sakor et al., 2019) only use KGs, such as Wikidata (Vrandečić and Krötzsch, 2014)
that require human annotation and supervision. Only few approaches explored lever-
aging unstructured data for learning semantic representations of words and categories
(Zhu and Iglesias, 2018).
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In the next section, we propose a novel approach to ED for short documents by lever-
aging representation learning and statistical information about entities from unstruc-
tured and context-rich data. We emphasize on automation of the whole process, avoid-
ing any hand-crafted features, which leads to a generalizable solution that could be
extended for use in other domains and for other languages.

Apart from representation learning, we are also one of few that approach ED for
short texts as collective disambiguation (Cao et al., 2015; Yang and Chang, 2016). Some
previous works argued that modeling global dependencies for short documents can
lead to poor performance (Feng et al., 2018) due to the misleading nature of subjective
content in short documents like social media posts. However, we aim to overcome these
difficulties by the aforementioned representation learning, making more informative
decisions.



Chapter 2

Methodology

In this thesis, we aim to design a competitive system for entity disambiguation for
short documents. The idea is to explore using additional information, such as entity
statistic and representations of words and entities learned from a large corpus of long
documents.

In this chapter, we present our model for entity disambiguation for short documents
leveraging representation learning and statistical information from context-rich data.
Our model is inspired by recent work in the field of ED for long documents (Ganea and
Hofmann, 2017; Le and Titov, 2018). In the first section, we define our main objectives
and our general approach, later we propose the implementation details.

2.1 Objectives

Let us start by proposing an empirical entity-mention probability distribution p(e|m)

based on Wikipedia corpus, such as the probability distribution used in previous related
work (Ganea et al., 2016; Kolitsas et al., 2018; Le and Titov, 2018), for selecting
a fixed number of entity candidates for each mention. The candidate selection process
is described in Section 2.2.1. We solve the collective disambiguation task of selecting
the best candidate based on the context and other entities within the same document
by proposing a local and a global model in the same fashion used for long documents.

Representation learning is used to represent features like words and entities. Namely,
we use pretrained Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington et al.,
2014) embedding models to represent contextual words. Instead of using sparse statis-
tics about entity-entity co-occurences, we use entity embeddings bootstrapped from
Word2Vec word embeddings, trained independently for each entity, using word-entity
statistics from the canonical Wikipedia pages of the entities, and the context surround-
ing mentions of the entities in the Wikipedia corpus (Ganea and Hofmann, 2017). This
approach embeds words and entities in the same low-dimensional vector space, which

11
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gives us the ability to exploit geometric similarity between them. The training of entity
embeddings is described in detail in Section 2.2.2.

Based on the assumption that only a few contextual words are informative for
resolving an ambiguous mention, our local model uses neural attention mechanism
over the local context to compute the local score Ψ(e′i, ci) for each entity candidate
(Ganea and Hofmann, 2017). A contextual word is considered relevant if it is strongly
related to at least one of the entity candidates of a given mention. For short documents,
we consider the whole document as the context of the mention (rather than a smaller
context window) for producing the local scores. The details of the local model are
described in Section 2.2.3

We define our global model as a fully-connected pairwise conditional random field
(CRF) to model a joint probability distribution over all combinations of entity can-
didates per document e′ ∈ Em1 × ... × Emn . We follow the multi-relational approach
(Le and Titov, 2018), using relation scores Φq(e

′
i, e
′
j) to distinguish different relations

between entities for computing the pairwise entity-entity scores Φ(e′i, e
′
j). For further

details about our global model see Section 2.2.4.
Our belief is that further information, like the entity-mention probability distribu-

tion and the learned embedded representations could lead to interesting results in entity
disambiguation for short documents.

2.2 Implementation Details

In this section, we present our model for entity disambiguation for short documents
leveraging representation learning and statistical information from context-rich data.

2.2.1 Candidate Selection

For each mention to be disambiguated, we first select a set of potential candidates
by considering the top 30 ranked entities based on the local mention-entity probability
distribution p(e|m) (Ganea et al., 2016). It is computed by averaging probabilities from
two indices built from mention-entity hyperlink count statistics from Wikipedia and
a large Web corpus (Spitkovsky and Chang, 2012), and the YAGO dictionary (Hoffart
et al., 2011) where each candidate receives a uniform probability distribution.

Consequently, we further limit the number of candidates per mention by keeping
only the top 4 entity candidates with the highest p(e|m) and the top 3 entity candidates
based on the local context-entity similarity

∑
w∈c x

>
e xw. These pruning heuristics result

in a significantly improved running time at an insignificant accuracy loss. We have
chosen these numbers based on previous research (Ganea and Hofmann, 2017; Le and
Titov, 2018).



CHAPTER 2. METHODOLOGY 13

Following previous works (Yamada et al., 2016; Ganea and Hofmann, 2017; Le and
Titov, 2018), we considered only the mentions that have entities in the KB (in our
case, the mention-entity map p(e|m)).

2.2.2 Entity Embeddings

In this section, we describe the training of entity embeddings that we inherit from
previous research (Ganea and Hofmann, 2017). The entity embeddings share the same
vector space with popular word embeddings (Mikolov et al., 2013a; Pennington et al.,
2014) that are pretrained in our setting. This allows us to take geometric and, by def-
inition, also semantic similarity measures between words and entities.

These vector representations are a key component to avoid hand-engineered fea-
tures, multiple disambiguation steps, or the need for additional ad hoc heuristics when
solving the ED task. Apart from that, a great advantage of this approach is that it
works well for rare entities with few mentions and new entities can always easily be
added in an incremental manner, which is important in practice.

Let x : W → Rd be a pretrained word embedding map encoding the meaning
of words e ∈ W . For this purpose,Word2Vec (Mikolov et al., 2013a) pretrained on the
Google News dataset is used. We describe below, how to extend this map to entities E ,
i.e. x : E → Rd.

Let us assume a generative model in which words that co-occur with an entity e are
sampled from a conditional distribution p(w|e) when they are generated. The distribu-
tion is approximated empirically, by the word-entity co-occurrence counts #(w, e) from
two sources: (i) the entity’s canonical Wikipedia page, and (ii) the windows of fixed
size surrounding mentions (hyperlinks) of the entity in Wikipedia. For the generative
model, this is the positive distribution of words w related to entity e. Furthermore,
we assume that the negative words (i.e. unrelated to e) are drawn from a word prior
probability distribution p(w). Smoothed unigram distribution is used for this approx-
imation.

For training, a max-margin objective is used to infer the optimal embedding xe

of entity e. The idea is that vectors of positive words w+ ∼ p(w|e) are closer to the
entity vector xe than vectors of random (negative) words w− ∼ p(w). Let γ > 0 be
a margin parameter and [·]+ the ReLU function (see Figure 3.4). The objective is then
defined as:

J(z; e) := Ew+|eEw− [h(z;w+, w−)]

h(z;w, v) := [γ − 〈z,xw〉]+
xe := argmin

z:||z||=1

J(z; e)

(2.1)

The training was done by previous work (Ganea and Hofmann, 2017) using AdaGrad
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optimizer (see Section 3.2.3).

2.2.3 Local Model with Neural Attention

We implement the local neural attention mechanism based by recent research (Ganea
and Hofmann, 2017) that uses word and entity embeddings to represent the input
features. The insight behind the attention mechanism is that only a few context words
are informative for resolving an ambiguous mention. It has been exploited before that
focusing only on those words helps to reduce noise and improves disambiguation (Lazic
et al., 2015). Here, we assume that a context word may be relevant, if it is strongly
related to at least one of the entity candidates of a given mention.

Figure 2.1: Local model with neural attention (Ganea and Hofmann, 2017). The inputs are
contextual words c = (w1, ..., wK) (on the left, blue) and candidate entities Em = e′1, ..., e

′
S (on

the right, green) of one mention m. The outputs are local entity candidate scores Ψ(e′i, c) for
each e′i ∈ Em. All parts are differentiable and trainable with backpropagation.

The local model, depicted in Figure 2.1, computes an entity-context score for each
candidate e′ ∈ Em based on the K-word local context c = w1, ..., wK surrounding
mention m. It is a composition of differentiable functions, thus it is smooth from input
to output, allowing us to easily compute gradients and backpropagate through the
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model. Each word w ∈ c and entity candidate e′ ∈ Em is mapped to its embedding, xw
and xe′ respectively, via the pretrained map x (see Section 2.2.2). We then compute
an unnormalized support score for each word in the context as follows:

u(w) = max
e′∈Em

x>e′Axw (2.2)

where A is a parameterized diagonal matrix. The weight is high if the word is strongly
related to at least one candidate entity. We apply (hard) pruning to the top R ≤ K

words with the highest weights:

c = {w ∈ c|u(w) ∈ topR(u)} (2.3)

and apply a softmax function (see Equation 3.7) on these weights:

β(w) =


expu(w)∑
v∈c expu(v)

if w ∈ c

0 otherwise
(2.4)

The final β-weighted context-based local score of an entity candidate e′ with context
window c is then defined as:

Ψ(e′, c) =
∑
w∈c

β(w)x>e′Bxw (2.5)

where B is another trainable diagonal matrix.

2.2.4 Multi-relational Global Model

For collective entity disambiguation, we define a global model, based on Equation 1.4,
to find the optimal entity-mention assignment vector e∗ over Em1 × ...× Emn 3 e′.

Pairwise Scores

First, we will describe how to compute the pairwise score function Φ(e′i, e
′
j) and the

relation scores Φq(e
′
i, e
′
j) for K latent relations (Le and Titov, 2018). The pairwise

scores Φ(e′i, e
′
j) are computed as a sum of all relation-specific scores Φq(e

′
i, e
′
j) for each

q ∈ (1, ..., K), weighted by a non-negative weight αijq (see Equation 1.5). Each relation
q is represented by a trainable diagonal matrix Rq ∈ Rd×d and its relation score is
given by:

Φq(e
′
i, e
′
j) = e′>i Rqe

′
j (2.6)

The weight αijq is a normalized score:

αijq =
1

Zijq

exp

(
f>(mi, ci)Dqf(mj, cj)√

d

)
(2.7)
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Figure 2.2: Mapping function f(mi, ci), a single-layer neural network using hyperbolic tangent
(Eq. 3.4) activation function and dropout (see Section 3.2.4). The input is the concatena-
tion of the average embedding of words in the left context, the mention and the right context
respectively (Le and Titov, 2018).

where Zijq is a normalization factor, f : (V , C)n → Rd is a mapping function, and
Dq ∈ Rd×d is a trainable diagonal matrix. We learn the mapping f by modeling
a single-layer neural network depicted in Figure 2.2.

To define the normalization factor Zijq, we use ment-norm (Le and Titov, 2018),
normalization over mentions:

Zijq =
n∑

j′=1
j′ 6=i

exp

(
f>(mi, ci)Dqf(m′j, c

′
j)√

d

)
(2.8)

so that
n∑

j′=1
j′ 6=i

αij′q = 1.

The intuition behind ment-norm is that for each relation q and mention mi, we are
looking for mentions related to mi with relation q. For each pair of mi and mj we can
distinguish two cases: (i) αijq is small for all q: mi and mj are not related under any
relation, (ii) αijq is large for one or more q: there are one or more relations which are
predicted for mi and mj.

Ment-norm is a type of attention mechanism that is in line with multi-head attention
approach (Vaswani et al., 2017). For each mention mi and each q, we can interpret
αijq as the probability of choosing a mention mj among the set of mentions in the
document. Each mention mi will have maximally K mentions (heads) to focus on.

Since there is no further transformation of the output of the attention mechanism,
we need to handle cases where all K relations are not applicable for a given mention.
Therefore, a padding mention mpad linked to a padding entity epad is added to each
document. Then, the model can use the padding mention to damp the probability
mass that other mentions receive.
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The final pairwise scores can be computed as a normalized weighted sum of all
relation scores:

Φ(e′i, e
′
j) =

K∑
q=1

αijqe
′>
i Rqe

′
j (2.9)

CRF Model, Learning and Inference

The global model for finding an optimal entity candidate is defined as a fully-connected
conditional random field, with the local scores as the unary factor Ψ(ei) = Ψ(ei, ci)

and the pairwise scores as defined above:

CRF(e|m, c) = exp
( n∑

i=1

Ψ(ei) +
∑
i<j

Φ(ei, ej)
)

(2.10)

The goal of global ED prediction is to perform maximum-a-posteriori (MAP) esti-
mation to find the assignments of entities e∗ that maximize CRF(e∗|m, c). Training
and prediction of this CRF is NP-hard. Therefore, we use truncated fitting of max-
product loopy belief propagation (LBP) to a fixed number of message passing iterations
(Ganea and Hofmann, 2017).

Figure 2.3: Global model: unrolled LBP deep network that is end-to-end differentiable and
trainable (Ganea and Hofmann, 2017).

The architecture of the global model with T message passing iterations is shown
in Figure 2.3. In each iteration t, mention mi votes for entity candidate e ∈ Emj

using
a normalized log-message mt

i→j(e). First, we define the CRF potentials as:

mt+1
i→j(e) = max

e′∈Emi

{Ψ(e′) + Φ(e, e′) +
∑
k 6=j

mt
k→i(e

′)} (2.11)

Then, the normalized log-message is computed as:

mt
i→j(e) = log[δ · softmax(mt

i→j(e)) + (1− δ) · exp(mt−1
i→j(e))] (2.12)

where δ ∈ (0, 1] is a damping factor. The messages at first iteration (layer) are set
to zero. After T iterations (layers), the beliefs (marginals) are computed as:

µi(e) = Ψ(e) +
∑
k 6=i

mT
k→i(e) (2.13)
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µi(e) =
exp [µi(e)]∑

e′∈Emi
exp [µi(e)]

(2.14)

We compute the final score using a two-layer neural network g and the entity-
mention conditional probability map p(e|mi):

ρi(e) = g(µi(e), p(e|mi)) (2.15)

We define a margin-based objective and minimize the following ranking loss:

L(θ) =
∑
D∈D

∑
mi∈D

∑
e∈Emi

h(mi, e) (2.16)

h(mi, e) = [γ − ρi(e∗i ) + ρi(e)]+ (2.17)

where θ = {A,B,R,D and the weights of f and g} are the training parameters, D is
the training corpus and e∗i is the ground truth entity. Adam is used as an optimizer
(see Section 3.2.3).

For ment-norm, the padding mention is treated like any other mention. We add
fpad = f(mpad, cpad) and epad ∈ Rd, an embedding of epad, to the model parameter list,
and tune them while training the model.

In order to encourage the models to explore different relations, we add the following
regularization term to the loss function in Equation 2.16 (Le and Titov, 2018):

λ1
∑
i,j

dist(Ri,Rj) + λ2
∑
i,j

dist(Di,Dj) (2.18)

where λ1, λ2 are set to −10−7 and:

dist(x,y) =

∣∣∣∣∣∣∣∣ x

||x||2
− y

||y||2

∣∣∣∣∣∣∣∣
2

(2.19)

The operation ||.||2 represents the Euclidean norm.
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Technical Background

In this chapter, we give an overview of machine learning algorithms, approaches and
popular hacks that are commonly used for entity disambiguation and a large variety
of other machine learning problems. In the following section, we describe representation
learning and discuss popular word embeddings, in Section 3.2, we outline simple neural
networks and popular tuning techniques, and fianlly, in Section 3.3, we characterize
selected graphical models in machine learning that are used in our research.

3.1 Feature Representation in NLP

In NLP, previous approaches (Cucerzan, 2007; Milne and Witten, 2008; Ratinov et al.,
2011) used high-dimensional but sparse vectors to represent the input features. These
were usually used by linear machine learning models such as support vector machines
and logistic regression (Goldberg, 2015). Nowadays, usually non-linear neural network
models, trained over dense feature vectors are applied to problems of NLP.

The former techniques used so called one-hot representations of the input fea-
tures, where features are specific linguistic inputs like a word or a part-of-speech tag
("VERB", "NOUN", ...). The dimensionality of these sparse feature vectors is the
same as the number of distinct features.

In the later approachs a feature is embedded into a low-dimensional vector space
(low-dimensional in comparison to the one-hot representation; usually a few hundreds
dimensions), thus these dense vectors are called embeddings. In Figure 3.1, we show
a comparison of these sparse and dense feature representations.

One of the advantages of these dense vector representations is computational speed.
The frameworks used for neural networks work slow with high-dimensional sparse
vectors. However, the main advantage of using representation learning, such as em-
beddings, is generalization. Unlike one-hot feature representation, data with similar
features will have similar vector embeddings, therefore we can measure relatedness

19
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Figure 3.1: Sparse vs. dense feature representations (Goldberg, 2015). Two encodings of the
same information: (a) Sparse feature vector, where each dimension represents a binary feature
and feature combinations receive their own dimensions. (b) Dense embeddings-based feature
vector, where each core feature is represented as a vector and feature combinations do not have
an explicit encoding.

(distance) of the data in this vector space. In addition, relationships of words are
present as vector offsets, so that in the embedding space, all pairs of words shar-
ing a particular relation are related by the same constant offset. This is illustrated
in Figure 3.2.

Despite the fact that one-hot representation might have some advantages, like in-
terpretability and the fact that it is easy to use for small data, representation learning
repeatedly shows state-of-the-art results in various areas across NLP (e.g. Celikyilmaz
et al., 2018; Heinzerling and Strube, 2019; Akbik et al., 2019).

3.1.1 Word Embeddings

From mere one-hot encoding, TF-IDF (term frequency – inverse document frequency),
to neural based architectures like Word2Vec (Mikolov et al., 2013a), GloVe (Pennington
et al., 2014) to current state of the art like ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018), today’s word embeddings have evolved from merely storing a binary status
to capturing syntactic relationship and context.
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Figure 3.2: Relation offsets in embeddings (Mikolov et al., 2013b). Left panel shows vector
offsets for three word pairs illustrating the gender relation. Right panel shows a different pro-
jection, and the singular/plural relation for two words. In higher-dimensional space, multiple
relations can be embedded for a single word.

Word2Vec and GloVe

Word2Vec is a predictive embedding model that only takes into account the local
context to predict the word vectors. GloVe, on the other hand, uses predictive neural
methods to capture co-occurence information from the global context. Word2Vec and
GloVe do not take into account the word order, but rather treat the context as a bag
of words. GloVe vectors are faster to train, however, neither GloVe or Word2Vec has
been shown to provide generally better results than the other one.

ELMo and BERT

ELMo and BERT generate embeddings for a word based on the context it appears in,
therefore they produce slightly different embeddings for each of the word’s occurrence.
For example, the word ’play’ has multiple meanings, such as the verb ’to play’ or a noun
for a theatre production. In standard word embeddings such as Glove or Word2Vec,
each instance of the word ’play’ would have the same representation. This enables NLP
models to better disambiguate between the correct meaning of a given word. BERT
uses attention transformers instead of bidirectonal RNNs (recurrent neural networks),
like ELMo does, to encode context. After its release, it enabled near instant state-of-
the-art results for many downstream tasks.

A practical implication of the difference between these two types of embeddings is
that we can use Word2Vec and GloVe vectors pretrained on a large corpus directly,
using only a database with the vectors for the words. There is no need for the model
itself that was used to train these vectors. However, in the case of ELMo and BERT,
since they are context dependent, we need the model that was used to train the em-
beddings even after training, since the models generate the vectors for a word based
on the context. Using ELMo or BERT embeddings for our task could potentially yield
state-of-the-art results. Due to the time and computational difficulty, we leave this for
future work.
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3.2 Feed-Forward Neural Network

Artificial neural networks (NNs) are computational models of machine learning inspired
by biological neural networks that can be trained (using various methods of machine
learning) to perform different tasks. There are multiple types of NNs, the simplest
of them are feed-forward neural networks.

A perceptron, an artificial neuron, recieves one or more weigthed inputs and sums
them in order to produce output. The perceptron outputs a non-zero value only if
the weighted sum exceeds a certain threshold. For that reason a bias unit (usually
a value of 1) is often added to the input layer. The weighted sum (linear combination)
is then passed to a non-linear activation function (see Equation 3.6) to produce a non-
linear output.

A feed-forward neural network is composed of layers of neurons. The input layer
contains the input features, equivalently, the output layer is the output of the network.
A network that only consists of input and output layer is a single-layer perceptron, while
NN model consisting of multiple layers is a multi-layer perceptron (MLP). The layers
between the input and the output layer, are called hidden layers. A typical MLP with
one hidden layer is shown in Figure 3.3.

Figure 3.3: An example of a feed-forward network, drawn in two different styles (Goodfellow
et al., 2016). Specifically, this is a multi-layer perceptron with an input vector x, one hidden
layer h and a single output y. Here, we indicate that a matrix W describes the mapping from
x to h, and a vector w describes the mapping from h to y. On the left, every unit is drawn
separately as a single node, while on the right side, each node represents the whole layer. This
style is much more compact.

To train a NN, we need to find such weights (parameters) of the linear combination,
so that the output is close to the target value. A properly trained NN has the ability
of generalization, which means it can predict the output of an input vector that was not
present in the training data with a small error. The NN is trained after multiple epochs



CHAPTER 3. TECHNICAL BACKGROUND 23

(loops) of forward propagation and backward propagation of error, the backpropagation,
over the training data.

3.2.1 Forward propagation

To evaluate the output of a neural network, we use forward propagation. Working with
a MLP, we need to compute the activation of the layers in the direction from the input
to the output layer. We will demonstrate the forward propagation on the example
network in Figure 3.3. The activation of the kth unit in the hidden layer is the output
of the activation function f that is given the linear combination of the input vector x
and the kth vector from the weight matrix V as the argument:

hk = f(
n∑

j=1

Vkjxj) (3.1)

Similarly, the activation of the ith unit in the output layer is given by the output
of the activation function of the linear combination of the hidden layer and the weight
matrix W:

yi = f(

q∑
k=1

Wikhk) (3.2)

Activation Function

There are various types of activation functions used in neural networks. A common
type of activation function is the logistic function (or the sigmoid function) which
transforms the output to the range (0, 1):

f(x) =
1

1 + exp(−x)
(3.3)

Hyperbolic tangent is also an S-shaped function, but it transforms the output into
the range (−1, 1):

tanh(x) =
exp(2x)− 1

exp(2x) + 1
(3.4)

An approximation of the hyperbolic tangent a hard tangent is an alternative and
fast to compute activation function:

hardtanh(x) =


−1 x < −1

1 x > 1

x otherwise

(3.5)

Nowadays, widely used activation function is rectified linear unit (ReLU) (Glorot
et al., 2011) depicted in Figure 3.4, which is a simple and computationally inexpen-
sive activation function that performs very well on various tasks. For great results,
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it is often used together with the dropout regularization technique that is described
in Section 3.2.4:

ReLU(x) = max(0, x) =

0 x < 0

x otherwise
(3.6)

Figure 3.4: The rectified linear activation function.

The function remains very close to linear, however, in the sense that it is a piecewise
linear function with two linear pieces. Because rectified linear units are nearly linear,
they preserve many of the properties that make linear models easy to optimize with
gradient-based methods. They also preserve many of the properties that make linear
models generalize well. A common principle throughout computer science is that we
can build complicated systems from minimal components. Much as a Turing machine’s
memory needs only to be able to store 0 or 1 states, we can build a universal function
approximator from rectified linear functions affine transformation from an input vector
to an output scalar (Goodfellow et al., 2016).

Output Transformation

An activation function can also be applied to the output layer of a network; in that case,
we are talking about the output transformation. One common output transformation
is the softmax function:

softmax(xi) =
exp(xi)∑k
j=1 exp(xj)

; X = (x1, ..., xk) (3.7)

The output vector of the softmax function is a discrete probability distribution over
k possible output classes, summing up to one.

3.2.2 Backpropagation

The backward propagation of errors, i.e. the backpropagation (Rumelhart et al., 1988),
is a learning algorithm used for training NNs. Initially, the weights of a neural net-
work are set randomly. Based on the desired output (target), we compute the error
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of a NN by comparing it to the output and then update all weights in the network
using backpropagation.

We can compute the error of the ith neuron from the output layer using formula
in Equation 3.8, where yi is the output of the NN (see Eq. 3.2), di is the desired output
(label) and f ′i is the derivative of the activation function with respect to its argument:

δi = (di − yi)f ′i (3.8)

At first, we update the weights closer to the output layer by adding a small value
to each of them. The update is computed by the formula:

Wik(t+ 1) = Wik(t)− αδihk (3.9)

where Wik is the weight between the kth neuron in the hidden layer and the ith neuron
in the output layer, α is the learning rate parameter (0 < α < 1), δi is the error
of the ith neuron, computed by the formula in Equation 3.8 and hk is the kth neuron
in the hidden layer.

Then, we back propagate the error through the network. We compute the error
of the hidden layer, as follows

δk = (
∑
i

Wikδi)f
′
k (3.10)

Equivalently, we update the weights between the hidden and the input layer:

Vkj(t+ 1) = Vkj(t) + αδkxj (3.11)

Overfitting

The process is repeated many times (depending on the task) and the neural network
is trained. The training should be stopped before the NN (the model) starts dropping
in accuracy (or other metric) on our validation (development) data. Otherwise, over-
fitting may occur. In case of overfitting, the model learns the specifics of the training
data very well, but looses the ability to generalize, and thus the performance on unseen
data gets worse.

Loss Function

In Equation 3.8, we would usually use a loss funcion, instead of a simple difference.
There are many loss functions to consider while training a neural network. Each one
is useful for a different type of problem. Here, we give an overview of a few common
loss functions.
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Mean squared error (MSE), the simplest form of a loss function, is measured
as the average of the squared difference between predictions and true labels:

MSE =

∑n
i=1(di − yi)2

n
(3.12)

where n is the number of training examples, di is the desired output of the ith example
and yi is the prediction for ith training example. MSE is usually used for regression
problems. A common loss function for a (binary) classification problem is the cross
entropy loss:

CrossEntropy = (1− di) log(1− yi)− di log(yi) (3.13)

In some settings, we are not given supervision in terms of labels, but rather as pairs
of correct x+ and incorrect x− items, and our goal is to score the correct items above
incorrect ones. In such cases, we can use a margin-based ranking loss :

RankingLoss = [γ −NN(x+) +NN(x−)]+ (3.14)

where γ is the margin parameter, NN(x) is the prediction for input x and [·]+ is the
ReLU function.

3.2.3 Optimization Techniques

Gradient descent is a way to minimize an objective function J(θ) with parameters
θ ∈ Rd by updating the parameters in the opposite direction of the gradient of the ob-
jective function ∆J(θ) with respect to the parameters. The learning rate α determines
the size of the steps we take to reach a (local) minimum.

Choosing a proper learning rate can be difficult. A learning rate that is too small
leads to very slow convergence and can get stuck in an undesirable local minimum, while
too large learning rate can hinder convergence and cause the loss function to fluctuate
around the minimum or even to diverge. It is often beneficial to adjust the learning rate
during training, e.g. start with higher learning rate and decrease it. To deal with this
challenge, there is a variety of different optimization algorithms that we will outline
below.

Momentum is a method that helps accelerate gradient descent in the relevant di-
rection and dampens oscillations. It does this by adding a fraction γ of the update
vector of the past time step to the current update vector:

vt+1 = µvt + αL(Wt) (3.15)

Wt+1 = Wt + vt+1 (3.16)

AdaGrad (Duchi et al., 2011) is an algorithm for gradient-based optimization that
adapts the learning rate to the parameters, performing smaller updates (i.e. low learn-
ing rates) for parameters associated with frequently occurring features, and larger
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updates (i.e. high learning rates) for parameters associated with infrequent features.
For this reason, it is well-suited for dealing with sparse data. For example, AdaGrad
was used to train GloVe word embeddings (Pennington et al., 2014), as infrequent
words require much larger updates than frequent ones.

Adagrad scales the learning rate for each parameter by dividing current gradient
in update rule by the sum of previous gradients for that parameter:

gt+1 = gt + L(Wt)
2 (3.17)

Wt+1 = Wt −
α

√
gt+1 + ε

L(Wt)
2 (3.18)

where L((Wt) is the loss w.r.t. the weights Wt and ε is a smoothing term that avoids
division by zero. As a result, when the gradient is very large, alpha is reduced and
vice-versa.

The main weakness of AdaGrad is its accumulation of the squared gradients in the de-
nominator. Since every added term is positive, the accumulated sum keeps growing dur-
ing training. This causes the learning rate to shrink until it becomes useless. AdaDelta
(Zeiler, 2012) and RMSprop (Tieleman and Hinton, 2012) are both extensions of Ada-
Grad that seeks to overcome this issue. Instead of accumulating all past squared
gradients, AdaDelta restricts the window of accumulated past gradients to some fixed
size w. In RMSprop the gt term is calculated by exponentially decaying average and
not the sum of gradients:

gt+1 = γ2gt + (1− γ2)L(Wt)
2 (3.19)

where 0 ≤ γ2 < 1 is the decay rate. Here, gt is called the second order moment of L.
Additionally, a first order moment mt can also be introduced:

mt+1 = γ1mt + (1− γ1)L(Wt) (3.20)

Adam (Kingma and Ba, 2014) uses both, the first order moment mt and second
order moment gt. As mt and gt are initialized as vectors of zeros, the authors of Adam
observe that they are biased towards zero. They counteract these biases by computing
the first and the second order moment estimates:

m̂t =
mt

1− γt1
(3.21)

ĝt =
gt

1− γt2
(3.22)

(3.23)

The final update is computed as:

Wt+1 = Wt −
αm̂t+1√
ĝt+1 + ε

(3.24)
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3.2.4 Regularization and Dropout

A common problem in machine learning is overfitting. In neural networks, overfitting
results in low generalization, so that the model does not perform well on unseen data,
but the performance improves on the training data. This is an adverse effect and we
can mitigate it to some extent by regularization techniques.

A common regularization method is L2 regularization, placing a squared penalty
on parameters with large values by adding the term 1

2
γ||θ||2 to the objective function

to be minimized, where θ is the set of model parameters, || · ||2 is the squared L2 norm
(sum of squares of the values), and γ is a hyperparameter controlling the amount of
regularization.

An alternative regularization method is dropout (Hinton et al., 2012). This method
is designed to prevent the network from learning to rely on specific weights. Dropout
is a very simple regularization technique that showed to be very effective. The basic
idea is to randomly drop (set the values to zero) some portion (usually a half) of the
neurons in the network, or in a specific layer, for each training example. It has been
shown that a MLP with dropout applied on every layer is equivalent to bayesian model
averaging (Gal and Ghahramani, 2016).

3.3 Graphical Models in Machine Learning

Probabilistic graphical model is a graph that captures the conditional dependencies
between random variables. Each node of the graph is associated with a random vari-
able, and the edges in the graph are used to encode relations between the random
variables. There is a huge variety of probabilistic graphical models used for different
tasks in machine learning. In this thesis, however, we will only talk about conditional
random fields (CRFs).

3.3.1 Conditional Random Field

CRF is an undirected conditional probabilistic graphical model, often used for labeling
sequential data, such as text in natural language processing and biological sequences
of nucleotides or amino acids. Formaly, G = (V,E) is an undirected graph modeling
a conditional distribution p(Y|X), where X and Y are the random variables of obser-
vations and labels respectively. There is a node v ∈ V , corresponding to each of the
random variables Yv of Y that obey the Markov property with respect to G:

p(Yv|X, Yw; v 6= w) = p(Yv|X, Yw; v ∼ w) (3.25)

where v ∼ w indicates that v and w are neighbours in G.
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The graphical structure of a conditional random field may be used to factorize the
joint distribution over elements Yv of Y into a normalized product of strictly positive,
real-valued potential functions, derived from the notion of conditional independence1.
In other words, we can define the CRF(Y|X) model to be a normalized product of
potential functions:

exp
(∑

k

µkΨk(Yi,X, i) +
∑
j

λjΦj(Yi−1, Yi,X, i)
)

(3.26)

where Φj(Yi−1, Yi,X, i) is a transition feature function of the entire observation se-
quence and the labels at positions i and i − 1, Ψk(Yi,X, i) is a state feature function
of the label at position i and the observation sequence, and µk and λj are parameters
to be estimated from the training data.

The parameters are usually learned by solving maximum likelihood estimation using
gradient-based methods. If the graph is a tree, message passing algorithms yield exact
solutions for inference. Nonetheless, for general graphs, the problem of exact inference
in CRF is intractable. Therefore, several algorithms can be used to obtain approximate
solutions. The most common is loopy belief propagation (LBP).

Belief propagation (BP) is a message passing algorithm for performing inference on
graphical models. It calculates the marginal distribution for each unobserved node Yv,
conditional on any observed nodes X. Although it was originally designed for acyclic
graphical models, BP can be used in general (cyclic) graphs with loops (therefore LBP).
The presence of loops does not guarantee convergence, however, in most of the practical
cases it does converge.

1A normalization factor is introduced to ensure that the product of potential functions is a valid
probability distribution over the random variables represented by vertices in G.



Chapter 4

Experiments

In this chapter, we first describe standard datasets for ED for long and short docu-
ments and how we use them. Then, we report and discuss our experiments and their
results. We set up the experiments in the same way as in previous research (Ganea and
Hofmann, 2017; Le and Titov, 2018), run each model 5 times and report the average
and the 95% confidence interval of the standard micro F1 score.

The F1 score can be interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and worst score at 0. The relative
contribution of precision and recall to the F1 score are equal. The formula for the F1
score is:

F1 = 2 · precision · recall
precision+ recall

(4.1)

The micro F1 score is simply the F1 averaged over all mentions.

4.1 Datasets

We followed two lines of research, ED for long and for short documents. In our experi-
ments, we train the models in two different settings, on long and short documents, and
evaluate the performance of each model on all of the datasets.

Our entity-mention probability map p(e|m) is based on the data from Wikipedia
(Feb, 2014) and it is used for candidate selection, as well as by our global model
in both settings. We use Word2Vec embeddings (Mikolov et al., 2013a) pretrained1

on the Google News dataset for our local model in Equation 2.2, GloVe (Pennington
et al., 2014) embeddings trained on 840B tokens for computing the mapping function
f in Equation 2.7 and Equation 2.8 and pretrained entity embeddings (Ganea and
Hofmann, 2017) described in Section 2.2.2 based on the same version of Wikipedia
(Feb, 2014) corpus. In this way, our KB of entities is consistent with the provided
entity embeddings.

1Published by Word2Vec authors: http://bit.ly/1R9Wsqr
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http://bit.ly/1R9Wsqr


CHAPTER 4. EXPERIMENTS 31

Furthermore, it is worth noticing that all of the embeddings we use share the same
vector space with the dimension d = 300, allowing us to capture geometric similarities
between all of them.

4.1.1 Standard Benchmark: Long Documents

For training, in the setting for long documents, we use the AIDA-train split from
AIDA-CoNLL dataset (Hoffart et al., 2011) and the AIDA-A for model validation. For
evaluation, we use the AIDA-B split and five other out-of-domain datasets, namely,
MSNBC, AQUAINT, ACE2004, WNED-WIKI and WNED-CWEB (Guo and Barbosa,
2018)2. The statistics of these datasets are provided in Table 4.1. For both, long and
short documents, we considered only mentions that have ground truth entities in the
KB.

Dataset #Mentions #Docs
Mentions per

Doc
AIDA-train 18448 946 19.5
AIDA-A (val) 4791 216 22.1
AIDA-B (test) 4485 231 19.4

MSNBC 656 20 32.8
AQUAINT 727 50 14.5
ACE2004 257 57 4.5

WNED-CWEB 11154 320 34.8
WNED-WIKI 6792 345 19.7

Table 4.1: Statistics of ED datasets with long documents.

4.1.2 Short Documents: Twitter Posts

Since there is not a stable benchmark, we explore different datasets with short docu-
ments for ED. Probably the most used in the literature is Microposts2016 (Rizzo et al.,
2016) containing posts from Twitter. However, using the current candidate selection
system, we experienced difficulties with obtaining the ground truth entities from this
dataset. We were only label to link ∼54% of the ground truth entities to our KB. The
reason behind this is that our KB is based on Wikipedia from February 2014, while
the Twitter posts (tweets) were collected in December 2015. Major topics of the tweets
were, simply, yet unknown or not popular enough in 2014. For example, entities refer-
ring to Star Wars: The Force Awakens movie (2015) or Donald Trump as the president
(elected in 2016) will be unknown to our KB.

2Available at https://bit.ly/2gnSBLg

https://bit.ly/2gnSBLg
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For this reason, in our data, where we only keep the mentions with ground truth
entities, there are much less mentions than the original data. We also only keep
the documents (tweets) with at least one linkable mention. It is worth mentioning
that the pretrained entity embeddings we use are also based on the same version of
Wikipedia, therefore it would be necessary to train new embeddings if we added new
entities to our KB. Hence, we leave the evaluation of the full Microposts2016 dataset
for future work.

Apart from using (cleaned) Microposts2016, we create a new dataset for ED with
short documents by processing Brian (Locke, 2009), Mena (Habib and Van Keulen,
2012) and Microposts2014 (Cano et al., 2014) datasets3. The resulting dataset Tw4

is traditionally split into training, validation and testing set by splitting each of the
three datasets in ratio 80:10 :10 respectively, concatenating the datasets and shuffling
examples within each part.

The new dataset Tw contains entity candidates generated using our p(e|m). The
final numbers of the cleaned Microposts2016∗, Brian, Mena, Microposts2014 and Tw
datasets are shown in Table 4.2.

Dataset #Mentions #Docs
Mentions per

Doc
Microposts2016∗-train 4905 3333 1.5
Microposts2016∗-dev 148 97 1.5
Microposts2016∗-test 368 286 1.3

Brian 1585 1603 1
Mena 510 162 3.1

Microposts2014 3819 2339 1.6
Tw-train 3662 2058 1.8
Tw-val 457 418 1.1
Tw-test 457 421 1.1

Table 4.2: Statistics of cleaned Microposts2016 data that is linkable to our KB, Brian, Mena
and Microposts2014 and our processed dataset Tw.

In our experiments, we train our models for ED for short documents in two different
settings. One setting uses Microposts2016∗-train for training and Microposts2016∗-val
for model validaton and the other one uses Tw-train and Tw-val respectively.

3Collected and published at https://github.com/badiehm/TwitterNEED. (Habib and
Van Keulen, 2016)

4Available at https://github.com/lej-la/Twitter_ED
∗Microposts2016 data with only ∼54% of mentions

https://github.com/badiehm/TwitterNEED
https://github.com/lej-la/Twitter_ED


CHAPTER 4. EXPERIMENTS 33

4.2 Training Details and Hyperparameters

We mentioned before three different settings of evaluation of our models based on the
training and validation datasets, one setting for long documents and two for short docu-
ments. There are three different models that we experimented with in all three settings.
The first model with multiple relations (mul-rel) was described in Chapter 2. We tried
using another model with only a single relation (sgl-rel) as well, rewriting Equation 2.9
for computing the pairwise score between two entity candidates e′i and e′j to:

Φ(e′i, e
′
j) = e′>i Re′j (4.2)

with only one trainable diagonal matrix R. We further experimented with a normal-
ized version of a single-relational model, inspired by previous research (Ganea and Hof-
mann, 2017). The resulting pairwise score for the single-relational normalized model
(sgl-norm) is computed as:

Φ(e′i, e
′
j) =

1

n− 1
e′>i Re′j (4.3)

Please, note that Equation 4.3 is a special case of Equation 2.9 with K = 1.
The size of the context window used in the local model is K = 100 and R = 25

top contextual words are being kept by the hard attention filter in Equation 2.3. For
the global model, we use the following parameter values: γ = 0.01 (see Equation 2.17),
the number of LBP loops is 10, the dropout rate for f was set to 0.3, the window size
of local contexts ci for the pairwise score functions is 6. We initialize diag(Rq) and
diag(Dq) by sampling from N (0, 0.1) for all q, except that diag(R1) was sampled from
N (1, 0.1). For the mul-rel model, the number of relations was K = 3, while the sgl-rel
and sgl-norm models only use one relation. These hyperparameters were inferred by
previous research (Ganea and Hofmann, 2017; Le and Titov, 2018) and tweaking them
could offer a potential space for improvement of our results. Since hyperparameter
tuning is expensive, we leave this for future work.

Besides these three models, we also evaluated a baseline model, that only uses
p(e|m) to pick the top entity candidate for each mention, on all datasets.

4.3 Results

In this section, we compare the results of our models in 3 different settings and we
discuss the results of our experiments. Furthermore, we compare our best models to
results reported by related research.
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4.3.1 AIDA Corpus

Here, we evaluate our models trained in the setting for long documents. The training
dataset in this case is AIDA-train and the validation dataset is AIDA-A. We evaluate
the models on all datasets (with both, long and short documents).

Dataset mul-rel sgl-rel sgl-norm BASELINE
AIDA-A 90.66± 0.2 83.87± 1.8 90.35± 0.1 73.73
AIDA-B 91.66± 0.2 83.79± 3.1 91.64± 0.2 71.79
MSNBC 93.38± 0.6 91.91± 1.4 93.70± 0.8 89.67

AQUAINT 86.92± 0.9 86.41± 0.8 88.30± 1.4 84.48
ACE2004 88.73± 0.4 87.32± 0.4 88.40± 2.1 87.32

WNED-CWEB 77.47± 0.4 74.60± 0.8 77.77± 0.2 69.74
WNED-WIKI 76.84± 0.5 73.30± 1.8 76.54± 0.9 63.96

Tw-train 69.83± 2.2 75.10± 2.0 71.91± 10.9 80.12
Tw-val 63.57± 2.4 68.36± 5.0 65.65± 13.8 80.96
Tw-test 63.84± 4.0 67.09± 4.6 64.55± 12.7 77.24

Micro2016∗-train 72.03± 3.3 75.77± 2.0 72.72± 13.2 81.57
Micro2016∗-dev 56.25± 13.1 72.30± 7.9 50.68± 25.2 90.54
Micro2016∗-test 54.42± 5.1 70.43± 3.1 56.34± 30.1 83.15

Micro2014 57.55± 2.3 64.96± 1.7 60.10± 11.5 69.05
Mena 79.89± 2.2 81.80± 1.3 80.86± 4.0 83.32
Brian 60.69± 1.0 59.28± 0.3 60.97± 3.6 59.64

Table 4.3: Micro F1 scores of models trained on AIDA corpus (long documents). The best
scores for each dataset are depicted in bold.

Please, note that the model mul-rel trained on AIDA corresponds to the best model
of Le and Titov (2018) and the model sgl-norm trained on AIDA corresponds to the
best model of Ganea and Hofmann (2017).

The results in Table 4.3 show, that both mul-rel and sgl-norm models have very
similar performance. The scores of all models trained on AIDA corpus are quite
high for long documents, with respect to the baseline. However, such models per-
form very poorly on short documents (worse than our p(e|m) baseline) and have very
wide 95% confidence intervals. This behaviour is expected, since datasets with short
documents lack the amount of context and have lower number of mentions per docu-
ment.
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4.3.2 Tw Corpus

In this setting, we use our new dataset Tw, that contains Twitter posts, to train (Tw-
train) and validate (Tw-val) our models. We evaluate the models on all datasets (with
both, long and short documents).

Based on the results in Table 4.4, we claim that our normalized single-relational
model (sgl-norm) performs the best for all datasets, out of the models we trained
in this setting. Furthermore, we can see that not only the model performs well on short
documents, but also works reasonably well for solving ED for long documents, even
though the 95% confidence interval are wider for long documents. This might not
be very intuitive, since the training data is much simpler, with shorter context and
fewer mentions per document than the testing data with long documents. To our
knowledge, we are the first to observe such phenomenon, and we will discuss this
further in Section 4.4.

Dataset mul-rel sgl-rel sgl-norm BASELINE
Tw-train 87.23± 0.7 84.42± 1.4 87.16± 0.9 80.12
Tw-val 85.34± 0.5 82.58± 1.2 85.82± 1.0 80.96
Tw-test 84.86± 0.9 81.14± 1.0 84.99± 0.8 77.24

Micro2016∗-train 85.05± 0.5 83.86± 0.7 85.56± 0.9 81.57
Micro2016∗-dev 90.41± 1.4 88.51± 5.0 91.62± 1.4 90.54
Micro2016∗-test 84.62± 0.6 81.20± 4.8 85.49± 1.6 83.15

Micro2014 74.46± 0.5 72.15± 0.8 74.56± 0.8 69.05
Mena 84.54± 1.0 84.14± 0.3 84.42± 0.8 83.32
Brian 66.71± 0.2 63.28± 1.9 66.74± 0.5 59.64

AIDA-A 81.30± 4.7 77.66± 1.6 83.62± 6.1 73.73
AIDA-B 80.86± 5.7 77.49± 1.9 84.36± 7.7 71.79
MSNBC 91.81± 2.3 91.54± 0.4 92.30± 1.9 89.67

AQUAINT 88.48± 4.8 88.28± 0.7 89.29± 4.3 84.48
ACE2004 88.21± 0.9 88.13± 0.5 88.37± 1.1 87.32

WNED-CWEB 74.49± 4.7 72.93± 0.6 75.51± 4.7 69.74
WNED-WIKI 71.16± 6.9 68.16± 0.8 72.22± 6.6 63.96

Table 4.4: Micro F1 scores of models trained on Tw corpus (short documents). The best scores
for each dataset are depicted in bold.

Our experiments suggest that using the multi-relational approach might not be
as beneficial as claimed in previous research (Le and Titov, 2018), for neither long nor
short documents. The results of this approach (mul-rel) were not significantly higher
for long documents than the normalized model with a single relation (sgl-norm) and
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were worse for short documents.

4.3.3 Microposts2016 Corpus

Finally, we perform experiments on our models trained on the cleaned Microposts2016∗

data. Namely, we train the models using the Microposts2016∗-train dataset and vali-
date them using Microposts2016∗-dev. The results are shown in Table 4.5.

Dataset mul-rel sgl-rel sgl-norm BASELINE
Micro2016∗-train 85.09± 2.8 83.69± 2.8 84.36± 3.9 81.57
Micro2016∗-dev 91.22± 1.7 91.89± 1.7 92.12± 1.0 90.54
Micro2016∗-test 86.14± 1.2 85.42± 5.5 87.50± 5.5 83.15

Tw-train 81.71± 2.5 81.80± 0.3 81.66± 2.0 80.12
Tw-val 81.11± 2.5 80.16± 3.0 81.69± 1.1 80.96
Tw-test 79.65± 5.2 79.29± 1.1 79.14± 5.1 77.24

Micro2014 70.33± 2.5 70.46± 1.0 70.59± 2.2 69.05
Mena 83.45± 2.9 83.59± 0.6 84.07± 1.1 83.32
Brian 61.74± 0.2 60.76± 3.3 61.04± 0.3 59.64

AIDA-A 79.53± 1.9 77.42± 6.6 79.78± 7.7 73.73
AIDA-B 78.63± 1.8 76.31± 7.2 79.75± 11.0 71.79
MSNBC 92.22± 0.2 91.46± 0.8 92.17± 1.2 89.67

AQUAINT 89.23± 1.3 87.37± 2.9 89.09± 0.9 84.48
ACE2004 88.13± 1.0 87.86± 1.5 87.99± 1.2 87.32

WNED-CWEB 74.82± 0.7 72.45± 3.2 74.73± 2.5 69.74
WNED-WIKI 71.20± 1.5 67.80± 4.7 70.58± 6.2 63.96

Table 4.5: Micro F1 scores of models trained on Microposts2016∗ corpus (short documents).
The best scores for each dataset are depicted in bold.

An important thing to notice is that the 95% confidence intervals for most models
and datasets are wide in this setting. This suggests that the cleaned Microposts2016∗

corpus might not be sufficient for training such models. Thus, we can not draw many
conclusions out of these results.

It is interesting that, even in this setting, the performance of the models on long
documents is better than the p(e|m) baseline, as opposed to the performance of the
models trained on long documents on data with short documents.

∗Microposts2016 data with only ∼54% of mentions.
∗Microposts2016 data with only ∼54% of mentions.
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4.3.4 State of The Art Comparison

Since the sgl-norm model is less complex than the multi-relational one and its per-
formance is, at least, comparable (or better) in all of our experiments, we choose to
proceed our research using it as our best model.

As we mentioned before, the field of ED for short documents lacks a stable bench-
mark, besides the research conducted on Microposts2016. While we show the results
reported on this dataset in Table 4.6, our results can not be compared to them, since
we only had 54% of the mentions in this dataset linkable to our KB (see Section 4.1.2).

Method Microposts 2016
NEEL (Rizzo et al., 2016) 53.6 micro F1
PBOH (Ganea et al., 2016) 72.1 micro F1

#KEA (Waitelonis and Sack, 2016) 75.2 micro F1
S-MART (Yang and Chang, 2016) 81.1 micro F1

Table 4.6: Results on Microposts2016 corpus reported by previous research.

The paper that released the Microposts2016 dataset (Rizzo et al., 2016) reported
various results of models participating in their challenge. However, the best was their
baseline model NEEL and not one of the competing models. Other results we show here
are: PBOH (Ganea et al., 2016) model evaluated on short texts by later research (Zhu
and Iglesias, 2018), #KEA model (Waitelonis and Sack, 2016) and the best reported
results on Microposts2016 using S-MART model (Yang and Chang, 2016).

Our results on the cleaned Microposts2016∗ data report 83.2 micro F1 using the
p(e|m) baseline method and 87.5 micro F1 using the sgl-norm model trained on
Microposts2016∗-train dataset. We will explore, in our future research, whether our
model could be better than the current state of the art for the full Microposts2016
data.

Methods that reported results on Microposts2014 dataset usually followed the
end-to-end entity linking approach. The best one was a model by Microsoft that won
the Microposts2014 entity linking challenge (Cano et al., 2014). The results reported
for ED on Microposts2014 was a model based on dominant entity candidates (DEC)
(Feng et al., 2018).

Results in Table 4.7 show, that even our baseline method is comparable to the
results reported on this dataset. Our best model for Microposts2014 is the sgl-norm
model trained on Tw corpus.

The last results are reported by the TwitterNEED model (Habib and Van Keulen,
2016) on Brian and Mena datasets. However, this method solves EL, instead of ED.

∗Microposts2016 data with only ∼54% of mentions
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Method (EL) Microposts 2014

Microsoft (Cano et al., 2014) 70.1 micro F1

Method (ED) Microposts 2014

DEC (Feng et al., 2018) 53.9 micro F1
p(e|m) baseline 69.1 micro F1

sgl-norm trained on Tw 74.6 micro F1

Table 4.7: Comparison of our and other reported results on Microposts2014 corpus.

Method (EL) Brian Mena
TwitterNEED (Habib and Van Keulen, 2016) 55.5 micro F1 70.1 micro F1

Method (ED) Brian Mena
p(e|m) baseline 59.6 micro F1 83.3 micro F1

sgl-norm trained on Tw 66.7 micro F1 84.4 micro F1

Table 4.8: Comparison of the results on Brian and Mena datasets.

We can see that, in many cases, our p(e|m) baseline method is comparable to
the reported results. This is because of leveraging additional statistical data from
Wikipedia, which previous methods did not use. Our best model sgl-norm further
improves the results.

4.4 Discussion

In our results, we observed that the models trained on short documents performed
quite well on long documents, however, when we trained the models on long documents,
the results were worse than our baseline. Our insight behind this is that the models
trained on long documents learn to make decisions based on features that are more
robust in long documents, such as long context and other mentions in the document,
which are not so reliable in short documents, and perform worse than our baseline.
However, the models trained on short documents have to work with less robust features
within the document and rely more on features that come from additional sources, like
representation learning and the p(e|m) entity-mention probability map. These features
are also present for the models trained on long documents, hence, they can still make
good decisions.

To find out how important the pretrained embeddings are for our model, we per-
formed experiments and randomly initialized the word and the entity embeddings,
instead of using the pretrained ones. The results are shown in Table 4.9. Interest-
ingly, we found out that the micro F1 scores dropped significantly, especially when
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Embeddings Tw AIDA
Pretrained 84.99 91.64

All Randomized 81.62 74.49
Randomized Word 84.68 85.99
Randomized Entity 81.47 74.45

BASELINE 77.24 71.79

Table 4.9: Micro F1 score of sgl-norm model trained using randomly initialized embeddings.
The reported score of the model trained on Tw corpus is the evaluation score of Tw-test. The
score of the model trained on AIDA corpus is the score on the AIDA-B dataset.

randomizing the entity embeddings. This tells us that models for solving ED definitely
benefit from using representation learning. Randomizing only the word embeddings
decreased the performance on AIDA corpus with long documents, however, it did not
make such a difference for Tw corpus with short documents. This might be a sign that
the decisions for short documents are not based on the local context.



Conclusion

Looking into two different types of problems in ED, we have leveraged the state-of-
the-art approaches for solving ED in long documents for short documents. Our system
does not rely on hand-crafted features or Knowledge Graphs with relation data. On
the contrary, we have shown the benefits of using representation learning and bringing
additional statistical data into the decision process. Especially, entity embeddings have
been a very informative data source for ED in short documents. The candidate selection
process that leveraged high volume data from external sources guaranteed high quality
entity candidates. To our knowledge, we are the first to use such information for ED
in short texts. The proof of its profit is that just our simple baseline method, which
always selects the top entity candidate, achieves competitive results to the state of the
art for short documents.

In our experiments, we found out that modeling multiple relations between entities
is not beneficial for our task and the trade-off between performance and complexity for
long documents is high. Therefore, we decided to use only a single relation parameter
to model the relationship between entities in the same document. Our model has
shown competitive results to the state of the art, outperforming the current solutions
on all available datasets for ED in short documents. We also found out that using
models trained on long documents for ED on short documents ends up with score
lower than our baseline. However, when using models trained on short documents for
long documents, the performance is reasonable and the scores significantly higher than
our baseline.

Moreover, we have introduced a novel dataset Tw for ED for short texts, containing
posts from Twitter, that we published in standard formats used in ED. The data
contains up to 20 entity candidates for each mention based on our entity-mention
conditional probability map p(e|m).

In future work, we would like to evaluate our approach on the full Microposts2016
data. For this, we will have to update our entity-mention map p(e|m) using a newer
version of Wikipedia and also train a new set of entity embeddings for new entities.

Furthermore, we would like to experiment with using contextual word embeddings,
such as ELMo and BERT, instead of classic Word2Vec and GloVe word embeddings
that we used in our model. It would be very interesting to extend this idea for training

40
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entity embeddings, as this branch of research often opens the door to a generalizable
state-of-the-art performance.
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