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Abstract

Almost every human interaction with the world is made by hands, while the pri-
mary source of information for the perception is the visual system. Neurons in
early visual pathways and primary visual cortex encode spatial information in
retinotopic frame of reference and their activities change with every eye move-
ment. To look at a specific target or to reach for an object, the brain has to
transform perceived sensory information into motor plans that cannot be purely
retinotopic, but have to consider also postural signals. This process of sensorimo-
tor transformation has been of great interest for neuroscientists in the past two
decades. The concept of reference frames borrowed from physics has helped to
formulate the problem as a coordinate transformation and became a main tool
for studying the computational aspects of spatial processing in the human brain.
Research suggests that one of the crucial and widespread parts of this process-
ing is the phenomenon known as gain modulation. Important insight into the
problem can be obtained through computational models that are mostly based
on artificial neural networks and that are in the focus of this master thesis. We
reviewed existing neural network models trained to perform coordinate transfor-
mations and proposed our own model that does not differ much in the network
architecture, but which processes inputs obtained from the humanoid robotic
simulator iCub. Trained network was able to successfully perform coordinate
transformation from eye- to body-centered reference frame using the information
about gaze direction with the accuracy within 2◦. We proposed several visualisa-
tion techniques for analysing the hidden structures of the network and observed
the effect of gain modulation and shifting receptive fields. We also formulated
hypothesis about the crucial role of gain modulation in the process of spatial
transformations. The main potential of our approach lies in the fact that iCub
simulator reflects the real geometry of the human body and sensory system in 3D.

Keywords: frame of reference, coordinate transformation, gain field, artificial
neural network, computational neuroscience, iCub simulator
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Abstrakt

Najdôležitejším nástrojom ľudskej interakcie s okolím sú ruky. Na to, aby sme
dokázali objekt uchopiť, potrebujeme poznať jeho polohu v priestore. Táto in-
formácia je v našom mozgu reprezentovaná určitou populáciou neurónov, ktorá
by podľa všetkého mala reprezentovať pozíciu objektu nezávisle na tom, kam sa
pozeráme, alebo ako máme natočenú hlavu. Je známe, že neuróny zrakovej dráhy
a zrakového centra kódujú priestorovú informáciu retinotopicky. To znamená, že
objekt ktorý dopadne na sietnicu vľavo, je touto populáciou reprezentovaný ako
nachádzajúci sa vľavo. Pri každom pohybe oka sa preto táto reprezentácia zmení
a vzniká otázka, akým spôsobom nastáva transformácia tejto prvotnej informácie
do iných reprezentácií, ktoré sú vhodné napríklad na uchopenie objektu. V oblasti
výpočtovej neurovedy sa ako vhodný nástroj na analýzu priestorových transfor-
mácií v prostredí neurónových sietí ukázal koncept referenčného rámca. Výskumy
z posledných dvoch desaťročí odhalili ako jeden zo základných princípov tejto
transformácie efekt známy pod názvom zisková modulácia alebo modulácia zisku.
V práci sa najskôr venujeme teoretickým základom priestorových transformácií v
neurónových sieťach a uvádzame prehľad výpočtových modelov navrhnutých na
tento účel. Potom prezentujeme náš vlastný model neurónovej siete, ktorá sa od
pôvodných modelov líši tým, že spracováva vstupy generované robotickým simulá-
torom iCub. Natrénovaná sieť bola schopná transformovať retinotopické súrad-
nice do súradníc tela použitím informácie o natočení očí. Presnosť siete bola 2◦.
Analýza výpočtových vlastností sieti založená na vizualizácií parametrov skry-
tých neurónov odhalila efekt ziskovej modulácie a posúvajúcich sa receptívnych
polí. V práci vyslovujeme hypotézu o kľúčovej úlohe ziskovej modulácie v trans-
formácií priestorových súradníc. Hlavnú výhodu použitia robotického simulátora
vidíme v tom, že odráža skutočné geometrické vlastnosti ľudského tela.

Kľúčové slová: referenčný rámec, transformácia súradníc, gain field (ziskové
polia), úmelá neurónová sieť, výpočtová neuroveda, iCub simulátor
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Foreword

The simplest questions are the hardest to answer. We live in a world where almost
every our action requires precise hand movements. We thus simply ask: how do
we make it that we reach for the desired object? Because this question is too
simple for being answered, we made the question harder hoping that we might
find the answer more easily: what are the computations that the brain has to
carry out in order to transform the sensory and postural signals into the spatial
representation that can be further used for the reach? Well, the answer is still
hard to find, but we already have some clues. Our thesis is about one of them.
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1 Introduction

Human brain is a highly complex system able to perform a huge number of
non-trivial computations. The exemplar case of such computation is the trans-
formation of the object position in the retina into the spatial representation that
permits to reach for the given object. In this computation, the brain has to use
also the information about the eye and head position in order to be accurate. In
our thesis we simply ask: what are the computational principles underlying these
transformations in the environment of neural networks?

After the short introduction into the field of computational neuroscience we
focus on the concept of reference frames. We explain the connections between
reference frames and multimodal integrations, specifically in the form of sensori-
motor transformations. We introduce the phenomenon known as gain modulation
and discuss its crucial role in coordinate transformations. Later we describe two
main types of network architectures used for multimodal integrations and explain
past and recent works in this research area. The next chapter is dedicated to the
descriptions of main methods that we used in our experiment, namely to the
robotic simulator iCub and the basic theory of artificial neural networks. At the
end we explain our experiment that consisted of training artificial neural network
to perform coordinate transformations from eye- to body-centered reference frame
using information about the eyes position. We then discuss the results by the
means of several visualisation techniques used for examining the computational
principles in the network.

1.1 Computational neuroscience

Neuroscience, the scientific field that studies the nervous system, aims to explain
many interesting, but highly complex questions about various aspects of human
perception, mind and behaviour. Naturally, the first research was oriented at
the biology of the nervous system, its basic role in the human or animal body,
overall structure, physiological properties and principles of underlying chemical
processes. Such understanding is essential for the treatment of the nervous sys-
tem diseases. At a different level, many other questions arose about how neural
circuits can give rise to cognitive functions, how mental abilities develop, in what
form is the memory encoded or what is the source of emotions. This way the
neuroscience became an interdisciplinary field with many overlapping branches
from neurophysiology, neuroanatomy and molecular neuroscience, ranging to be-
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havioural, developmental, cognitive and computational neuroscience.
Our thesis is settled in the context of computational neuroscience, which it-

self is an interdisciplinary field that (roughly speaking) combines knowledge from
cognitive and computer sciences. Computational neuroscience investigates the
functions and mechanisms behind cognitive abilities such as processing sensory
signals or generating motor commands by constructing computational models
that are able to perform the given task and that are usually inspired by the
essential features of the biological system. Created models are used to test hy-
potheses that arose from physiological experiments, or on the other hand, to
formulate new hypotheses that can be verified later. The majority of models is
based on the theory of neural computing and artificial neural networks (section
3.2).
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2 Frames of Reference

To determine the object position in space we always relate to some point at known
location. In real life we usually speak about the object position relative to our
body or with respect to some other object we see or know - we use egocentric
or allocentric frame of reference. In mathematics, we represent and transform
positions in coordinate systems (CS) describing the position by a set of numbers
(coordinates). There are many coordinate systems that differ in the interpreta-
tion of coordinates, for example in Cartesian coordinate system each coordinate
specifies the distance from the origin to the point along one axis; in spherical
CS one coordinate represents the distance from the origin and other two repre-
sent angles from fixed orthogonal axes. In the contrast, the notion of frame of
reference or reference frame symbolises the relation between the observed object
and the point from which we observe. For instance, we use egocentric frame of
reference when we say "the ball is next to me" and allocentric frame when we
say "the ball is next to you". In general, reference frame may be anchored to
practically anything, to our head, hand, or any other object. Within each frame
of reference we can define a coordinate system. However, this strict distinction is
not always necessary and both terms, frame of reference and coordinate system,
are sometimes used interchangeably.

Neuroscientists naturally adopted the concept of reference frames to better
understand how space is represented in our brains. It is known that single neu-
rons do not represent positions of objects directly, but the spatial information is
distributed over the populations of many neurons in specific brain areas. Cells
in the visual system respond to the stimuli located only in particular location
called the response field of the neuron, or the receptive field (RF) in cases where
the response is considered to be strictly sensory. Sometimes receptive field also
refers to the kind of pattern that causes neuron to response. Brain measurements
have shown that primary visual cortex (V1) contains retinotopic neurons, mean-
ing that the receptive fields of adjacent neurons represent points nearby in visual
space. This kind of organisation is called topographic, but it is not inevitable for
neurons to form a map of the space in order to encode information in given frame
of reference (Batista, 2002). Exploring the reference frame in which a neuron en-
codes spatial information is often based on the observation of changes in neuron’s
response while moving only one part of the body at a time. When the response
changes along with the movement, it is interpreted as encoding the space in the
reference frame anchored to that body part. For example, the activity of a neuron
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encoding the location in eye-centered frame of reference (also called retinocen-
tric) should remain constant as long as the object’s image falls on the same locus
on the retina, irrespective of the eye or head positions (Soechting and Flanders,
1992).

Encoded spatial information is later used by other parts of the brain to gen-
erate and guide the behaviour, for instance to catch a ball or focus on a specific
object. The encoding strategies are thus closely tied to the way how the infor-
mation is processed further. Our focus is on the computational aspect of this
processing, that is, what are the computational principles behind transforming
spatial information between various representations and how can we model these
transformations using artificial neural networks.

2.1 Sensorimotor transformations

The fundamental way how we interact with the world is based on perceiving our
surrounding by sensory system (mostly by vision) and manipulating with objects
by hands. When we look at the object, the light that falls on our retina induces
neural signal that is carried through the thalamus to the primary visual cortex.
Neurons in this area and connected pathways use retinal reference frame, which
means that our primary information about the object position is specified by its
position at retina. Despite the fact that visual information changes with every eye
movement, we still perceive the world as stable. This implies that our brain has to
take into account also posture signals of eye and head position in order to create
a stable model of our environment and the objects within. The natural questions
arise about how are positions of these objects represented by populations of neu-
rons and whether there are any areas in the brain that encode the space in specific
reference frames, for example head or body-centered. The head-centered repre-
sentation could be theoretically formed by combining the information about eye
position and retinal location of a visual stimulus and the body-centered represen-
tation could be achieved by combining head, eye and retinal position information
(Andersen et al., 1993). Research on this topic that has been continuing for past
25 years suggests that these reference frames does not always exist in an explicit
form, but rather as some intermediate representations of space that are further
processed for specific purposes, for instance to generate reaching commands. The
process of converting sensory stimuli into the motor plans is called sensorimotor
transformation. It can be seen as a specific case of multimodal integrations, which
deal with how information from different modalities (e.g. sensory and postural
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signal) are processed and used together in the human brain. Sensorimotor trans-
formations are often formalised in terms of spatial transformations from eye or
head-centered into shoulder-centered coordinates. The reaching targets may be
as well determined by audition or proprioception (the information about some
body part, e.g. position of the hand as set of joint angles). It is known that
auditory signals are encoded in head-centered coordinates and information about
limbs should be encoded relative to the body part. However, there is a recent
evidence that sensorimotor system encodes also auditory and proprioceptive tar-
gets in gaze-centered coordinates, even though these senses are not fixed to the
eye (Blohm et al., 2008).

2.1.1 Eye–hand transformations

Eye-hand coordinate transformation is a nonlinear operation that transforms vi-
sual targets into motor plans for reaching. For this operation being accurate, it
has to take into account the rotational and translational aspects of body geom-
etry (Fig. 1A). From the computational perspective it is being complicated by
the fact that the centers of rotation of the eye, head and shoulder do not align
and shift relative to each other with each head rotation. Also because rotation is
a non-commutative operation, the transformation has to take place in a stepwise
manner.

The eye-hand transformations were closely studied by Blohm and Crawford
(2007). They have developed a mathematical model of the 3D transformation
for reaching that accounts for body geometry and transforms the retinal desired
movement vector (the difference between eye and target retinal location) into a
shoulder-centered motor plan using extraretinal signals of eye and head orienta-
tion together with the knowledge of eye-head-shoulder linkage geometry. Schema
of their model is shown in Figure 1B. To validate the model, the authors realised
behavioural reaching experiment, in which human subjects were asked to reach
out in complete darkness to a remembered target position while fixating a small
light-emitting diode with different head postures. (Unfortunately, the full details
of the model and the experiment are beyond the scope of this thesis, but see ref-
erences for more information.) The analysis of the initial movement direction and
experimental data supported the existence of a feed-forward visuomotor trans-
formation for reaching that is geometrically correct. Blohm et al. (2009) later
used this model as a teacher to train feed-forward network to perform the 3D
transformation for reach. We describe their experiment in section 2.3.2.
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Fig. 1: A) Nonlinearity of the 3D reference frame transformation. The retinal map
(right panel) shows the projection of the hand and target (black dot, left panel) as well
as the screen horizontal and vertical lines. The blue arrows show the movement vector
that would have been generated from the retinal projection of the real hand and target
position if the head positions had been ignored. (Blohm et al., 2009)
B) Schema of the 3D visuomotor transformation. The retinal image of the target and
hand is rotated and translated using the extraretinal signals of eye and head orienta-
tions and internal model of eye-head-shoulder linkage geometry. (Blohm and Crawford,
2007)
C) Assumed model of the visuomotor transformation. Visual (target and hand posi-
tion), nonvisual (proprioceptive hand position), and extraretinal (eye and head posi-
tion) information is combined in the posterior parietal cortex (PPC) and also in the
premotor and motor cortices (PM/M1) to produce an accurate movement. For com-
parison with other model, see Figure 22. (Blohm et al., 2008)

2.1.2 First neuroscientific findings

The first influential model of spatial transformations was introduced by Zipser
and Andersen (1988). They found out that neurons in area 7a of posterior pari-
etal cortex (PPC) of monkeys combine retinal location of visual stimulus with
gaze direction to encode spatial information. The role of PPC as a sensorimotor
interface for visually guided eye and arm movements has been also supported by
later findings (Buneo and Andersen (2006), Khan et al. (2012)). Cells in PPC
appear to nonlinearly combine information from different modalities. Their sensi-
tivity is modulated by one modality (e.g. gaze direction) without changing their
selectivity to the other modality (visual stimuli). This phenomenon is called gain
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modulation and the changes in sensitivity are termed gain fields (more in 2.2).
The subsequent studies of gain modulation have revealed that it is an extremely
widespread mechanism that appears to be a fundamental computational princi-
ple behind coordinate transformations (Salinas and Sejnowski (2001), Salinas and
Abbott (2001), Chang et al. (2009), Blohm et al. (2009)).

We have already mentioned that the analysis of neuron’s receptive fields may
be used to indicate the corresponding reference frame. For instance, when neu-
ron’s activity differs for different gaze directions and is invariant to head position,
we have a reason to believe that neuron represents information in head-centered
frame of reference. Surprisingly, several studies of ventral intraparietal area (VIP)
have found cells whose receptive fields were partially moving with the eyes (Fig-
ure 2). Therefore these neurons were somewhere between eye and head-centered
frames. The amounts of partial shifts varied for every unit. Partially shifting
cells were also reported for auditory targets in LIP and in the superior colliculus
(Deneve et al. (2001), Duhamel et al. (1997)).

Fig. 2: Partially shifting receptive field. Each image depicts the response of a VIP
cell to a visual stimuli for different gaze directions (left, center, right) indicated by
white cross. The frequency of discharge is expressed by the colour intensity. The cell’s
receptive field is moving along the eye position, but only partially (60% of total gaze
shift). The activity of cell is higher when gazing to the right, meaning this cell is also
gain modulated by eye position. Adapted from Duhamel et al. (1997), Deneve et al.
(2001)

Gain fields and partially shifting receptive fields were also found in the hidden
layers of artificial neural networks trained to perform transformations between
different frames of reference. Examination of the properties of these computa-
tional models may give us a better idea of what to look for when exploring the
human brain. In the next sections of this chapter we explain the mechanism of
gain modulation in more detail and discuss several network architectures that
compute spatial transformations.
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2.2 Gain fields

The first evidence of modulation visually evoked responses by eye position comes
from Andersen and Mountcastle (1983). They tested the neurons within the
visual area 7a and the lateral intraparietal area (LIP) and discovered that the
neuron’s response appeared to be multiplied by gaze angle. The receptive field
of these neurons did not change shape nor location, but was only scaled by some
gain factor, hence the term gain field (GF) (Blohm and Crawford, 2009). This
non-linear effect is illustrated in Figure 3.

Fig. 3: Neuron’s visual responses gain-modulated by gaze angle: Upper diagrams
indicate two different eye positions, turned to the right and to the left. The cross
corresponds to the fixation point; the 8 dots indicate positions of presented visual
stimulus (the rightmost one is at 0 degrees, the topmost at 90 degrees, and so forth).
The coloured circles show the position of receptive field of recorded neuron. The bottom
graph plots Gaussian fits to the neural responses under two conditions indicated by
corresponding colours. The response function changes its amplitude (gain), but not its
preferred location or shape. Adopted from Salinas and Sejnowski (2001)

.

Zipser and Andersen (1988) realized that gain fields may play a significant
role in the process of visual-motor transformation and trained an artificial neural
network to compute the body-centered position of target from eye-centered visual
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stimuli and gaze direction. Their network spontaneously developed visual recep-
tive fields gain modulated by eye position similar to what had been observed in
PPC. We cover their experiment in more detail in section 2.3.

The subsequent studies have discovered gain fields in many other cortical and
subcortical structures, including V1, V3A, the dorsal premotor cortex, parieto-
occipital area or V6A, superior colliculus, and lateral geniculate nucleus. They
have been postulated for head position in LIP, attention in V4, viewing distance
in V4, and eye and head velocity in the dorsal medial superior temporal area. A
topographic arrangement of gain fields has been suggested in 7a and the dorsal
parietal area (cited from Chang et al. (2009)).

The types of signals that could produce gain fields include gaze direction,
head position, eye vergence, target distance, chromatic contrast or attention, all
together leading to the suggestion that gain modulation is a general mechanism
for multimodal integrations that underlie many important cognitive functions like
sensorimotor transformation, object recognition, motion processing or focusing
attention (Salinas and Thier (2000), Salinas and Abbott (1997)).

The essential feature of gain fields is nonlinearity. The biophysical basis that
allows neurons to combine information from two sources such that their output
is close to the product of two functions is still somehow unclear. According to
the theoretical studies, one possibility that can give rise to nearly multiplicative
gain fields are strong recurrent connections (Salinas and Abbott (1996), Zhang
and Abbott (2000)). Situation with recurrently connected neurons is also more
realistic in the human brain and can be highly efficient at eliminating neuronal
noise. (For recurrent models, see section 2.4.)

2.2.1 Computing with gain fields

The idea of gain fields as a general computational tool has been supported by
translating gain fields into mathematical terms by Salinas and Sejnowski (2001).
We will expand the example illustrated in Fig. 3. Let xtarget be the retinal location
of the stimulus and f(xtarget − a) a simple response function of the neuron that
has the peak of receptive field located in a. Let xgaze represent the gaze angle.
According to the experiments, the response amplitude r can be described though
the product:

r = f(xtarget − a)g(xgaze)

where g(xgaze) is the gain field of the neuron. This equation holds for every
neuron in the population, except that every neuron has a different receptive field
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(a term) and somehow different g function. According to the authors, under some
mild assumptions about the functions f and g, the response R of the downstream
neuron driven by gain modulated population has the following form:

R = F (c1xtarget + c2xgaze)

where c1, c2 are constants and F is a peaked function representing the recep-
tive field. This is a key mathematical result, because it implies that a set of
downstream neurons may explicitly represent the quantity xtarget + xgaze, while
another set may represent xtarget − xgaze, both driven by the same population of
gain modulated neurons. Imagine the situation when are you reading a newspa-
per and want to reach for a mug without shifting your gaze (Fig. 4). The vector
for reaching in body-centered reference frame can be computed as the difference
between the position of the mug on the retina xtarget and gaze direction xgaze.
Downstream neurons driven on the population of gain-modulated parietal cells
can achieve exactly this result (Figure 5).

Figure 4: Coordinate transformation
while reading a newspaper.
Figure illustrates the transformation from
eye-centered to body-centered coordinates
in reaching for a mug without shifting the
gaze from the newspaper. The reaching vec-
tor xtarget + xgaze does not vary with gaze.
(Salinas and Sejnowski, 2001).

2.2.2 Basis functions

The point about the population of gain-modulated neurons that represent stimu-
lus in multiple frames of reference simultaneously was in a more detail elaborated
by Pouget and Sejnowski (1997), who observed that without these assumptions
many psychophysical and lesion data are difficult to reconcile. They proposed
that parietal neurons act as a basis functions from which any coordinate frame
can by read according to the ongoing task. This was contrary to the very first
idea that transformation of object positions is decomposed into the series of in-
termediate reference frames. However, as we will explain later, the concept of
basis function suffers from the course of dimensionality, so nowadays it is be-
lieved that the brain compromises between basis function neurons and explicit
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Figure 5: Idealised gain-
modulated population leading
to coordinate transformation.
Left column: responses of 4
idealised gain-modulated neu-
rons on fixed visual stimulus.
The gain fields of blue ones
increases when gazing to the
right; orange when gazing to
the left.
Right column: response of the
downstream neuron computed
as weighted sum of modu-
lated neurons shifts as gaze
changes, because it is a function
xtarget + xgaze

(Salinas and Sejnowski, 2001)

representations in various frames of references (Blohm et al., 2008).
In the theory of function approximation, any non-linear function can be ap-

proximated by linear combination of sines and cosines weighted by numbers called
Fourier coefficients. Besides sines and cosines, there are many other basis func-
tions, for matching physiological data are especially promising sigmoids and gaus-
sians, which are a subset of a larger family known as radial basis functions (RBF).
Because motor commands are non-linear in nature, they might be generated by
a linear combination of basis functions of sensory and postural inputs. Written
formally:

J =
N∑

i=1
wiBi(V, P )

where J is a motor plan, V , P are sensory and postural signals, B1..N are basis
functions and w1..N are weights specific to the motor plan being computed.

Pouget and Sejnowski (1997) proposed that the responses of parietal neurons
behave like the basis functions of the input signals. This approach has several
advantages from computational perspective. First, once basis functions have been
computed, the amount of additional computations to obtain motor plan is greatly
reduced since it requires only linear projection. Second, the same basis functions
can be used to compute many motor plans. Third, forming the basis functions can
be accomplished in an unsupervised manner because the choice of basis functions
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is independent of output functions being computed. Therefore, the learning of
motor plans can be decomposed into two independent stages. The first one,
learning basis functions, can be done using variations of the Hebb rule and the
second one, learning motor commands, can by done using delta rule (Pouget and
Snyder, 2000).

Fig. 6: Basis functions.
a) Activity of a single neuron obtained by multiplying a gaussian retinal location rx

with a sigmoid of eye position ex (top). Three thick lines representing three different
gaze angles corresponds to the visual receptive fields gain-modulated by eye-position
(bottom). (Pouget et al., 1999)
b) A neural network implementation of non-linear function. Basis function layer uses
gaussians of inputs X,Y to create intermediate representations between input and out-
put layer. For every combination of selectivity for input units there is a corresponding
neuron in basis function layer. Two demonstrative response functions are indicated
on the right. The output unit Z computes linear combination of basis function units,
where the weights from blue units were set to one and all other weights were zeros.
(Pouget and Snyder, 2000)

There are two main requirements for basis function hypothesis. First, that
basis functions combine their inputs nonlinearly, and second, that there must be
units with all possible combinations of selectivity for given inputs. Neurons with
these properties were actually found in the parietal lobe, suggesting that basis
function representations may be widely used. Thanks to the first requirement,
each basis function unit naturally accounts for gain fields (Figure 6a). The basis
function layer with all combinations of selectivity for two inputs is illustrated in
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Figure 6b. This figure also shows how a non-linear function of two inputs (X,Y)
can be computed through the intermediate representation using gaussians as ba-
sis functions. The same architecture can be used for coordinate transformations.
Imagine that input X encodes the target position in eye-centered reference frame
and input Y the eye position in head-centered frame. Every cell in the basis-
function layer is sensitive to the specific eye and target position, meaning that it
has only one peak located at the position determined by this configuration. The
high unit activity clearly indicates specific target position in head-centered ref-
erence frame. The same target position may result from different configurations,
therefore the output unit sensitive for the desired target position needs to con-
sider all corresponding units from the basis-layer. This example is more formally
explained in section 2.4.2.

The unresolved issue about basis-function representation is that the number
of neurons required increases exponentially with the number of signals being in-
tegrated. Hence a basis function map using 10 neurons per signal and integrating
12 signals would require 1012 neurons, more than total number of neurons avail-
able in the cortex. One solution might be to use two modules of basis functions
connected in hierarchical fashion. (Pouget and Snyder, 2000)

The additional evidence in favour of basis function comes from the study of
hemineglect, a syndrome caused by unilateral lesions of the parietal lobe. Patients
suffering from hemineglect experience difficulty processing or reaching to stimuli
located in the hemispace contralateral to their lesson. For instance, patients may
fail to eat food located on the left side of their plates or shave the left side of
their face. Neglect patient typically fail at the line cancellation task presented
in Figure 7. In the context of reference frames, one may ask to what reference
frames does ’left’ relate, because it can be defined with respect to the eyes, head
or body. We may try to determine the neglect reference frame by assessing the
neglect in a variety of body postures and stimulus locations, for example we may
ask the patient to turn his head left and eyes to the right while the stimulus lies
in front of him. Similar studies revealed that neglect actually affects multiple
frames of reference. This is exactly what happens when we introduce lesion into
the basis-layer in the network model illustrated in Figure 6b. Additionally, it was
demonstrated that the model based on this architecture can capture another two
essential aspects of hemineglect: it can reproduce the pattern of line crossing of
parietal patients in line cancellation and accounts for relative and object-centered
neglect (Pouget et al., 1999).
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Figure 7: A typical result for a line
cancellation test in a left-neglect pa-
tient. The patient was asked to cross
out all line segments on a page, but he
failed to cancel the lines on the left side.
(Pouget et al., 1999)

2.2.3 Compound gain fields

In the example of reaching for a mug while reading the newspaper (Figure 4) we
operated with the simplifying assumption that the initial hand position is at the
centre of body-centered coordinate system. In reality, however, it is necessary to
also consider hand position relative to the body. This situation was questioned
by Chang et al. (2009) and led to the interesting findings that neurons in parietal
reach region (PRR) have eye and hand gain fields that are similar in magnitude
but opposite in direction. Their conclusion was supported both by measurement
of PRR area and the computational model built on a simple three-layer feed-
forward neural network. The negative correlation between the hand and eye gain
fields strongly supports the functional role of gain modulation in the computation
of the reach plan. It also suggests a new view on generating movement vector
in hand-centered reference frame. Instead of sequential transformations from eye
through body to hand-centered frames of reference, it seems that PRR neurons
use only one step, implicitly performing all needed comparisons between the co-
ordinate systems (Figure 8). The authors named this gain fields as compound
eye-hand distance gain field, because their effects are indistinguishable from a
single gain field for the distance between the gaze location and the initial hand
position.

2.3 Feed-forward models

This section is dedicated to the models based on feed-forward artificial neural net-
works (FF-ANN) designed to study computational aspects of sensorimotor trans-
formations. One of many reasons why these models are being built and studied
is that they are useful tool for exploring the basis of real brain (dys)functions.
In this sense, the breakthrough for a computational neuroscience came with the
work of Zipser and Andersen (1988) as they showed that measured neurophysio-
logical properties of real neurons may underlie nontrivial computations. We will
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Figure 8: New view of
movement planning: In
classical view, the transfor-
mation from eye-centered
target position to hand-
centered movement vec-
tor is mediated by body-
centered target encoding.
In the new perspective, the
movement vector is gen-
erated directly by com-
pound gain modulation of
eye and hand, where these
gain fields have the same
strength but opposite direc-
tion (Blohm and Crawford
(2009), Chang et al. (2009))

shortly introduce their experiment.
The physiological data for their experiment comes from the measurements

of neurons in area 7a in macaque monkeys. The neural activities were mea-
sured presenting the same visual stimulus while fixating the gaze at one of nine
predefined positions. Figure 9-1 shows the experimental protocol and the ob-
served effect of gain modulation. The authors used back-propagation algorithm
(3.2.1) to train three layer ANN for computing coordinate transformation from
eye-centered to the head-centered reference frame using the information about
the head-centered eye position (Figure 9-2). The hidden layer of the network
exhibited gain-modulated receptive fields very similar to the ones found in pari-
etal neurons. This obviously does not mean that we can conclude that back-
propagation algorithm is used in the brain, but interestingly enough, it can lead
to the same (or strikingly similar) computational principle. Therefore, we can
assume that we have a suitable tool for further studies.

2.3.1 Multimodal integration in 2D

From the point of view of input-output mappings, the multimodal integration in
PPC may take many forms and perform various types of transformations. For
instance, the desired transformation may be from purely sensory inputs to the
head-centered representation, or there might be multiple desired output represen-
tations at once, computed from both sensory and postural inputs. The questions
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Fig. 9: 1) Experimental protocol for determining gain fields in macaque monkeys.
a) Monkey fixates at one of 9 predefined positions and sees a visual stimulus present
always at the same retinal location. In figure only two fixations are shown.
b) Peri-stimulus histograms located in the same relative positions as the fixations that
produce them.
c) Graphical illustration of data 1b, the outer circle diameter corresponds to the overall
activity and the diameter of inner darkened circle illustrates the gain field.
2) The network architecture for coordinate transformation. The input layer consist of
64 visual units (bottom left) and four sets of 8 units for eye-position that is encoded
as positive and negative horizontal and vertical slope. The output layer has the same
structure for encoding head-centered position. The hidden units receive connections
from all input units and project to every output unit. The hidden and output units
have sigmoidal activation functions and the receptive fields of input units are gaussians.
(Zipser and Andersen, 1988)

we could ask is whether there are some intrinsic differences between these various
transformations, or whether there are some common principles involved. To an-
swer these questions, Xing and Andersen (2000) constructed several sets of ANN
models and performed reference frame analysis based on the shifts of receptive
fields. In this section we will discuss the details of their work.

Models description

Each model was a standard three-layer feed-forward ANN (see 3.2). There were
four types of possible input units:

V - visual map: 8 × 8 array of units for visual input. Receptive fields of units
were gaussians with 1/e width of 15◦ and spacing 10◦ over the visual input
80◦ × 80◦

A - auditory map: similar to V, except that the input was encoded in head-
centered coordinates
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E - eye position: four sets of 8 units; two sets encoded positive and negative
slopes of the horizontal component, the other two sets encoded the vertical
component in the same manner. The head-centered positions were within
each set encoded linearly.

H - head position: similar to E, except that the input was encoded in body-
centered coordinates

The hidden layer consisted of 20 hidden neurons. Activation functions for the
units in the hidden and output layer were standard sigmoids. The output layer
contained several representations that were modelled by 8 × 8 array of units as
in the input layer:

ME - motor error in eye-centered coordinates (eye-movement)
ME = V or alternatively when V is not present, ME = A - E

HE - head-position error in head-centered coordinates (head-movement)
HE = V + E; HE = A

BE - body-position error in body-centered coordinates (body-movement)
BE = V + E + H; BE = A + H

Models were divided into four sets according to the level of multimodal integra-
tion, see Fig. 10 for the description. All models were trained by back-propagation
algorithm (3.2.1). The input was picked at random and consisted of eye position
and either a visual or an auditory target. In model 4, the head position was added
in the same manner as eye position. Training stopped when the mean squared
error could not be further decreased and the accuracy of network was less than
4◦. (The performance error of 4◦ was typically used for training monkeys to make
saccades.)

Measurements and results

After the training, all networks were capable of computing given mapping. Gain
fields were observed in all models that actually performed some coordinate trans-
formation (all except 1-1 and 1-2). Common way how to visualise GF is to plot
the unit’s response to a target presented in the receptive field against the dif-
ferent eye positions (Fig. 11A). Receptive field of the hidden unit was defined
as the input area that evokes a response greater than 50% of unit’s maximal re-
sponse (Fig. 11B). The relationship between unit’s gain and receptive field was
examined by comparing their directions. The GF direction is the direction to the
best-tuned unit relative to the central eye position (Fig. 11A) and RF direction
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Figure 10: Models of four
different levels of integration in
PPC.

A) Level-1 models for uni-
modal neurons. Model 1-1 and
1-2 simply remap input signal
onto the output layer, models
1-3 and 1-4 perform coordinate
transformations ME = A - E
and HE = V + E.

B) Level-2 models use bi-
modal inputs. 2-1: ME = V
and M = A - E. 2-2: HE = V
+ E and HE = A.

C) Level-3 model has bi-
modal inputs and multiple
output representations. ME =
V, M = A - E and HE = V +
E, HE = A.

D) Level-4 model has ad-
ditional access to head position
and its output layer contains
body-centered map. BE = V +
E + H, BE = A + H.

(Xing and Andersen, 2000)

was computed as the center of mass of the unit’s response across the input map
(Fig. 11B). The angle between these two directions served for testing whether GF
and RF are aligned in the same or opposite way. The reference frame analysis of
the hidden units was based on the idea, that if units encode in eye-centered frame,
then the RF should shift along with the eye-movement and stay unchanged in
case when the head-centered frame is used. To this purpose, RF shift ratio was
computed as the distance between the centers of mass of RF profiles measured
at different eye position (Fig. 11D).

Receptive fields in the first two models, 1-1 and 1-2, were clearly anchored to
the eye and head respectively (the RF shift ratio was close to one). This result
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Fig. 11: A) Gain field: the size of squares corresponds with the amplitude of unit
response to a visual stimuli and different eye position. The GF direction (arrow) points
to the unit with maximal response. B) Receptive field: dashed ellipse represents the
input area that causes neuron to response. The RF direction is indicated by the arrow.
C) The difference between RF and GF directions. D) The change of eye-position makes
receptive field to shift. The RF shift ratio was computed as the distance of the RF
centers divided by the change in eye position. (Xing and Andersen, 2000)

was expected as these two models do not perform any multimodal integration.
Networks 1-3 and 1-4 (Zipser–Andersen model) developed localized gain fields
and receptive fields that shifted horizontally and vertically with eye position.
Fig. 12A-C shows typical RF and GF of one hidden unit, we can see that they
have opposite directions. Horizontal and vertical RF shift ratios were calculated
for all hidden units and plotted in the same histogram (Fig. 12D). The mean
shift ratio at 0.5 indicates that the hidden units do not encode coordinates in any
exclusive frame of reference, but rather in some intermediate representation. The
authors also noticed the contrast between GF-RF relationships: while in model
1-3 were GF approximately opposite to the direction of RF (Fig.12), model 1-
4 had GF tuned for the same direction as RF. We assume that this is just a
consequence of the simplified model, since it does not account for the fact that
retinal image is flipped.

The second level networks integrated auditory and visual inputs and there-
fore developed localized auditory and visual receptive fields (ARF, VRF). The
response properties of the hidden units in these models were similar to those in
models 1-3 and 1-4, because these two pairs of models performed the same trans-
formations (from head to eye-centered and vice versa). Both ARF and VRF have
been found to partially shift with eye-position. Note that model 2-1 did not need
to perform any coordinate transformation for visual inputs, since the output was
in eye-centered frame. The VRF were slightly partially shifting even in this case.

Model 3 mapped visual and auditory inputs into both eye-centered and head-
centered frames. The RFs and GFs were similar to those in previous models and
hidden units encoded both visual and auditory targets in intermediate reference
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Fig. 12: A) Typical receptive field of one hidden unit in model 1-3. The neuron is
active when the target is present in the area illustrated by gray squares.
B) The gain field of the same unit as in A. The gray level and the size of the squares
represent the activation of the unit at different eye positions. The target was always
present at the same location in the RF.
C) The histogram of direction differences of the gain field and the receptive field of all
hidden units in the model 1-3. Most units have direction differences close to 180◦, i.e.
they are on opposite sides like in A and B.
D) The histogram of vertical and horizontal RF shift ratios of all hidden units. Ratio
close to zero indicates the head-centered reference frame, ratio close to one the eye-
centered frame. Because the mean shift ratio was 0.5, most hidden units encode location
in intermediate coordinate frames.
(Xing and Andersen, 2000)

frames. The RF shifts were similar to those in second level models. Therefore,
the measurement of RF shifts cannot differentiate neurons that provide a single-
output representation from neurons that provide multiple-output representations.
In addition to model 3, the output layer of model 4 contained body-centered
output map. As a result, hidden units developed also head position GF from
which the majority was in the same direction as eye GF.

To sum up, gain modulation was present in all models that performed two
dimensional coordinate transformation; the hidden units encoded targets in inter-
mediate reference frame and a single feed-forward network is capable of computing
target representation in several frames of reference simultaneously.

2.3.2 Visually guided reaching in 3D

Up to now, we discussed models for sensorimotor transformations that operated
with several simplifying assumptions. Above all, they performed only 2D coordi-
nate transformations and the actual motor plan was omitted. As we explained in
section 2.1.1, eye-hand transformations in 3D space are complex and non-linear
operations. Therefore we cannot assume that the properties arisen from 2D sim-
ulations will hold up also in 3D and our understanding of electrophysiological
experiments remains limited. To investigate more realistic scenario of how neu-
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ral networks compute motor plan for 3D reach, Blohm et al. (2009) constructed
a four-layer feed-forward neural network and trained it to perform visuomotor
transformation from gaze-centered inputs to a shoulder-centered output. Their
work deserves our best attention as we haven’t found any other similar experi-
ment. However, because the experiment was very comprehensive, we will focus
only on the most important details and results. At first we briefly describe the
model architecture and the training procedure; later we introduce three tech-
niques used for comparing input output properties of individual units; and at the
end we conclude that hidden layers (and even individual units) show different
reference frames when tested using different methodology.

Model architecture and training

The network architecture is illustrated in Fig. 13. The input layer consisted
of seven distinct inputs that fully describe the body geometry. The inputs were:
retinal target position, retinal target disparity, retinal hand position, retinal hand
disparity, eye position, head position and vergence. Retinal positions were rep-
resented by topographical maps with uniformly distributed gaussian receptive
fields. Retinal disparities were also represented by topographical maps, but the
tuning curves were given profiles similar to those found in monkey neurons (sim-
ilar to the product of two gaussians). Eye-in-head and head-on-body positions
were characterized by 3D angle vector representations, where every component
was encoded by two inputs for positive and negative rotations. Both these po-
sitions were therefore coded in 6 inputs in a linear manner. The vergence angle
was coded similarly in one input.

The activation functions for the units in hidden layers were sigmoids. Sev-
eral numbers of units in the second layer were examined, ranging from 9 to 100.
Presented results come from the network with 36 hidden layer units (HLU). The
third network layer (population output) consisted of 125 cosine-tuned units with
preferred directions randomly, uniformly distributed on a unit sphere. This layer
was assumed to code movement direction in extrinsic (shoulder-centered) coordi-
nates as have been observed in monkeys. The output (read-out) layer consisted of
3 units that coded movement in space (horizontal, vertical and posterior-anterior
direction). Note that the weights between population output and read-out layer
were not adapted by training process, but calculated in a very specific manner
that reflected the implicit assumption of cosine-tuned units in the third layer.

The training set consisted of 500 000 patterns randomly generated by the
model for 3D eye-hand transformations described in section 2.1.1. As a training



2 Frames of Reference 36

algorithm was chosen resilient back-propagation (3.2.4) and the training stopped
when the gradient of root mean squared error became < 10−6.

The trained network was capable of performing visuomotor transformation
with accuracy similar to human subjects. The majority of absolute reach errors
for the network with 36 HLU were smaller than 10 cm and the mean was 6.4 cm.

Neural network analysis

As well as in previous 2D experiments, the goal of analysis was to identify the
mechanisms of reference frames transformation and investigate input output prop-
erties of individual units. The analysis of input properties was based on examining
RF shifts and the output properties were investigated by two neurophysiological
techniques: motor fields and microstimulation. We will explain them in turn.

A general observation about all hidden units was that their responses were
largely gain-modulated by eye, head and hand positions. The analysis of units
input properties applied the same rule as we have seen before: if the visual RF
encodes targets in shoulder-centered coordinates, then the center of mass should
shift in the direction opposite to the eye orientation. In the first hidden layer
(the second layer of the network), the centers of mass of RF did not shift. This
observation was interpreted as a gaze-centered encoding scheme (represented by
an eye icon in Fig. 13C). On the contrary, the third layer also contained units with
shifting receptive fields. Figure 14A shows receptive field of one such unit across
various horizontal and vertical eye positions. The center of mass is depicted
as magenta square with black border. To obtain the entire representation of
these shifts, the eye position was changed in a systematic fashion (5◦ horizontally
and vertically) and all centers of mass were plotted in one diagram (B). Further
quantifications of RF shifts for all hidden units were made by regression analysis
that provided horizontal and vertical gains of the centre of mass. These shift
gains can be used to indicate the reference frame in the very similar manner
as the RF shift ratio in 2D experiments. Horizontal and vertical shift gains are
plotted in panels C–D and their combination in panel E. The same measurement
was realised on the networks with various numbers of hidden units and plotted in
one diagram (F). We can see a broad distribution of gain values in all networks,
resulting in a conclusion that neurons in the third layer use an intermediate frame
of reference between eye and shoulder coordinates.

Output properties were firstly analysed by examination of unit’s motor fields.
Motor fields provide information about the unit’s contribution to the motor out-
put, that is, how the unit’s activity changes as a function of the movement pro-
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Fig. 13:
A) Brain structures known to be part of the visuomotor transformation pathway in the
brain. V1 - visual cortex (gaze-centered hand and target positions); PPC - presumably
the hidden layer of neural network model; S1 - somatosentory cortex (a potential source
of the extraretinal eye and head position signals); PMd/v, dorsal/ventral PM cortex
(the hypothetical population output); M1, primary motor cortex;
B) Neural network implementation of the different brain structures.
C) Interpretation of how reference frame transformations might be performed in dis-
tributed computing. The eye icon stands for gaze-centered coordinates and the hand
icon represents shoulder-centered coordinates. The presence of both icons depicts a
spread of reference frames between and beyond gaze- and shoulder-centered coordi-
nates. Same colors in panels (A-C) refer to corresponding levels of processing.
D) Neural network model with four layers. Both hand and target positions in the in-
put layer are represented by 2 two-dimensional maps: cyclopean retinal position and
retinal disparity. The hidden layer consisted of 9-100 neurons. Population output layer
had 125 units with random preferred movement directions in shoulder-centered space.
Read-out layer coded three components of the shoulder-centered movement in 3D space.
See text for more information.
(Blohm et al., 2009)
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Fig. 14: A) Visual receptive field of hidden unit #18 is modulated as a function of
eye positions. Magenta square denotes center of mass that clearly shifts.
B) Representations of the vertical and horizontal shift of the center of mass as a function
of eye positions in 5◦ steps.
C, D) Horizontal and vertical shift gains provided by regression analysis for all units.
Each dot represents one hidden unit in third layer.
E) The combination of horizontal and vertical gains. The gray square indicates the
range of obtained gain values for the hidden network with 36 HLU.
F) Summary of gain values through the population codes of all networks. The coloured
numbers shown to the right of the graph indicate the network sizes.
(Blohm et al., 2009)

duced. To compute motor fields it is necessary to produce movements in all 3
dimensions and measure a unit’s activity related to those specific movements.
We say that unit has a preferred direction if it preferentially participates in gen-
erating movements to the specific location in space. The changes of motor field
amplitude and preferred direction can be analysed in the same manner as visual
receptive fields. Such analysis resulted into the observation, that it was not pos-
sible to identify any reasonable reference frame in any of the hidden layers. This
was surprising particularly for the second hidden layer, because the weights to the
read-out layer were computed prior to the training, so the network was indirectly
designed to encode movement vector in shoulder-centered coordinates.

Another method to assess the output properties of individual units was to
simulate microstimulation in the network. Microstimulation consisted in setting
the specified unit’s activity artificially to the value = 2 and observing the effect
of eye position on the generated movement vector. To determine only the effect
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of eye position, other inputs were chosen such that the network would naturally
not produce any movement. The analysis produced four typical results that are
shown in Fig. 15. Black lines represent movement vectors obtained for different
eye position ranging horizontally from −45◦ to 45◦ in 5◦ steps. The first typical
result was a fixed vector (A). Since the generated movement did not depend
on eye position, the fixed vector indicates shoulder-centered coordinates. The
second typical behaviour is shown in panel B. Here, the unit shows gaze-centered
coordinates because the movement vector followed the eye position. Other units
showed intermediate behaviour (C) between A and B. Finally, there were units
for which the evoked movement vector converged at a particular location (D).
According to the results from subsequent regression analysis, the first hidden layer
uses a mixture of different reference frames intermediate between the gaze and
shoulder-centered coordinates and the population output layer uses only shoulder-
centered coordinates.

Fig. 15: Reference frame analysis through microstimulation. Each line represents one
movement vector generated under different horizontal eye positions. The end points
of movements are connected by coloured line. The top part of each panel represents a
view from above, the lower part view from behind.
A) Fixed vector unit: movement vector does not change (interpreted as shoulder-
centered)
B) Gaze dependent unit: movement vector follows eye position
C) Intermediate unit has behaviour between A and B.
D) Goal directed unit: movement vector converged at particular location.
(Blohm et al., 2009)

So far we analysed unit’s reference frames focused only on gaze versus shoulder-
centered coordinates. Including the head movements can possibly reveal units
coding in head-centered reference frame. To be able to discriminate between three
possible encodings (eye, head, shoulder-centered), it was necessary to perform
analysis under three different conditions, that is, eye-only movements, head-only
movement and opposite eye-head movements. (Opposite eye-head movements are
characteristic for vestibulo-ocular reflex (VOR)). This reflex stabilises images on
the retina during the head movement by producing eye movement in a different
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location.) The authors used the same analysis techniques as described above and
evaluated unit gains for changes in eye, head and VOR movements. These three
values were later used to determine a point in space where each gain corresponds
to one axis. In this space, we can make some predictions about the reference
frames, for instance, in an analysis based on RF shifts we would expect that if
unit uses head-centered encoding scheme, then its gain for head-movement will
be zero, for eye-movement -1 and for VOR movement equal to 1. This prediction
(0,-1,1) also determines a point in space. Units with gains close to this prediction
are assumed to use head-centered coordinates. Given three predictions for each
reference frame, we may define a plane and make orthogonal projections of units
gains onto this plane. Results of this analysis for all three physiological techniques
are visualised in Figure 16. We see that the results copy the previous findings,
but in addition some of the units show behaviour close to head-centered when
probed using motor fields and microstimulation. This was remarkable because
there never was any explicit head-centered encoding in the network’s input or out-
put. (Note that analysis considered only horizontal movements, but qualitatively
the same results were observed for vertical movements.)

Fig. 16: Complete reference frame analysis across three electrophysiological tech-
niques. Black data points represent individual units in the first hidden layer (top) and
population output layer (bottom). Coloured data points represent predictions for eye-
centered (red), head-centered (green), and shoulder centered (blue) coordinates. The
view of the 3D plot was chosen to be ortoghonal to the plane of the 3 predictions.
(Blohm et al., 2009)
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Conclusions

The four-layer feed-forward artificial neural network was able to perform the 3D
visuomotor transformation from gaze-centered inputs to a shoulder-centered out-
put. The network with 36 hidden-layer units achieved accuracy very similar to the
accuracy of human reaching and therefore was chosen for presenting the results.
The activity of many units in hidden layers was largely gain-modulated by eye,
head and hand positions. Analysis by different techniques revealed that hidden
layers and even individual units have different input-output coding properties.
This is schematically depicted in Fig. 13C. For example, units in the first hidden
layer showed purely gaze-centered visual receptive fields, but their output prop-
erties displayed reference frame intermediate between eye and shoulder-centered
coordinates. Due to this input-output relationship, each unit performed a fixed
input-output transformation. The authors hypothesized that the contributions
of these individual transformations are combined by gain modulation mechanism
in a way to accurately produce the overall transformation.

In addition, the work by Blohm et al. (2009) provides several other interesting
findings. The trained network was able to reproduce and explain many findings
of real neurons in the frontal-parietal network, which supports the neurophys-
iological significance of their work. As a general methodological implication,
the authors stressed the importance of multivariate analysis in performing dis-
crimination between potential reference frames, because different experimental
techniques can lead to different observations. In comparison with the network
model based on basis functions (see 2.4.2), the most noticeable difference was
that the RF of the first hidden layer units never shifted. However, as stated by
authors, shifting receptive fields are inconsistent with PPC data.

2.4 Recurrent models

Recurrent connectivity is a well described feature of cortical circuits and has
been deeply studied also in recurrent neural networks (RNN). It is a class of
networks where connections between units form directed cycles that allow the
network to create internal states and exhibit dynamic temporal behaviour. Their
computational power is equivalent to Turing machines, however, the training
is somewhat more complex and can be tricky especially for a large number of
units. In the context of sensorimotor transformations, recurrent connections were
firstly the subject of study because of their ability to produce multiplicative gain
fields. Later they were used in a combination with basis functions to create
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an interesting model that gives us better insight into the actual neural basis
of multisensory spatial representations. We describe this model later in this
chapter, after the short explanation of a simple recurrent network architecture
that produces multiplicative gain fields.

2.4.1 Multiplicative gain fields

A biologically plausible mechanism that would allow single neurons to perform
product operation of their inputs is still waiting for being fully explained. How-
ever, multiplicative responses are an emergent property of the network with re-
current synaptic connections even though single neurons are not capable of com-
puting a product of its inputs.

The mathematical model studied by Salinas and Abbott (1996) was for con-
venience constrained to one dimension. Modelled parietal neurons received two
kinds of inputs: external input representing retinal location of visual stimulus
and gaze direction, and recurrent input from neighbouring neurons (Figure 17).

Figure 17: Simple recurrent
model for multiplicative gain
fields. Parietal neurons (filled
circles) receive two kinds of in-
puts: external inputs of visual
stimuli (x) and gaze direction
(y), and recurrent inputs from
their neighbours.

The effect of recurrent connections was excitatory for near neurons with over-
lapping receptive fields and inhibitory for neurons further apart with separated
receptive fields. This is a common feature of recurrently connected cortical mod-
els. Receptive fields of neurons were modelled as gaussians and their preferred
locations spanned the full range of possible visual stimulus locations. The sensi-
bility for gaze direction was a linear function and was the same for every cell. We
will describe the overall architecture in mathematical terms. Given the neuron
i, location of the visual stimulus x and gaze direction y, the external input hi to
the neuron has the following form:

hi = hV
i (x) + hG

i (y)

The visual input hV
i is the gaussian function of the difference between the stimulus

location x and neuron’s preferred location xi. The width of receptive field is σV .
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The input representing gaze direction hG
i is a linear function of gaze angle y

with slope mi and positive offset bi (baseline). Positive slope mi will intuitively
correspond to the gain fields increasing to the right.

hV
i (x) = exp

(
−(xi − x)2

2σ2
V

)
, hG

i (y) = miyi + bi (1)

Additional recurrent input to the unit is determined by synaptic connections
between neurons i and j. The weight of the connection Wij depends on the
distance between the preferred locations xi, xj and is given by a difference of two
gaussians:

Wij = AEexp
(
−(xi − xj)2

2σ2
E

)
− AIexp

(
−(xi − xj)2

2σ2
I

)

where AE > AI and σI > σE. The firing rate ri of neuron i is given by a linear
activation function s that is positive only when the sum of external and recurrent
input exceeds the threshold hth.

ri = s(hi +
∑

j

Wijrj − hth) (2)

The model was evaluated on noisy inputs where random noise was added to
each cell. As a result, model parietal neurons exhibit multiplicative gain fields and
the network also effectively suppressed the input noise. This property is common
for recurrent architectures. Figure 18A depicts the responses of one model neuron
for six different gaze directions and the same visual stimuli. The external inputs
to the cell are shown below (Fig. 18B). The linear gaze direction acts simply
as an additive constant to the visual signal. The resulting response curves are
almost exactly scaled versions of each other so they have clearly multiplicative
character.

To evaluate the effect of recurrent connections, two feed-forward models were
included for comparison. The first model (18C) corresponds to turning off the
recurrent connections in the original model. The neuron responses are affected
by gaze direction but not in the form of a product. Because the threshold hth

was set to one, only the inputs above this value were effective and the responses
seem to only scale the input. The second feed-forward model (18D) had sigmoidal
activation functions:

ri = rmax

1 + exp(c(hth − hi))
(3)
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Fig. 18: Multiplicative gain fields. Adapted from Salinas and Abbott (1996).
A. Responses of gain-modulated parietal neuron in the network with recurrent connec-
tions. The horizontal axis indicates the location of visual stimulus and curves corre-
spond to the different gaze directions. The curve without squares represents gazing
straight ahead. Modulation by gaze-angle has evidently multiplicative character.
B. Plot shows the external input hi for presented visual stimuli and different gaze an-
gles. Note that the scale of horizontal axis is different from A.
C. Responses of a unit in simple feed-forward network equivalent to turning off the
recurrent connections in the original model.
D. Responses of a unit in feed-forward network with sigmoidal activation functions (3).
The response is approximately multiplicative but deviates in lateral gaze directions.

where c is a constant. In this case, the tuning curves were approximately multi-
plicative when gaze angle was close to zero, but exhibit deviations from a truly
multiplicative response for lateral gaze directions.

The comparison with feed-forward models leads to a conclusion that recurrent
connections are critical for generating multiplicative gain fields. Note that, as we
discuss elsewhere in this thesis, it is not really necessary for gain fields to be
multiplicative as their core property is non-linearity. However, the recurrent
connections are ubiquitous in human brain and the recurrent model exhibits also
some other notable properties, for instance its responses are very robust to the
input noise. Also when presenting two visual stimuli at the same time, the model
is sensitive only to the stronger one (Figure 19). This mechanism might be
possibly used for the selection of targets in visual scene, because visual areas
encode information about many objects and every non-targets may need to be
filtered out.

Other interesting behaviour of recurrent network appears when the baseline b
(eq. 1) is greater than the input threshold hth (eq. 2). In this case, the activity
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Figure 19: Two visual stimuli pre-
sented simultaneously. (Salinas and Ab-
bott, 1996)
A. Only one peak of activity is generated
by the population of network neurons
when presented two visual stimuli simul-
taneously. Each dot corresponds to one
neuron in the population, cells are ar-
ranged according to their preferred reti-
nal location. The peak is matching the
location of the strongest stimuli.
B. The input evoking the activity in A.

of network at the location of visual stimulus persists even after the visual input
was removed, and also stays fixed in the presence of other inputs at different
locations. The network can be reset by reducing the baseline below the input
threshold. Such mechanism might act as a short-term memory buffer for target
location during the reaching task. (Salinas and Abbott, 1996)

To this point we have investigated only the relation between recurrent con-
nections and multiplicative gain fields without considering the actual output of
the network. As described in section 2.2.2, the basis-function units also generate
non-linear gain-fields and the network model is able to reproduce large number of
effects found in neglect patients. Pouget et al. (2002) brought these two concepts
together in an attempt to discover more about the neural basis of multisensory
spatial representations from a computational perspective. We describe their find-
ings in the following chapter.

2.4.2 Basis functions network with attractor dynamics

In this chapter we focus on a model created by Pouget et al. (2002). They stated
two main aspect of multisensory integration and created a theory that has some
interesting implications for our understanding of neural basis of sensorimotor
transformations and the notion of frame of reference itself.

The first mentioned aspect is called the recoding problem and refers to the
fact, that sensory modalities do not use the same representations and must be re-
coded into a common format before they can be combined. The recoding problem
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is in the context of spatial representations reduced to a change of coordinates.
The second factor is the reliability of sensory modalities because their reliabil-
ity changes with the context and contains noise. Therefore, there must be a
mechanism that allows preferring more reliable cues by means of statistical infer-
ence or probability approach. The presented model aims to address both aspects
simultaneously. It is based on the basis-function networks, which provide plausi-
ble solution for spatial transformations, and recurrent connectivity, which brings
optimal statistical properties. Combination of these two ideas leads to an archi-
tecture with an intermediate layer that contains gain-modulated neurons with
partially shifting receptive fields.

Model architecture

The architecture and dynamics of the proposed model is illustrated in Figure 20.
The network contains three external layers that encode eye-centered location of
the object, head-centered position of the eye and head-centered position of the
object. Basis function layer contains units that combine the activities of input
units and intermediate the coordinate transformation. In addition to the model
that we informally described in section 2.2.2 (Figure. 6b), there are also recurrent
connections from the basis layer to the input layers and from the output layer to
the basis function layer. As the activity can flow in any direction, coordinates can
be transformed into any layer using the information from the other two layers.
Therefore all layers are equal in the sense of input-output operations.

In order to compute accurate coordinate transformations, the connections in
the network must meet some requirements. Consider the situation when we want
to calculate the object position in head-centered frame of reference (xa) from
its eye-centered position (xr) and eye position (xe). This could be written in
an equation as xa = xr + xe. But because all layers encode the information in
population codes, we need to apply this relation on single units. The tuning curves
for individual units in all layers are bell-shaped, so the pattern of population
activity will also have a bell-shaped profile. The position x will therefore be
represented as the hill of activity located at x. Let us denote xk

a as the preferred
head-centered object location of unit k in the output layer. Similarly, xi

r and xj
e

denote preferred eye-centered object location and preferred eye-position for unit
ij in the basis function layer. To ensure that unit k will compute desired mapping,
it simply needs to receive connections from all the basis functions units ij, such
that xk

a = xi
r + xj

e. The weights between layers and the activation functions of
the basis function units were chosen so as it is guaranteed that when the network
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is initialised with two hills in any pair of input layers, it eventually stabilises
onto three hills that peak at locations xa, xr and xe, linked through the relation
xa = xr+xe. Authors refer to this model as a basis function network with attractor
dynamics, because in the context of dynamical systems stable network states are
called attractors. Note that this architecture can be also seen as a special form
of radial basis networks (RBF) (Pouget et al., 2002).

Fig. 20: A recurrent basis function network with attractor dynamics. The network is
similar to the one shown in Fig. 6, but all connections are bidirectional. The network
is initialised with noisy inputs (left), it settles into the stable state (right) where the
positions of hills of activity are related through the function xa = xr + xe (see text)
(Pouget et al., 2002)

.

Results and conclusions

The basis function network can perform spatial transformations from eye to head-
centered frame of reference. The addition of recurrent connections enables the
network to translate coordinates also in the opposite direction. Moreover, the
recurrent network works as a maximum-likelihood estimator, meaning that when
the network is initialised with noisy hills of activity and iterated, it stabilises to
three smooth hills that represent the most likely position of the object. So the
same network architecture can deal with the recoding problem (coordinate trans-
formation) and statistical issues simultaneously. Units in basis function layer



2 Frames of Reference 48

have receptive fields that are gain modulated and partially shifting (Fig. 21). It
indicates that they use both eye and head-centered frames of reference.

Figure 21: A partially shifting receptive field of
typical basis function unit in the recurrent net-
work. Three curves corresponds to three eye-
positions (ex). The shift of the receptive field is
only half of the shift predicted for a head-centered
receptive field (vertical lines), indicating that the
receptive field cannot be assigned a single frame of
reference (eye nor head-centered). (Pouget et al.,
2002)

According to the authors (Pouget et al., 2002), basis function networks with
attractor dynamics bring a new perspective on the multimodal spatial representa-
tions for reaching. Several studies have suggested that reaching motor commands
are specified in eye-centered coordinates, regardless of the modalities in which the
reaching target is defined. This may be just a consequence of the dominant role of
vision in human behaviour, but it may also be the result of network architecture
that can perform multiple tasks at once. The model of such network is shown
in Figure 22. The motor plan can be computed by any combination of visual
and posture modalities. As a result, the reaching command is encoded simul-
taneously in several frames of references, what could explain why reaching for
an auditory target may be encoded in eye-centered reference frame even though
such representation may seem unnecessary. Owing to the recurrent connections,
the network is also able to make predictions of the sensory consequences of a
motor plan. As the basis function maps integrate eye, head and body-centered
coordinates, the suggested question is whether the notion of frame of reference is
the best way to characterize these neural representations.

2.5 Robotic simulations

Although the use of artificial neural networks in robotics is very common, at the
time there are not many works that would concern sensorimotor transformations
from the perspective of our thesis and use either real or simulated robots. How-
ever, we did find some preliminary experiments in this field, so in this chapter we
shortly review one of them.
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Fig. 22: A basis function network for reaching towards visual, auditory and tactile
targets. The recurrent connections allows network to perform sensorimotor transforma-
tions from one sensory modality to another and predictions of the sensory consequences
of motor plans. For comparison see former model in Figure 1C (Pouget et al., 2002).

The task of visuomotor arm control is in robotics often handled by self-
organizing maps. Chinellato et al. (2011) designed a model based on basis func-
tions network similar to the one we described in section 2.4.2 and implemented
it in a simulated environment. These two concepts, SOM and basis functions
network, were put together and explored in physical robot-head environment by
Pitti and Blanchard (2012). The goal of their work was to model multimodal in-
tegration and spatial cognition in neonates. For this purpose, they constructed a
robot-head that consists of a box with one camera and two bionic ears (Fig. 23A).
The head and camera can rotate in horizontal direction, so the robot can provide
together four kind of inputs: camera image with resolution 40 × 30, converted
audio signal, and eye and head motor signals.

Fig. 23: A) Head-robot consisted of a box with one camera and two bionic ears. The
robot has two degrees of freedom as it can rotate eye and head in horizontal direction.
B) Architecture of the network model. Arrows illustrate the reentrant mechanism.
The unimodal neurons fed univocal sensory signals to the gain-field neurons and to the
downward neurons, and receive back the multimodal response. See text for more detail.
(Pitti and Blanchard, 2012)
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The network architecture was inspired by the model described in section 2.4.2
and is shown in Figure 23B. The gain-field neurons receive the activity from
two neural populations by multiplying values of particular units with each other
(two straight blue arrows). Then, the downward population can learn the neural
activity from gain-fields neurons (blue arrows to bimodal map). Computed infor-
mation is then used by reentry mechanism (red lines). In this stage, the triggered
gain field neurons reinforce their links to downward neurons.

Weights of connections were adjusted in unsupervised manner by Rank-order
coding algorithm (ROC). Briefly, ROC neurons are sensitive to the sequential
order of incoming signals; that is, its rank code. The ordinal rank code can
be obtained by sorting the signals vector by amplitude or temporal order. The
activity of a neuron is then a function of the difference between input rank code
and the rank code of neuron’s weights. The updating rule is similar to the winner-
takes-all learning algorithm used in SOMs. Since the synaptic weights of ROC
neurons follow a power-scale density distribution, the ROC neurons are similar
to basis functions.

The authors performed two experiments, one for encoding retinal coordinates
into a head-centered reference frame using eye motor signal; and second for map-
ping auditory information to head and body reference frames. In the first exper-
iment, there were 20 neurons coding eye motor signal and 50 neurons for retinal
stimuli. The gain-field map therefore consisted of 20 × 50 = 1000 units. The
downward part had 150 units. Unsupervised learning was done online in winner-
takes-all style, i.e. only the weights of most salient neurons were updated. Over
the time, the neural net self-organized itself to map retina and eye motor signals.
The second experiment was performed in similar manner, but with auditory in-
puts and head motor signal. Here, the auditory neurons self-organized into two
distinct receptive fields for left and right side. (We omit specific details because
they actually were not provided by the cited paper.)

Both experiments revealed the presence of gain modulation in the downstream
neurons (Fig. 24). In the first case, the response of the downstream neuron to
the same visual stimuli was gain-modulated by eye motor signal (A); and in the
second experiment, the response to the auditory signal was modulated by head
motor signal (B).

Considering the context of our thesis, we see two interesting conclusions from
this work. First, it illustrates an approach to modelling multimodal integration
with realistic data. The direct consequence of this approach can be seen in clearly
different profiles of gain fields generated in two different experiments (Fig. 24).
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Fig. 24: Gain modulation of downstream neurons.
A) response to the same visual stimuli is modulated by eye motor signal,
B) response to the auditory signal is modulated by head motor signal
(Pitti and Blanchard, 2012)

We can compare this observation with the results from section 2.3.1, where we
described simple feed-forward models trained to perform similar transformations.
In both cases we observed the effect of gain modulation, but in the former ex-
periment we did not observe any remarkable distinction between the gain field
profiles.

The second conclusion is related to the training algorithm. We have already
mentioned that the fact that a neural network trained by back-propagation de-
velops gain fields does not mean that brain actually uses some variation of back-
propagation. The same holds for basis-function approach. Now we have seen
another modification of training algorithm that led to the population of neurons
that coded spatial information in gain-modulated fashion. This suggests an idea,
that gain modulation is a general mechanism used by every population of neurons
that performs some multimodal integration, independent of the algorithm that
was used to train the population.
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3 Methods

3.1 Robotic Simulator iCub

The iCub is an open-source humanoid robot platform that was developed under
collaboration of several European labs for the research in embodied cognition,
cognitive development and advancing the understanding of natural and artificial
cognitive systems (Metta et al., 2008). iCub was designed completely from the
scratch, it has rich perceptuo-motor capabilities with 53 degrees of freedom and
a cognitive capacity for learning and development. The software architecture
encourages reuse and easy integration (Metta et al., 2010).

The robot is 104 cm tall and has the size of a three and half year old child.
Nowadays, there are twenty physical iCubs in the world (see photo on Figure 25).
The cost of iCub starts at e200,000. Therefore, many users and developers have
to use the simulator instead.

The iCub simulator was designed to reproduce the physics and dynamics of
the robot and its environment. Simulated robot is composed of rigid bodies
connected via joint structures that correspond to the real robot design specifica-
tions, which means that simulated robot has the same height, mass and degrees
of freedom as physical robot. The simulator uses ODE (Open Dynamic Engine)
for simulating rigid bodies and collision detection. The Open Graphics Library
(OpenGL) is used for rendering graphics. The robot may interact with objects
that can be dynamically created and modified. Figure 26 demonstrates the sim-
ulator architecture (Tikhanoff et al., 2008).

Figure 25: iCub - the humanoid
robot.
The image shows experimental
setup for the archery task. iCub
learns to shoot arrows and hit the
target center. Kormushev et al.
(2010)

The iCub software infrastructure and inter-process communication is based
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on top of YARP (Yet Another Robot Platform). YARP is an open source set
of libraries, protocols and tools designed for dealing with common difficulties in
robotics, such as interfacing with diverse and changing hardware or keeping mod-
ules and devices cleanly decoupled. It is OS neutral and written almost entirely
in C++ (Fitzpatrick et al., 2013). The iCub simulator has the same interface as
actual robot, so they can be used interchangeable from a user perspective.

Fig. 26: iCub simulator architecture. User sends commands to the robot (controlling
motors, sensors, cameras) and the world (managing objects and properties). Network
wrapper exports YARP interface and allows device remotization (Tikhanoff et al., 2008)

.

3.2 Artificial neural networks

The idea behind artificial neural network comes from the mechanisms found in
our brain. It is well known that the human brain is composed of ∼ 1011 highly
interconnected cells called neurons, whose principal function is the collection,
processing and dissemination of electrical signals (Haykin, 1998). The commu-
nication between neurons over synapses forms the basis of all brain functions
(Society for Neuroscience, 2012).

The artificial neural network is a computational model that reflects these neu-
roscientific findings. Networks are composed of units connected by directed links
of some weights, that determine the strength of the connections. The activation
of each unit then depends on the weighted sum of signals from incoming connec-
tions (net) and is calculated by some activation function f , which is usually the
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sigmoid f(net) = 1/(1 + e−net) or a similar differentiable function. The so called
feed-forward networks, units are arranged into layers and the activations spread
from the first (input) layer through all neurons in the inner (hidden) layers to the
final (output) layer. The schema of a simple 3-layer network is shown on Figure
27.

Fig. 27: Schema of a simple feed-forward neural network with three layers. vkj is the
weight of the connection from j-th neuron in the input layer to the k-th neuron in the
hidden layer. wik expresses the weight from the hidden neuron hk to the output neuron
yi

Mathematically, we can express the activation propagation as follows:

• The activations of neurons in the input layer are given

• Activations of hidden neurons: hk = f(∑n+1
j=1 vkjxj)

• Activations of output neurons: yi = f(∑q+1
k=1 wikhk)

• Bias input: xn+1 = hq+1 = −1. The bias input sets the threshold for the
unit, in the sense that the unit is activated only when the weighted sum of
real inputs exceeds the bias value.

Feed-forward neural networks without hidden layers are called perceptrons or
single layer networks. Considering the single output unit in perceptron, we can see
that its activation function has the form f(Wx), where W is the weight matrix
and x is the input vector. The equationW·x = 0 defines a hyperplane in the input
space. It means that single layer networks can represent only linearly separable
functions. The addition of hidden layers enlarges the space of hypotheses that the
network can represent. The network with sufficiently large hidden layer is able to
represent any continuous function and with two hidden layers, even discontinuous
functions can be represented (Haykin, 1998).
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Neural networks are commonly used for classification or regression, but they
have a wide variety of other applications as well (e.g. image compression, stock
market prediction or medicine applications). They have many interesting and
powerful properties, from which the most significant is their ability to learn.
Technically, learning of ANN is the process of changing the network parameters
so as the network gives desired outputs for specific inputs.

3.2.1 Back-propagation learning algorithm

Back-propagation (BP) is the dominating training algorithm for feed-forward neu-
ral networks. The network is trained on a prepared dataset that should be big
enough to sufficiently represent the problem domain. It is a supervised learning
method, which means that the network is given a feedback about its performance.
The feedback is usually the value of the error that the network produces.

Given a specific input, the perceptron output is a function of the weights of
connections. The error of i-th output unit is the difference between the real (yi)
and desired value (di) and the network error is usually measured as the sum of
squared unit errors. The size of this error depends on the number of output
neurons, so many times it is more useful to use the mean value of squared unit
errors (MSE). The goal of learning is to minimize the network error, what can be
formulated as the optimization problem in weight space and the gradient descent
method can be used. The learning rule for continuous single layer perceptron is
as follows: wij ← wij + α(di − yi)f ′ixj, where index j denotes the index of input
neuron, i index of output neuron and 0 < α < 1 determines the speed of learning
that is described later.

Intuitively, the rule increases the weight of connection when the error (di−yi)
is positive and decreases when the error is negative. In multilayer perceptrons,
it was not clear how to compute the error on the hidden layers. It turned out
that the error from the output layer can be back-propagated to the hidden lay-
ers. Every hidden unit contributes to the error of output units according to the
strength of connections. Therefore, the error on the hidden unit is calculated as
weighted sum of errors from the output or following hidden layer. Equations for
adjusting the weights are:

• for hidden-output weight: wik ← wik + αδihk, where δi = (di − yi)f ′i
• for input-hidden weight: vkj ← vkj + αδkxj, where δk = (∑i wikδi)f ′k
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• α is the learning rate that influences the speed of convergence. Setting the
right learning rate could be tricky, small value may require too many steps
to reach the solution, a large value may lead to oscillations.

On-line and batch back-propagation

The training using BP can be done in incremental (on-line) or batch manner.
Incremental training updates the weights after each training pattern has been
presented to the ANN. The following outline summarizes the steps of incremental
learning:

• choose input (pattern) from the training set and compute the output

• evaluate the error Err = 1
2
∑

i(di − yi)2

• back-ward pass - calculate errors on hidden neurons

• update weights according to the equations for hidden and output layers

• repeat until some stopping criterion is met, for example Err < threshold

In batch training, the weights are adjusted after each epoch, which means
after the entire training set has been presented to the network. The error used
for weight modification is computed as the average of errors on every pattern.

When considering the basic back-propagation algorithm, the on-line training
learns faster than batch training because it performs more steps per epoch and
does not get stuck in a local optimum so easily. Also as the size of the training
set gets larger, batch training must use a smaller learning rate in order for its
learning to remain stable (Wilson and Martinez, 2003). However, the benefit of
batch learning is a better global view of the training process, what can in the
combination with adaptive parameter modification (like size of the weight change
or learning rate) lead to more advanced and effective algorithms, from one of the
most noticeable is RPROP (3.2.4).

Local minima, step-size and the moving target problem

Numerous modifications and enhancements of the original algorithm were pro-
posed in order to eliminate some limitations such as convergence to a false minima
or a slow learning progress. The gradient descent methods naturally steer towards
local minima, so the challenge for the algorithm is to step over and reach a global
minimum. The major problems that contribute to the slowness of BP are step-size
problem and the moving target problem (Fahlman and Lebiere, 1990).
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The step-size problem is the problem of determining the largest step that can
be taken in order to make the fastest descent to the minima. If the step-size is too
large, the ANN may skip over optimal solution. If the step-size is too small, the
network will always reach a local minima, but in a very long time. To target this
problem, number of schemes were proposed such as adding momentum (3.2.2) or
quickprop algorithm (3.2.3).

The moving target problem is related to the fact, that each time a weight is
altered during the learning, the output of ANN is also altered and so are the
gradients for all of the other connections. This problem has two sides. One
side is that all weight changes except the first one are made on the basis of
gradients that have changed since they were calculated. The other part of the
problem is the inability to cooperate between the weight updates, what leads
to a situation where all weights try to solve the same problem, even though an
optimal solution may require that some units would focus on different problems.
Instead of a situation in which each unit moves quickly and directly to assume
some useful role, we see a complex dance among all the units that takes a long
time to settle down (Fahlman and Lebiere, 1990). In large networks with many
weights, the combination of all the independent weight updates can cause the final
output of the ANN to move in an undesired direction (Nissen, 2007). Because BP
algorithms update weights independently, they all suffer from the moving target
problem. The Cascade-Correlation algorithm therefore addresses this problem by
allowing only some of the weights to change at any given time. The topology of
the network is not fixed, but evolves during the training and creates multilayer
structure. New units that are added to the network play the role of permanent
feature detectors and their weights are frozen once added (Fahlman and Lebiere,
1990).

3.2.2 Momentum

The momentum term (Rumelhart et al., 1988) has been found to dramatically
increase the rate of convergence. It uses the old weight change as a parameter for
the computation of the new weight change and thus helps to avoid oscillations
problems when the error surface has a very narrow minimum area. The equation
for the change of weight with momentum is:

∆wik(t) = α δi(t) hk(t) + µ ∆wik(t− 1)
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where µ is the momentum parameter. It was demonstrated that the momentum
parameter in gradient descent algorithm is equivalent to the mass of Newtonian
particles that move through a viscous medium under a conservative force field.
In the continuous case, the system is guaranteed to converge and the momentum
parameter can improve the speed of convergence for most eigen components in the
system. For the discrete time case, the momentum term provides the additional
benefit of nearly doubling the parameter range over which the system converges.
When the momentum parameter µ is close to one, the learning rate α can be
nearly doubled (Qian, 1999).

3.2.3 Quickprop algorithm

The Quickprop algorithm (Fahlman, 1988) computes the gradient just as in stan-
dard BP, but it uses second-order method, based on Newton’s method, to estimate
the size of step and jump directly into the minimum of parabola. Quickprop relies
on two assumptions: first, that the error function with respect to each weight is
locally quadratic; second, that the small changes in one weight have relatively
little effect on the error gradient observed at other weights.

To determine the parabola, the algorithm keeps for each weight current and
previous slope and last weight change. The rule for computation of the weight
change has form:

∆w(t) = S(t)
S(t− 1)− S(t) ∆w(t− 1)

where S(t) and S(t− 1) are the current and previous slopes (= ∂Err/∂w). This
value is only an approximation to the optimum value for the weight, but when
applied iteratively it was reported to be extremely effective. Considering the
current and previous slope, 3 cases can happen:

• S(t) < S(t − 1) and both slopes have the same direction, the weight is
changed in the same direction towards the minima

• if the slopes are in the opposite direction, the optimum was skipped and
the new value will be between previous and current position

• both slopes are in the same direction, but the current slope is the same
size or larger in magnitude - this case can lead to taking the infinite step
or moving backwards. This situation can be solved by parameter that
constrains the maximum size of the step (maximum growth factor).
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In many applications quickprop was reported to perform significantly faster than
simple on-line BP, however, in our experiment it was the slowest from tested
algorithms.

3.2.4 RPROP algorithm

RPROP is a batch learning algorithm for feed-forward networks that was pro-
posed by Riedmiller and Braun (1993). The name stands for resilient backprop-
agation. The key concept is to perform a local adaptation of the weight update
according to the behaviour of the sequence of signs of partial derivatives in each
dimension of the weight space. In comparison with other gradient descent tech-
niques the learning takes considerably less steps (Riedmiller and Braun, 1993).

Algorithm 3.1 RPROP Riedmiller (1994)
∀i, j : ∆ij(t) = ∆0
∀i, j : ∂E

∂wij
(t− 1) = 0

repeat
Compute gradient ∂wE(t)
for ∀ weights and biases do

if (∂wij
E(t− 1) ∗ ∂wij

E(t) > 0) then
∆ij(t) = minimum(∆ij(t− 1) ∗ η+,∆max)
∆wij(t) = −sign(∂wij

E(t)) ∗∆ij(t)
wij(t+ 1) = wij(t) + ∆wij(t)
∂wij

E(t− 1) = ∂wij
E(t)

else if (∂wij
E(t− 1) ∗ ∂wij

E(t) < 0) then
∆ij(t) = maximum(∆ij(t− 1) ∗ η−,∆min)
∂wij

E(t− 1) = 0
else if (∂wij

E(t− 1) ∗ ∂wij
E(t) = 0) then

∆wij(t) = −sign(∂wij
E(t)) ∗∆ij(t)

wij(t+ 1) = wij(t) + ∆wij(t)
∂wij

E(t− 1) = ∂wij
E(t)

end if
end for

until converged

The principle behind RPROP is to consider only the sign of partial derivative
and use it to determine the direction of weight update. For each weight wij there
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is an adaptive ’update value’ ∆ij that determines the size of weight change:

∆w(t)
ij =



if

−∆(t)
ij

∂E
∂wij

(t)
> 0

+∆(t)
ij

∂E
∂wij

(t)
< 0

0 else

(4)

The ∂E
∂wij

(t) denotes the summed gradient information over all patterns of the
training set. The value of ∆ij evolves during the learning process according to
the following learning rule:

∆(t)
ij =



if

η+ ∗∆(t−1)
ij

∂E
∂wij

(t−1) ∗ ∂E
∂wij

(t)
> 0

η− ∗∆(t−1)
ij

∂E
∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

∆(t−1)
ij else

where 0 < η− < 1 < η+

(5)

The adaptation rule (5) is split on the change of sign of corresponding partial
derivative. Change of sign indicates that the last update was too big and the
algorithm has jumped over a local minimum. Therefore the update-value ∆ij is
decreased by factor η−. When the sign remains unchanged, the update-value is
slightly increased by the factor η+ to accelerate convergence in shallow regions.
The good values for η− and η+ are 0.5 and 1.2 (Riedmiller, 1994).

The weight update rule (4) follows the simple logic: if the error is increasing
(positive derivative), the weight is decreased, if the derivative is negative, the
update-value is added. The update-values and the weights are changed after the
epoch. Note that in implementations there are also upper and bottom limits for
the weights so as they don’t grow too big or small. The pseudocode of RPROP
is shown in Algorithm 3.1 (Riedmiller, 1994).

3.3 Self-organizing maps

Self-organizing map (SOM) is a type of artificial neural network that can per-
form projections from high dimensional data into low-dimensional representations
while preserving the most important topological and metric relationships of orig-
inal data. The model is biologically inspired and was introduced by Kohonen
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(1982). SOMs are often used for visualisation and clustering of high dimensional
data.

The network architecture consists of two layers with full connectivity. In
addition, cells in the output layer have lateral connections with synaptic weights
that decrease as a function (h) of the distance between the units. The distance
function has usually shape of mexican hat, but in simulations also many simplified
versions are used.

Learning is done in unsupervised manner based on the rule known as winner-
takes-all. The algorithm can be written in following steps (Kvasnička et al., 1997,
chap. 7)

1. randomly choose an input x
2. find winner i∗ for x: i∗ = argmini ‖ x−wi ‖
3. update weights: wi(t+ 1) = wi + α(t) · h(i∗, i) · [x(t)−wi(t)]
4. update SOM parameters (neighborhood h, learning rate α)
5. repeat until stop criterion is met

The training process for 2D is illustrated in Figure 28.

Figure 28: The
process of training
SOM. Network
gradually learns
the distribution
of 2D data. Each
image depicts the
weight vectors at
different iteration
of the training
process. (Kvas-
nička et al., 1997,
chap. 7)

3.4 Population coding

Population coding is a strategy for encoding information by populations of cells,
rather than by single neuron. It is a natural form of representing information in
human brain and it is robust to noise and neuronal mortality. We cannot under-
stand how our brain works without understanding coding mechanisms, because
all other processes depend on them. Population codes are therefore very often
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used also in computational models, either in purely mathematical or based on
artificial neural networks.

One of the most common population codes is illustrated in Figure 29. The
angular value is encoded into the population of four neurons with preferred di-
rections uniformly distributed over the interval. The preferred direction is the
location of neuron maximal activity – the peak of its tuning curve. The activity of
i-th neuron is given by gaussian function of the difference between the preferred
direction xi and coded value x:

yi(x) = exp
(
−(xi − x)2

2σ2

)

where σ is the width of the tuning curve. As we can see, the information can
be decoded from the activities of first two neurons. The redundancy is always
present and may lead to noisy representations, but also improves robustness. In
a neural network, the output tuning curves should be wider than input tuning
curves, because the information in the output layer cannot be greater than in the
input layer and the wide tuning contains more information.

Fig. 29: Example of population coding. The value is encoded into the population
of four neurons with gaussian tuning functions and uniformly distributed preferred
directions. The activities of four neurons are: {0.38, 0.61, 0.00, 0.00}
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4 Experiments

The goal of our experiment was to create a framework for studying spatial rep-
resentations and transformations performed by neural networks. We found in-
spiration in the very first influential model proposed by Zipser and Andersen
(1988). Their three-layer feed-forward network transformed retinal target into
head-centered reference frame using information about eye-position (section 2.3).
We decided to reproduce their experiment with more realistic representations of
input stimuli and possibly including another modalities like head movements or
eye vergence. According to the Dayan and Abbott (2005), it is a frequent mis-
take to assume that a more detailed model is necessarily superior. However, as we
pointed out in section 2.5, using realistic data may lead to noticeable differences
in observations. Also the work of Blohm et al. (2009), that we described in section
2.3.2, stressed the importance of accounting for full body geometry in order to
sufficiently understand processes underlying eye-hand transformations. Therefore
we chose as an experimental environment robotic simulator iCub. This approach
has two main advantages. First, it implicitly accounts for full body geometry
of 3.5 year old child and so can to some extent replace extensive mathematical
model for 3D reach developed by Blohm and Crawford (2007). Secondly, the level
of complexity seems to be perfectly appropriate for this kind of experiments.

Our experiment consisted of three steps. We first used iCub simulator to
generate the training and testing data. Then we trained three-layer feed-forward
artificial neural network to perform transformation from eye-centered to body-
centered frame of reference using information about gaze direction. After the
network was able to accurately perform this spatial transformation, we applied
several visualisation methods to understand internal structures of the network.
We will now describe these steps in more detail.

Note that we did not consider the model based on basis function network
because of the curse of dimensionality. We would need more than 7 · 105 hidden
units in order to perform the same transformation.

4.1 Generating the dataset in iCub simulator

Our artificial neural network was supposed to perform transformation from the
eye-centered (retinal) target position to the body-centered position using the
information about eye positions. To generate this kind of data in iCub simulator,
we randomly moved iCub’s eyes and put a random object in the space where
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iCub can see it. Then we gathered three pieces of information: retinal images of
the target (bitmaps from cameras), gaze direction, and the global target position.
For illustration see Fig. 30.

Fig. 30: Generating dataset in iCub simulator involves three steps: 1) randomly
moving the eyes. 2) putting a random object in the scene. 3) capturing retinal images
(left), gaze direction and global target position. Images from camera were downscaled
and the background was removed (bottom, white ball on black background).

Controlling the iCub simulator

As mentioned in Methods (3.1), iCub simulator is almost entirely written in C++,
so we also chose this programming language. Our programming environment was
Microsoft Visual Studio 2010. Communication with iCub is based on top of YARP
and consists of making remote procedure calls (RPC) to iCub simulator ports.
These ports belong either to the iCub environment or to iCub itself. Therefore,
putting an object in the scene is done through RPC call to the world port and
controlling iCub by call to some of the iCub’s ports. To get a better idea, we
provide two small examples. Listing 1 shows how we can delete all objects in the
simulator scene by making RPC call to the world port.

Listing 1: Deleting all objects in simulator scene
#include <yarp/os /Network . h>
#include <yarp/os /RpcClient . h>
using namespace yarp : : os ;
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// c r e a t e RPC c l i e n t and connect i t to the world port
RpcClient rpcWorld ;
rpcWorld . open ( " /a/world " ) ;
Network : : connect ( " /a/world " , " / icubSim/world " ) ;

// prepare command f o r RPC
Bott l e wor ldDelAl l ;
wor ldDelAl l . addStr ing ( " world " ) ;
wor ldDelAl l . addStr ing ( " de l " ) ;
wor ldDelAl l . addStr ing ( " a l l " ) ;

//make RPC c a l l
Bot t l e re sponse ;
rpcWorld . wr i t e ( worldDelAll , r e sponse ) ;
cout << " De le t ing a l l o b j e c t s : " << response . t oS t r i ng ( ) << endl ;

In Listing 2 we make iCub randomly turn its eyes. Every movement is in
iCub specified by the position of some joint. Eyes movement, that is, setting
horizontal and vertical angle of gaze direction, is implemented through two joints
that belong to the iCub’s head. One joint controls vertical direction (tilt) and
one horizontal direction (version). Both joints have limits, for tilt the limits are
−35◦ (down), 15◦ (up) and for version from −50◦ (left) to 50◦ (right).

Listing 2: Moving eyes to random position
// c r e a t e d r i v e r f o r the head
Property opt ions ;
opt i ons . put ( " dev i c e " , " remote_controlboard " ) ;
opt i ons . put ( " l o c a l " , " /a/head " ) ;
opt i ons . put ( " remote " , " / icubSim/head " ) ;
PolyDriver robotHead ( opt ions ) ;
i f ( ! robotHead . i sVa l i d ( ) ) {

p r i n t f ( " Cannot connect to robot head\n" ) ;
return 1 ;

}

// get number o f j o i n t s
IPo s i t i onCont ro l ∗pos ;
robotHead . view ( pos ) ;
int j n t s = 0 ;
pos−>getAxes(& j n t s ) ; //number o f j o i n t s

// prepare new po s i t i o n s f o r a l l j o i n t s
Vector p o s i t i o n s ;
p o s i t i o n s . r e s i z e ( j n t s ) ;
for ( int j =0; j<j n t s ; j++) {

p o s i t i o n s [ j ] = 0 ;
}
p o s i t i o n s [ 3 ] = fRand (−35.0 , 1 5 . 0 ) ; // t i l t ( v e r t i c a l )
p o s i t i o n s [ 4 ] = fRand (−50.0 , 5 0 . 0 ) ; // ve r s i on ( ho r i z on t a l )

// move to de s i r ed p o s i t i o n s



4 Experiments 66

pos−>posit ionMove ( p o s i t i o n s . data ( ) ) ;
bool done = fa l se ;
while ( ! done ) {

pos−>checkMotionDone(&done ) ;
}

Generating the data

We will now describe the process of data generation. The first step, moving
iCub’s eyes, is quite straightforward. We generated random vertical (tilt) and
horizontal (version) angles and moved eyes into the corresponding position. Both
eyes were rotated by the same angles and in this stage we omitted eyes vergence.
Once the eyes were moved, we needed to determine the space where the iCub is
able to see the object, that is, to determine iCub’s field of view. Cameras in iCub
simulator have resolution 320×240 points and use simple pinhole projection with
the focal length 257.34. This means that a box with dimension 320× 240 cm in
the distance 257.34 cm before iCub’s head fills the whole field of view. We first
put the object within these limits and then rotated its position by the same angles
as the eyes. One additional check was needed to ensure that the rotation did not
put the object under the ground. The simulator has three predefined objects
that can be put into the scene: box, sphere and cylinder. We have generated
datasets that contained all types of objects and also datasets that contained only
spheres. To make the data diverse enough, we generated objects with random
sizes. However, we needed to prevent close objects from being too big and far
objects getting too small, while still preserving this characteristic. Therefore we
chose random sizes for objects based on their distance before iCub. After the
object was put in the scene, we captured images from both cameras and saved
eye position and global target position. We repeated this procedure about 1500
times to generate a sufficient number of training and testing patterns.

Processing data for neural network

In order to use the dataset as an input for the neural network, we processed
each pattern into the set of real numbers in the interval 〈0, 1〉. The global object
position was translated into two angle values that determined the direction to
the object from iCub’s chest (Fig. 31). These two slopes and values of eyes
tilt and version were converted into the population codes as described in section
3.4. We used 11 neurons for eye tilt, 21 neurons for eye version, 19 neurons for
horizontal slope and 19 neurons for vertical slope. Note that these numbers were
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found experimentally and produced best results. Camera images from the left
and right eyes were flipped in both directions and downscaled to 64× 48 pixels.
For better performance, we also removed the background. The processed image
is illustrated in Fig. 30 (white ball on black background). The value of each
pixel was scaled to interval 〈0, 1〉. The image input was therefore represented by
2× 64× 48 = 6144 neurons.

Figure 31: Object position represented
by horizontal and vertical angles

4.2 Network architecture

We used three-layer feed-forward artificial neural network. The input layer con-
sisted of four units: two units represented object retinal images from the left and
right eye and two units were used for encoding horizontal and vertical eye posi-
tions. Retinal images with resolution 64× 48 pixels were encoded row by row in
population of 6144 neurons. Eye tilt was encoded by 11 neurons with preferred
directions uniformly distributed over the interval 〈−35◦, 15◦〉 and eye version by
21 neurons distributed over the interval 〈−50◦, 50◦〉. Best results were achieved
for tuning curves with width σ = 5 for tilt neurons and σ = 7 for eye-version
neurons (see 3.4). The total number of input units was 6144 + 11 + 21 = 6176.

The hidden layer consisted of 64 neurons. We experimented with several num-
bers of hidden neurons ranging from 50 to 300 without any significant change in
network performance. The performance of the networks with less than 40 neu-
rons was quite limited. The output layer contained two units of 19 neurons that
encoded horizontal and vertical direction to the object from iCub’s chest. The
preferred directions of output neurons were in both cases uniformly distributed
over the interval 〈−90◦, 90◦〉 and the width of tuning curves was σ = 10. The ac-
tivation functions for neurons in hidden and output layers were sigmoids, with the
gain1 for hidden layer 0.05 and for the output layer 0.1. The activation function

1 For clarification, this is not a gain field. In FANN, this parameter is called steepness.
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thus had form:
f(net) = 1

e−steepness∗net

The network was fully connected, meaning that there was full connectivity
between the input and hidden layer and between the hidden and output layer.
However, there were many more input units that encoded retinal image than units
encoding eyes version and tilt (6144 vs. 32 neurons). We therefore artificially
changed the weights of connections from input units to the hidden units in a way
that we could change the ratio between the numbers of neurons encoding these
two modalities. This can be expressed as follows:

net = r ·
Nr∑
i

wiri + e ·
Ne∑
j

wjej

where net is the input to a hidden neuron; r and e are the coefficients used
for balancing retinal inputs ri and eyes-positions inputs ej; Nr and Ne are the
numbers of units encoding given modality. We calculated r and e to correspond to
the desired ratio R : E, where R is the desired size of retinal inputs contribution
and E is the desired contribution of eyes-positions inputs. The equations for
calculating e and r were:

r = R · (Ne +Nr)
Nr · (R + E) , e = E · (Ne +Nr)

Ne · (R + E)

The chosen ratio R : E was 2 : 1, but there was no significant difference in
network performance for slightly different ratios. Even the original network was
able to successfully perform the transformations. However, by setting this ratio
we achieved faster training, better accuracy and weight profiles that were nicer
for visualisation purposes.

4.3 Training and testing

We trained our neural network using Fast Artificial Neural Network Library
(FANN). It is a free open source library for training multilayer feed-forward net-
works using several variations of backpropagation algorithm. FANN is written in
C, but there are more than 15 bindings to other programming languages includ-
ing C++. We have modified the library in order to be able to change the ratio
between the contributions of input modalities, as we described in previous section.

The training dataset consisted of 1000 patterns. Training was performed by
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various modifications of backpropagation algorithm and stopped when the MSE
reached the threshold 5 · 10−4. This value was found experimentally, we did not
observe any significant improvement in the network accuracy for smaller values.
In the first trials, the best training performance was achieved by RPROP algo-
rithm. It performed approximately 8 times faster than standard BP and about
10 times faster than quickprop algorithm. Because quickprop appeared to be
very ineffective, we didn’t use it in later trials. Interestingly, adding momentum
to standard BP dramatically increased the speed of training. We experimentally
found values of the learning rate and the momentum term, with which the incre-
mental BP outperformed RPROP. These values are α = 1.5, µ = 0.9 (see 3.2.2).
The additional disadvantage of RPROP and quickprop algorithms was that they
often generated weights that reached either top or bottom limits and thus were
not suitable for visualisation purposes. This is an interesting point, because it
indicates that the right choice of the training algorithm may be very important
for the purposes of studying the internal structures of the network.

The accuracy of the trained network was tested on another 500 patterns and
varied according to the complexity of the dataset. For the dataset that contained
various types of objects (box, sphere, cylinder) at various sizes, the mean errors
in horizontal and vertical directions were around 4◦ and the standard deviation
of error was 3.5◦. In the dataset that contained only spheres at various sizes, the
mean and standard deviation of error was around 3◦. In the dataset with spheres
at fixed size, the mean error and deviation was around 2◦. We did not find any
significant correlation between the size of error for particular pattern and position
of eyes or object in this pattern. The typical distribution of accuracy errors over
testing patterns is shown in Fig. 32.

Fig. 32: Distribution of errors over testing patterns. A) Histogram of errors. B) Errors
sorted by size.
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4.4 Results

4.4.1 Receptive fields

After the network learned to accurately perform the transformation from eye-
centered to body-centered coordinates, we examined the hidden layer for the
effect of gain modulation and shifting receptive fields. For this purpose, we first
visualised the receptive fields of hidden units. This visualisation was done by
plotting the weights between the hidden unit and the neurons representing visual
input. We found a wide variety of receptive fields, but we were able to divide
them into three groups as illustrated in Figure 33. In the first group (A), we
can distinguish continuous area with positive weights contrasting with an area
of smaller or negative weights. Note that this is the receptive field of hidden
neuron #4 in our network. The second group (B) has receptive field divided into
two parts, usually with stronger weights on the sides. In the third group (C),
we were not able to find any continuous area and the receptive field was hard to
interpret without further investigation. Quantitatively, in the network with 64
hidden units we have found 41 units of type A, 15 of type B and 8 of type C.
Note that these numbers are specific for the given network and would be slightly
different if we repeated the training process. We may conclude that the majority
of units have developed continuous receptive fields for particular area(s) in the
visual space.

Fig. 33: Examples of receptive fields. A) Receptive field is continuous (neuron #4).
B) Receptive field is divided into two parts. C) Uncertain receptive field.

4.4.2 Gain modulation

In the next step we examined the effect of gain modulation. In section 2.2 we
explained that gain modulation is revealed when a modulatory input changes
the response amplitude of a neuron to the other input, without modifying its
selectivity. To observe this effect we recorded the responses of hidden units to
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the fixed visual stimuli and different eye positions, which were changed in a
systematic fashion with 10◦ step in vertical direction and 20◦ step in horizontal
direction. Together there were 25 different eye positions arranged in a grid 5× 5.

Fig. 34: Gain modulation of neuron’s response (neuron #4). The arrangement of
panels A-I indicates the locations of objects relative to iCub gazing straight ahead. In
panel A, the object was on the left and above the iCub; in panel I, the object was
located on the right side and close to the ground. (Note that objects in panels A-C
were projected on the bottom part of retina, because the retinal image is flipped. Other
panels likewise). The magenta circles represent how would unit response only to the
corresponding visual stimuli without the influence of eye-position. In every panel, blue
circles represent unit responses to the visual stimuli modulated by corresponding eye
position. The top left circle denotes response when gazing up and left, the bottom
right circle gazing down and right. The white plus sign indicates that the effect of
modulation was excitatory.
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We repeated this process with 9 different retinal images that depicted the object
at particular locations. These locations were chosen systematically, starting with
top left region and ending with bottom right region of the image. Thus, all
together there were 9 × 25 = 225 different configurations of visual stimuli and
eye positions. The response profile of one typical hidden unit (neuron #4) is
illustrated in Fig. 34. Panels A-I represent the position of object relative to the
iCub. In panel A, the object was located on the left and above iCub; in panel
I, the object was on the right side and close to the ground. The filled magenta
circles depict neuron’s responses only to a visual stimulus without the information
about eye position. In other words, all input units representing eye position had
a value set to 0. We can observe that the location of largest magenta circles
(panels G-I) reflect the unit’s receptive field (compare Fig. 33A and 34). The
largest magenta circles are on the bottom because the retinal image of object
was flipped. The blue filled circles correspond to the different eye positions. The
effect of gain modulation is evident in all panels. For instance, in panel D, blue
bottom circles illustrate that the unit is active even though its response to purely
visual input is weak. We may notice that the modulation has the same direction
as the receptive field, meaning that the receptive field is sensitive to the object at
the bottom and the effect of gain modulation is highest when gazing down. We
hypothesise that this may be a desired behaviour.

Imagine an output neuron whose activity indicates that the object is located
close to the ground. This neuron is fed by the population of hidden neurons. We
may think about each hidden neuron as a small unit whose activity indicates some
specific position of the object. The output neuron thus collects these indications
and decides if it means that the object is located on the ground. We will now
look at the hidden neuron #4. The receptive field suggest that the neuron may
indicate objects located on the ground. Let’s consider various combinations of
visual stimuli and eye position. The object cannot be on the ground when iCub
looks up and sees an object. In case when iCub gazes straight ahead, the object
is on the ground only when its projection falls on the top part of the retina.
In the last case, when iCub fixates its eyes down, the object is always on the
ground. We can see that the response profile in Fig. 34 accurately corresponds
with this assumption. Neuron #4 is thus active only when the object is on the
ground. We would expect, that the output neuron indicating this position will
have strong connection to this hidden neuron. This is actually what we found
when we looked at the weights from neuron #4 to the output units (Fig. 35A).
The preferred directions of the output neurons were uniformly distributed over
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the interval 〈−90◦, 90◦〉 and iCub could move its eyes only −35◦ down, therefore
the strongest connections are on the left side close to the centre. In the light of
the experiment from section 2.3.1 and Fig. 12A-D, we could say that the RF-GF
direction difference was zero. We performed numerical analysis of this assumption
and computed RF-GF direction difference for each hidden units. The histogram
with results is shown in Fig. 35B. Because for the majority of hidden units is
RF-GF difference close to zero, we have a reason to believe that our hypothesis
may be one of the core principles of gain modulation.

Fig. 35: A) Weights of connections between neuron #4 and output neurons encoding
vertical object position. B) Histogram of RF-GF direction differences

The response profiles of hidden units were often much more complex than
in the Fig. 34. To explore if there are any characteristic profiles or clusters of
profiles, we used a visualisation method based on star plots. For illustration,
visualisation of neuron #4 response profile is shown in Fig. 36.

Figure 36: Star plot visualisation of
response profile (neuron #4). Each
neuron response is plotted on one axis.
See Fig. 34 for comparison.

We then trained one-dimensional self-organizing map to organize profiles in topo-
graphic order. Organized profiles of all 64 hidden units are depicted in Fig. 37.
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At the first glance the figure is hard to interpret, but we were able to conclude
that the center of response profile is pulsing from the bottom part to the top
through the stages when it pulses from the right to the left and vice versa. This
progress itself is not very important, the point here is that the response profiles
appear to be specialized in similar manner as the receptive fields thanks to the
effect of gain modulation.

Fig. 37: Response profiles organized by SOM. Every circle represent response profile
for one hidden unit.
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4.4.3 Reference frames

Last but not least, we performed the reference frame analysis. We proceeded
in similar manner as we stated elsewhere in this thesis, which means that we
examined if the centre of mass of the receptive field shifts for different gaze
directions. To determine the centre of RF, we reorganized units’ response profiles
in a way, that for every particular gaze direction we collected the information
about units responses to 9 different visual stimuli. Instead of a grid containing 9
panels with 25 responses, we thus get grid containing 25 panels with 9 responses.
Three such panels for neuron #4 are illustrated in Fig. 38. The centre of mass
depicted by red dot clearly shifts for three different gaze directions. We computed
the centres of mass for each of 25 different eye positions and visualised them in one
plot. Fig. 39 illustrates all shifts of RF for three hidden units. Two first examples
have shifting receptive fields, indicating that these units encode in body-centered
coordinates. In the third case, the receptive field remains close to the centre,
which is interpreted as using eye-centered coordinates. In order to determine the
common reference frame used by the population of hidden neurons, we computed
the absolute shifts and the standard deviations for all units and put them into
histograms in Fig. 40. If the majority of units had absolute shifts close to zero,
we would interpret it as encoding in eye-centered reference frame. The body-
centered reference frame would be signalized by the numerous absolute shifts
close to one. Since none of these situations happened, we concluded that the
hidden layer encodes the object position in an intermediate coordinates between
eye- and body-centered reference frames.
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Fig. 38: Shifts of the receptive field of neuron #4. Each panel illustrates the responses
for 9 different visual stimuli at one fixed gaze direction given by tilt and version value.
The red dot indicates the centre of mass of the receptive field.

Fig. 39: Shifts of the centres of mass of RF for three hidden units. Left panel depicts
all centres of mass of RF of neuron #4 for 25 different eye positions. The centres of
mass are represented by red circles.

Fig. 40: Histogram of absolute RF shifts (left) and histogram of the standard devia-
tions of RF shifts (right). The vertical axis denotes the number of units with the given
value of the shift. Both horizontal and vertical shifts were used in the histograms, so
the sum of bars in each histogram is 2× 64 = 128.
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5 Conclusions

Spatial transformations performed by neural networks are crucial components of
cognitive processes. Central to the spatial representations in neural networks is
the concept of a frame of reference. Our thesis explores the computational princi-
ples of spatial transformations between various frames of reference by examining
the hidden structures of the neural network constructed for this purpose. Before
we designed our own experiment, we studied past and recent network models able
to perform multimodal integration. The first influential model of spatial transfor-
mations comes from Zipser and Andersen (1988). They reported the effect known
as gain modulation, that was later closely studied and is now considered to be
one of the core principles of multimodal integration in neural networks. More
advanced studies of visuomotor transformations comes from Blohm et al. (2009),
who trained a four-layer feed-forward network to compute a reach plan from the
visual information about the target and hand position and posture signals about
eye and hand positions. Their model accounts for the real geometry of the hu-
man body in 3D. Pitti and Blanchard (2012) recently constructed a robot-head
to study a multimodal integration and spatial cognition in neonates. Their pre-
liminary experiments with the basis function network revealed the presence of
gain fields. In order to study spatial transformation in realistic environment, we
have used the robotic simulator iCub. It served as a data generator for the three-
layer feed-forward neural network, that we trained by several modifications of BP
algorithm to transform eye- to body-centered coordinates using the information
about the eyes position. The best results were achieved with the standard version
of BP with momentum term. The network was able to successfully perform the
transformation task with the accuracy within 2◦. We examined the hidden layer
of the network by the means of several visualisation techniques that revealed
the effect of gain modulation and shifting receptive fields. We explained why
we consider the effect of gain modulation to be perfectly suitable for the spatial
transformations. The results of the reference frame analysis indicate that the
hidden layer of the network encodes object position in the intermediate reference
frame between eye- and body-centered coordinates. The advantage of using an
iCub simulator lies in the fact that it accounts for full body geometry in 3D with-
out the need for additional mathematical models. Our network works in 2.5D,
meaning its output encodes only the direction to the observed object, not the
distance. We believe that our work have prepared the ground for further studies
of spatial transformations in neural systems, including the experiments in full 3D.
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A DVD supplement

We programmed the practical part of this thesis in C++ and our IDE was Mi-
crosoft Visual Studio 2010. We used the iCub simulator for generating datasets
for training and testing ANN. The training was performed using C++ wrapper
for the Fast Artificial Neural Network Library. All visualisations presented in
this thesis were made in Matlab 2010. The DVD supplement contains all of these
source codes and Matlab scripts, as well as several other visualisations of neural
networks. The digital version of this document and readme-file are also included.
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