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Abstract

If we want to manipulate with an object we have to know the position of an object in
the space. The initial information about the position is usually provided by retinal
projections. One of the many questions, that neuroscientists are concerned with, is
how the brain encodes particular information at the level of neuronal population.
For this purpose, neuroscientists used the term named reference frame. In this thesis,
we are concerned with learning one of essential tasks that processes sensory signals,
which is named coordinate transformation. We experimented with a novel biologi-
cally plausible training algorithm that allows us to train a bidirectional models. We
trained three different models on datasets gained by using the simulator of the iCub
humanoid robot. The first model learns one-to-one coordinate transformation be-
tween object position represented proprioceptively by arm position, with an object
held in the hand, and the head position, with centered eye position, focusing on the
object. In this model, all joint positions, as well as retinal object positions, were
encoded by real numbers. Thanks to the model, the robot is capable of looking at its
palm and taking into account the fact that the model is bidirectional; the robot can
also move its palm into its visual field. The second version of the model was tested
in two variants, differing in the representation of joint positions, in both the proprio-
ceptive system (arm position) and the eye position. Both variants implemented the
same, more complex transformation, namely the coordinate transformation between
object position represented by arm position (with an object in the palm) and the
retinal coordinate frame, modulated by eye position and vergence. Hence, in this
case, the robot does not have to look at the object, so its image can hit any position
on the retinas, and hence the object is perceived peripherally. The second variant
of the more complex model used the technique called the pupulation coding vector
for representing of the stimuli. All models learned the transformation, whereas, the
last model reached less accuracy. Despite that, some interesting similarities with

other works were observed concerining the receptive fields of hidden neurons.

Keywords: coordinate transformation, reference frame, artificial neural network,

receptive field



Abstrakt

Na manipulaciu s objektmi potrebujeme vediet, kde sa dané objekty nachadzajia v
priestore, a prave takato informéacia je zviacsa poskytovana nasim zrakom. Jednou z
mnohych otazok, ktorymi sa neurovedci zaoberaju je, ako su jednotlivé informacie v
mozgu kodované na trovni populécie neurénov. Pre tcel skimania tohto problému
sa v neurovede vyuziva pojem referencného rdmca. Pre porovnanie pozicie ruky
a objektu musi mozog vykonat bud transformaciu z jedného referené¢ného ramca
do druhého, alebo sii obe informécie pretransformované do takej reprezentacie, kde
mozu byt porovnané. Tento problém sa oznacuje aj koordindcia suradnic oko-ruka.
V naSej préci sa venujeme prave uceniu takychto transforméacii pomocou umelych
neuronovych sieti. Na trénovanie umelych modelov sme vyuzili novy, biologicky
inSpirovany algoritmus, ktory umoziuje trénovat obojsmerné siete. Pre tcely testo-
vania a ziskania realistickych dat sme pouzili simuladtor humanoidného robota iCub.
Vysledkom nasSich experimentov boli tri modely. Prvy model transformuje poziciu
o polohe ruky a bodu, na ktory je uprety zrak. Robot je vdaka tejto sieti schopny
pozriet sa na svoju ruku tak, Ze nataca otaca hlavou bez vyuzitia rotéacie o¢i. Kedze
je v8ak tento model obojsmerny, robot je taktiez schopny posunut ruku priblizne do
stredu svojho rozneho pola. Dalsie dva modely pozostavali z transformacie bodu
v priestore, ktory je reprezentovany smerom natocenia o¢i a pozicie daného bodu
na sietniciach do takej konfiguracie kibov ruky, ktora umiestni centrum dlane na
priblizne rovnaky bod v priestore. Dve natrénované siete sa od seba lisili iba v spo-
sobe kédovania jednotlivych stimulov. Prva z nich po natrénovani umoznuje posun
dlane na poziciu videného objektu, a upriet pohlad takym spdsobom, Ze je robot
schopny pozriet sa na ruku tak, Ze obraz centra dlane dopadne vzdy priblizne na
rovnakiu poziciu na sietniciach. Treti model vyuzival techniku popula¢ného koédova-
nia signédlov, ale nedosiahol tak presné transformacie ako prvy model. No ukazalo
sa, ze receptivne polia skrytych neurénov dosahovali podobné vlastnosti v porovnani

s inymi pracami zaoberajicimi sa transforméciou sturadnic.

Klacové slova: transformaécia siradnic, referenény ramec, neurénové siete, re-

ceptivne polia

vi



Contents

Introduction 1
1 Theoretical focus and related works 2
1.1 Reference frames . . . . . . . . ... oL 2
1.2 Sensorimotor transformations . . . . .. ... ..o L 4
1.2.1 Spatial Transformations for Eye-Hand Coordination . . . . . . )

1.3 Gainfields . . . . . . .o 12

3

1.3.1 Links between Gain Modulation and Coordinate Transforma-

tlions . . . ..o 14

1.4 Use of an artificial neural network . . . . . . ... .. ... ... ... 16
1.4.1 Findings from area 7a . . . . . . . .. ..o 17

1.4.2 Model and results . . . . . . .. ... 19
Methods 22
2.1 Artifical neural networks . . . .. ... 22
2.1.1 UBAL . . . . 25

2.2 The iCub: Humanoid Robot . . . . . . . . .. .. .. ... ... ... 28
2.2.1 The Cartesian Controller . . . . . . . . .. ... .. ... ... 30
2.2.2  The Gaze Controller . . . . . .. ... ... ... ... .... 31

2.3 Neuronal Population Vector . . . . . ... .. ... ... ... ..., 32
Experiments 34
3.1 One-to-one coordinate transformation . . . . . . . . . . ... ... .. 35
3.1.1 Data . . ..o 35
3.1.2  Training and Validation . . . . . ... ... ... ... .... 38

3.2 Eye-hand coordinate transformation . . . . . . . ... ... ... ... 40

vil



3.2.1 Data . . . . .. 41

3.2.2  Training and Validation . . . .. ... ... ... ... .... 43
3.2.3 Receptivefields . . . .. ... ..o 47
3.2.4 Gain modulation . . . . ... ... L0 49
4 Conclusions 51
Appendix 57

viil



List of Figures

© oo N O o

11
12
13
14
15
16
17

18

19

Schematic illustration of the spatial representations of objects in frames
of reference. . . . . . ...
Gaze-centered encoding of reach space. . . . . . . ... ... ... ..
Gaze-centered pointing performance in humans for targets in near

and far space. . . . . ...

Conceptual scheme for spatial transformations in eye-hand coordina-

Working principle of gain fields, based on Zipser and Andersen (1988).

A coordinate transformation performed by the visual system. . . . . .
Visual responses that are gain-modulated by gaze angle. . . . . . ..
The receptive fields of spacially tuned neurons from area 7a. . . . . .

The spatial gain field of 9 neurons (a-i) from area 7a. . . . . . .. ..

Nonlinear model of a neuron . . . . . . ... ... ... ........
Typical architecture of an MLP with two hidden layers. . . . . . . ..
Activation propagation in UBAL. . . . . .. ... ... ... .....
The iCub. . . . . . . . .
The architecture of the simulator of the iCub. . . . . . . . ... ...
Diagram of proposed Cartesian controller. . . . . . . .. .. ... ..
Kinematics of the head system for the iCub humanoid robot. . . . . .
A fitted cosine curve with the preferred direction at the peak of the

fitted curve. . . . . . L
The example of a neuronal population vector with gaussian tuning

CUILVES. . . . . . o o o v v vt e e e e e e e e e e e e e e e e e e e e

Experiments 2 and 3: Block schema of more complex models.

1X

7

8

26



20
21

22
23

24

25

26
27

The iCub looking at the palm centre of its right hand. . . . . . . .. 35
Model A: Histograms of errors given by distances between predicted
and real values. . . . . . .. oL Lo 40
Processing of retinal images . . . . . . . ... ... 43
Model B1: Histogram of error given by distances between predicted
and real values. . . . . . . ..o 45

Preferred way of looking at green objects that represent the robot’s

palm centre. . . . . . ... 46
The receptive fields of Model B1 . . . . . . . . ... ... ... .... 47
The receptive fields of Model B2. . . . . . . . .. ... .. ... ... 48
Gain fields of a hidden neuron of Model B2. . . . . . . ... ... .. 50



List of Tables

1 Propagation of activations between two layers pand ¢. . . . . . . .. 26
2 Definition of elements used in learning rules . . . . . . . . . ... .. 27
3 UBAL hyperparameters . . . . . . . . . .. .. ... ... ...... 27

4 Model A: Sets of values used in the process that seached for the best
configuration of hyperparameters. . . . . . . . ... .. ... .. ... 39

5 Model B1: Sets of values used in the process that seached for the best
configuration of hyperparameters. . . . . . . . ... ... ... .... 44

6 Model B2: Lengths of used population coding vectors. . . . . . . . .. 46

X1



List of Abbreviations

ANN

API

BAL

BP

CR

DoF

GF

MLP

ODE

RCF

RF

PMd

UBAL

YARP

Artificial neural network

Application programming interface

Bidirectional Activation-based Learning algorithm
Backpropagation algorithm

Cartesian controller

Degree of freedom

Gain field

Multi-layer percepton

Open Dynamics Engine

Receptive field

Reference frame

Porsal premotor cortex

Universal Bidirectional Activation-based Learning

Yet Another Robot Platform

x1i



Introduction

In this thesis, we are dealing with an important operation that is performed by
the brain in order to allow us to interact with the surrounding space. This pro-
cess, known as coordinate transformation, is responsible for the transformation of
information encoded in different systems at the level of the brain’s neuronal popula-
tions. Particularly, we focus on a specific transformation called eye-hand coordinate
transformation. The eye-hand coordination is performed every time when we want
to grab a seen object. In this case, the brain has to compare the retinal signals
carrying the information about the object’s position with the current position of the
hand and generate the right activations of the hand’s muscles.

We review theoretical bases and significant findings related to this transforma-
tion. Chapter 1 is focused on what the brain must take into account to carry out
the transformation, what is hidden under the terms gain modulation and reference
frame, and the chapter also reviews one of the most significant works in this topic.
The coordinate transformation is very often examined by the training of artificial
neural networks, and that is our approach as well. We use a biologically-inspired
training algorithm to train bidirectional neural networks performing the task of the
eye-hand coordinate transformation. All our models are trained and tested on data
collected via the robotic platform named iCub. Artificial neural networks, the used
algorithm, iCub and all other used methods are described in Chapter 2. Then, in
Chapter 3, we provide detailed descriptions of our experiments where we evaluate
all models and we compare our results with other findings. The trained models
provide inspiration for how to develop eye-hand coordination within a robot system
and their hidden neurons are used for pointing out similarities with the properties

of neurons in the brain. Short Chapter 4 concludes the thesis.



Chapter 1

Theoretical focus and related works

1.1 Reference frames

In order to gain a better understanding of the term reference frame or frame of
reference, consider the following situation. On a moving train there is a passenger
who lets a book fall down and another person watching the situation is standing
on the ground. From the perspective of the passenger the book is falling straight
down, but the observer (the man standing on the ground) sees the book dropping
down along a curved path because of the movement of the train. This situation has
shown that the description of a physical phenomenon depends on the position from
where the case is observed. Using reference frames (RF) on the previously illustrated
example, we can say that the book is falling straight down to the train’s RF but it
is dropping along a curved path in the earth’s RF. It can be said about the state
of motion of the passenger that it is stationary in the train’s RF but moving in the
earth’s RF (see Fig. 1) (Soechting and Flanders, 1992).

RFs are very often used by physicists and engineers but this term has also been
adopted by neuroscientists. In the mathematical sense, the RF is similar to a co-
ordinate system that is defined by a set of axes and an origin. The origin can be
anywhere in space and the orientation of axes can be chosen arbitrarily because RF
is only characterized by the state of motion relative to an object. Therefore, the
train’s RF that has been mentioned in the illustrated example has the same state
of motion as the train, and any point in the RF can be defined by its position along

each of the coordinate axes. Alternatively, the location of a point can be defined



by way of vectors, where a vector has two properties: magnitude and direction; the
magnitude is the length of a line segment between the origin and the point, and its
direction is from the origin to the point (Soechting and Flanders, 1992; Kumar and

Barve, 2002).

A. Frames of Reference

B. Vectors

oLy

C. Coordinate Systems al\

R
Figure 1: Schematic illustration of the spatial representations of objects in frames of ref-
erence (A), vectorially (B) and by coordinate systems (C). On the left, the RF moves

with the passenger; on the right, the observer’s RF is fixed to the earth. Adopted from
Soechting and Flanders (1992).

In order to switch the RF into a term in neuroscience, we have to make some
changes against the mathematical definition because neural systems do not report
to the position of an object as a vector or as coordinates. Instead, neurons encoding
visual space each reports to a restricted area of space known as receptive field or
response field (RCF), thus, the firing activity of the neurons is changed depending
on stimuli coming from their RCFs (Batista, 2002). If we want to identify in which
RF, for example, a neuron encodes spatial information about the location of an
object, then the firing activity of the neurons should stay the same as long as the

image of the object falls on the same locus on the retina and stays constant. Once



that happened we can say the location is encoded in a retinocentric RF (Soechting
and Flanders, 1992).

Different brain regions encode spatial locations in different RFs. In neuroscience
RFs are mostly divided into two main groups: ego-centric and allocentric RFs. In
an egocentric RF, the location of the object refers to the observer. At a neural level
responses of the neural population are attached to a reference point (Commiteri
et al., 2004). For instance, an eye-centred RF moves together with the eyes. Spatial
locations are mostly encoded in egocentric RFSs, especially space coding neurons in
the parieto-frontal cortex are associated with RFs centred to the eye, the head or the
hand (Colby, 1998). They have found neurons that encode space in RFs centred to
parts of the body, in the monkey’s posterior parietal cortex and in connected regions
of the premotor cortex (Cohen and Andersen, 2002; Colby, 1998). Information
encoded in an allocentric RF is described with respect to other objects, for example,
the book is on the table. Coding of space in allocentric RFs is not so well-studied
as egocentric RFs, but it has been shown (Marshall et al., 2000; Galati et al., 2000)
that in the posterior parietal cortex, in the dorsal premotor cortex (PMd) and in
early visual areas neurons report during object-based spatial judgement. Also it has
been proven that during the solving of a complex task, such as landmark knowledge,
orientation in large-scale space and navigation, some operations refer to both types
of RFs, allocentric and egocentric, which are difficult to untangle (Commiteri et al.,

2004).

1.2 Sensorimotor transformations

If humans, aminals or insects want to carry out basic operations to interact with
the world they use their bodies and senses. To manipulate with an object, moving
in space or doing other daily activities, the brain must continuously update the
internal representation of the world, deal with restrictions that may occur while
performing an operation and change body configuration to achieve the goal of the
action. For instance, during the reaching of an object the human brain must take
into account the location of the target and the current position of the particular

hand to generate the right movement for the hand. One non-neuroscientist might



say that the operations as above mentioned are not very complicated because we do
not need to put a lot of effort into getting the goal but when we look closely at the
neural level the task is more complicated as it would seem. The information about
the location of an object can be produced by stimuli from different modalities and
each of these modalities provides neural information that is encoded in a different
RF. Therefore, neuroscientists focus their research to clarify the following questions:
How is the information represented in a RF at the neural level? How is the in-
formation from different modalities combined to encode a correct representation of
space? How is the information in a particular RF transformed to another one? Co-
ordinate transformation in neuroscience is a term used for the transformation from
one RF to another. In the next section we closely discuss the eye-hand coordinate

transformation that is crucial for many human daily activities.

1.2.1 Spatial Transformations for Eye-Hand Coordination

The eye-hand coordination is reviewed by Crawford et al. (2004) and Blohm et al.
(2009) in very detail. The authors have brought assumptions about using gaze-
centred representations during the process of coordinate transformation that is
needed to perform such tasks as reaching or grabbing an object. In this chapter
we closely discuss their conclusions.

In order to reach an object, the brain needs information about the location of the
object being reached and the position of this object has to be encoded in relation to
the body part performing the operation. Arms of primates are anchored to shoulders
and the spatial information about an object comes primarily from projections on
retinas, therefore, the brain must perform a coordinate transformation between at
least two representations. First of them is the representation specifying the object’s
location relative to retinas and the second representation within witch the activations
of arm muscles must be determined to reach the target. In this section we discuss
how the brain deals with the transformation of visual stimuli into hand motion
commands and what processes are included as grabbing, reaching or manipulation
with objects.

A robot system controlling its arm to reach or to grab an object is usually simpler

than the human control system. Such robotic system is ordinarily reduced only by



using visual feedback. Basically, driving the hand to a point that is seen by the visual
system is carried out only by comparing the current position of the hand with the
target position. This solution may be sufficient because the speed of visual feedback
of such robotic system is not so dramatically limited as the brain. The limitation of
the robotic visual feedback is caused only by processing the time of the processor and
the speed of the electrical flow, whilst the speed of neural conduction and processing
time in a real primate brain is not adequate to perform a fast hand movement. Thus
using just visual feedback would probably cause that the hand would be out of the
field of vision before a new visual feedback would arrive to accurately update the
movement. Consequently, the brain of primates cannot use only visual feedback
driving the hand’s movements and it must find another way to carry out correct
and fast movements. The answer is the usage of internal models of the physical
system representing the world based on initial conditions and eye-hand coordinate
transformation performing in the feedforward way. Nevertheless, we cannot say that
visual feedback does not contribute to the guiding hand movements because visual
feedback actually helps to achieve the best performance of grabbing a goal and is
also essential for dealing with unexpected events or danger that might occur during
the performance of a particular movement.

We still do not know all the processes that are included in the brain to produce
a correct transformation from eyes to hands and how these processes are exactly
carried out at the neural level. Regardless, there are several conclusions made by

neuroscientists that we discuss in the following two conceptual steps.

Early visual representation for arm movements

For operations as coordinate transformation we usually describe internal models in
the brain by using the concept of RF (1.1). The final RF for eye-arm coordination is
associated with points in the upper arm and shoulder and not with a hand-centred
representation as we could mistakenly think. The first stimuli are controlled in
a retinal RF and the first problem occurs here: gaze shifting. Every time when
the eyes (or/and head) shift(s) with the gaze, the visual relationship between the
sensory apparatus and the external world changes (Hallett and Lightstone, 1976).

One solution, how the brain could deal with this problem, is to wait until the gaze



shifting finishes and then update its visual information (O’Regan and Noe, 2001)
but that might cause that the original target of interest would be moved into a less-
sensitive peripheral retina or even out of the visual field. It is good to realise that this
solution would produce also long lags in processing the time and redundant visual
computations. Therefore, the necessary representations must be stored for future
action either in an eye-independent form, or in such form that is internally updated
if the gaze is shifted, regardless of the fact that they were caused by movements of

eyes or the head (Duhamel et al., 1992).

( By | Extra-
* N/ striate
cortex

Mol

Figure 2: Gaze-centered encoding of reach space. (a) Drawing depicting the egocentric
visual directions of the hand, an orange, and an apple, as shown by the gray arrows. (b)
Side view of a human brain showing areas (highlighted in yellow and orange) that encode
reach space in gaze-centered coordinates: V1, striate cortex; PPC, posterior parietal cortex.
(¢) The consequence of an eye movement on the gaze-centered representation of the visual
field. The head/eye diagrams depict current gaze position; the circles represent the gaze-
centered representation of this visual scene (dotted lines represent visual horizontal and
vertical axes and intersect at the fovea). If the person in the upper diagram looks at the
orange, the hand and apple are represented in the left visual field (upper circle). In contrast,
if the person fixates the apple (lower diagram), the orange and hand are now represented
in the right visual field (lower circle). If the orange and the hand were no longer visible
when the eye movement occurred, the brain would need to remap their position by taking
the intervening eye movement into account. Adopted from Blohm et al. (2009).



The next raising question is: How the system in the human brain, which appears
to be used for early planning of pointing or reaching, stores early motor represen-
tations during eye movements? In order to answer the question, Henriques et al.
(1998) performed the following experiment. Human subjects that were carrying out
the experiment, were asked to point toward a location using one hand in total dark-
ness. At the beginning of the experiment, the target location that was pointed to,
was centred to subject’s fovea. Then subjects shifted the gaze by moving their eyes

and then pointed toward the remembered location.

A Sl o) Figure 3: Gaze-centered pointing per-
Control formance in humans for targets in near
and far space. Left column: 3 tasks,
where subjects either (A) look directly
toward the target before pointing (con-
trol task) or (B) view the target periph-
erally before pointing (Static Condi-
tion) or (C) foveate the target, then
4 shift their gaze and then pointing (Dy-
namic Condition). Right Column: fi-
o® @o nal fin- gertip positions (circles) in the
horizontal plane of one subject these
@ conditions. Squares represent the ac-
tual target locations of the two reaching
targets and the fingertip location for
C D ; etm.&)epth . . -
ynamic oBgRd  pointing toward the continuously illu
minated pointing target. In static and
dynamic tasks, open circles indicate 20
leftward eye fixation; solid circles repre-
sent data for 20 rightward eye fixation.
Targets were located at 2 m, 42 cm, and
15 cm. Adopted from Crawford et al.
(2004).
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Authors of the experiment tried to find out whether the responses of such a
pointing task are affected by an intervening eye displacement. They compared them
to the pointing to the remembered foveal targets or pointing to the retinally pe-
ripheral targets. If subjects were pointing toward the location using an updated
gaze-centred representation, pointing behaviour would echo pointing to peripheral
targets. Whereas pointing by using a nonretinal representation would cause no ef-
fect. As shown using Fig. 3, this experiment has cleared up the question about
the early motor representation and it has supported the idea of using an updated

gaze-centred RF. Other studies have also come up with findings where during point-



ing to auditory and proprioceptive targets the gaze-centred updating has been also
recorded (Pouget et al., 2002). Evidence of coding the spatial information of an
object in a gaze-centred RF can be also found in both the early visual pathway (i.e.,
retina, lateral geniculate nucleus, striate cortex) and also later in the visual pathway
(e.g., extrastriate and parietal cortex).

The gaze-centred representation naturally moves depending on the gaze because
the retinal projection of the project depends on the gaze. Therefore, the positions
of the target being reached can be defined by the target’s direction (horizontal and
vertical angular eccentricity) relative to fovae and by the distance between the goal
and the eyes. Early visual areas carry out the computation of target direction as
seen by a virtual eye which we can imagine to be placed between the right and
the left eye, whereas the required distance is determined by taking into account
monocular information (accommodation, relative object size, shading, perspective,
etc.) and binocular information (retinal disparity and convergence). Later, during
the early movement planning, the signals that contain this information seem to be
merged into a single gaze-centred representation of the space in the posterior parietal
cortex.

As we have mentioned above, the gaze-centred representation must be updated
to maintain a stable representation of the world. Therefore, the brain must update
this representation all the time the eyes are moving. This process, which performs
during the rotation of eyes, is known as updating or remapping and it also occurs
during the movements of the head and the body. An illustrating example is in
Fig.1(c). The observer originally looks at the orange, and the apple is placed left-
down relatively to the orange, thus the orange corresponds to the centre of the
gaze-centred representation, and the apple is located on the lower-left quadrant of
the visual field. A fast orientation movement approaching the apple causes that the
objects are remapped by the same rotation as the movement but in the opposite
direction. That means the apple is mapped at the centre and the orange is located
on the upper-right quadrant. It has also been shown that the updating can be
achieved even if the vision is removed, thus only by using information about the eye

movements.



Developing the reach plan

In order to correctly generate the reachable plan, the information about the initial
position of the hand must be included. Buneo et al. (2002) suggested that the
comparison between initial hand location and gaze-centred representation of the
visual target is done earlier and in a gaze-centred RF, and even if the hand is out of
the visual field. That implies that the proprioceptive signals carrying the information
about hand location must be transformed into gaze-centred coordinates. These kinds
of signals were found in the process of a gaze-centred transformation in parietal area
5, but these findings regarding the earlier comparison do not claim that the next
RF transformation is not required, or needed to reach the target.

The next important problem, the brain has to deal with in order to accurately
generate and perform a reaching plan, is how the ego-centre is translocated during
the head rotation. This problem has to be taken into account because the rotation
of the head causes eye’s translation with respect to the shoulder. Ignoration of
eye translational aspect would cause erroneous reach pattern at noncentral head
position.

A summary of conceptual and physiological models of visually guided reaching
movement is described in Fig. 4. The first stage corresponds to the fact that
the 3D representations of target direction are stored and maintained in a RF. The
second stage shows an illustration of the transformation according to the above-
mentioned Buneo et al. (2002)’s schema to compute the hand displacement in a RF
coordinate. There are other RF transformations from gaze coordinates to shoulder
representations that are not included in the figure but they are necessary to reflect
the eye-head-shoulder system. Nevertheless, such a model may be useful to tell
us which signals are required and used for such a transformation but it is obvious
that all such kinds of explicit intermediate representations are not used by the brain
directly, and they also do not tell us how and where the mentioned signals are coded.

To design a complete 3D reachable plan, the brain must know the amplitude
of the desired movement and the direction. It has been shown that in the dorsal
premotor cortex the direction and the amplitude are encoded together inside the
same neurons, but there is also an evidence that the direction and the amplitude

might also be encoded independently. One explanation of this contradiction might
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Figure 4: Conceptual scheme for spa-
tial transformations in eye-hand coor-
dination. To illustrate the model, con-
sider the following “task™ a subject
looks at a briefly flashed target (F) with
the arm at resting position (A). Then
(B) the subject makes 1) an upward eye
movement, followed by 2) a reaching

C Representational Stage or pointing movement toward the re-
membered target location (E). We hy-

Initial Perception Memory Target pothesize that the brain uses the fol-

V. Vi Selection lowing stages to do this. C: an early
Q= ‘\: j—» O * —> representational stage. Target location
* . is stored in eye coordinates, such that

eye rotation this representation (E) must be coun-

terrotated (updated) when the eye ro-

D Comparison Stage tates. D: comparison stage. Updated

target representation (E) is compared

with an eye-centered representation of
Hand

current hand location to generate “hand
Targel K Mator Error y . g
- In Eye motor error” in eye coordinates (Buneo
#J Coordinates et al. 2002). E: visuomotor execution
Hand stage. “Hand motor error” signal is ro-
tated by eye orientation and head orien-
tation (or perhaps by gaze orientation)
E Visuomotor Execution to put it into a body coordinate sys-
o Ereoar Wit Erein tem approprlat.e for ca.ulculatmg the (.16—
Re- Head Re: Body tailed inverse kinematics and dynamics

of the movement. This last stage would
also have to include internal models of
the geometry. Adopted from Crawford

Eye Head et al. (2004).

orientation orientation

O O

be that, at the neural level, amplitude and direction are encoded together but are

used by different mechanisms to generate muscle activation. What must be taken
to account is the rotation of the head and body and also values of correct forces for
specific muscles. Amplitude and direction are properties of vectors, therefore, we
can reformulate the problem of designing a reachable plan into the terminology of
vectors as that is often done.

The conclusion of the problem of developing a reachable plan is that the brain
must design a hand movement vector, which depends on the difference between
the hand location and the location of the target. The areas in the brain that are

responsible for calculating the vector, have to contain encoded spatial information
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of the hand and the position of the goal. In addition, the spatial information must
be represented in the same RF. To determine the movement vector, the particular
areas might use information from different sources, and also perform multisensory
integration in order to get the most likely estimation of both the hand and the
target location. One of the approaches that help us to examine how the population
performs the task of coordinate transformation is using artificial neural networks
(ANN). During studying of neural encoding of a cognitive function, we very often
focus on changing response magnitude of neurons known as gain field (GF) what

we are discussing in the next section.

1.3 Gain fields

The term gain field comes from Andersen and Mountcastle (1983). The authors
tested the visual RCF for a specific neuron at different eye positions. The RCF of a
neuron or a neural population can be described as a specific region in sensory space
of which stimuli can produce an influence on the activity of the single neuron or
on the neural population. For instance, activations of neurons encoding the gaze-
centered representation of a target’s location should be constant while gaze angles
stay constant, contrariwise, firing activities of the neurons should change with every
motion of the eyes. During the mentioned experiment the frequency of the neural
action potential was changing in a manner of multiplication the frequency by a
gaze angle that is scaled by a constant. Both of the shape and the locations of the
visual RCF were unchanged, only the RCF was scaled by some gain factor. This
phenomenon was the first time characterized in neurons inside LIP and visual area
7a. In another study, Zipser and Andersen (1988) examined the task of coordinate
transformation from visual target position on retinas and signals of gaze position
into the position represented by the target location in a space-fixed RF by an ANN.
The detailed analysis of their neural model showed that the network was able to
develop visual RCFs modulated by the position of the eyes in a very close way
compared to the modulation in parietal cortex. Fig. 5 illustrates the results of their
study.

At the neural population level, GFs modulate the responses of every particular
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Gain field theory

Constant receptive fields
with gain modulation

90 60 -30 0 30 60 90 90 60 -30 0 30 60 90
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Shifting receptive fields (deg)

Figure 5: Working principle of gain fields, based on Zipser and Andersen (1988). The
upper part of the panel shows the hypothetical receptive fields of two neurons that are gain
modulated (e.g., by eye or hand position) in opposite ways without shifting. For example,
the three lines in each graph could represent visual receptive fields mapped relative to gaze
at a leftward eye position (red solid line), a central eye position (green dashed line), and
a rightward eye position (blue dotted line). Here, eye position modulates the strength of
response of two neurons, but does not cause them to shift. However, summation of these
two gain-modulated neural responses results in shifting receptive fields in the output, e.g.,
eye position (or in other cases hand position) has shifted the receptive field. Adopted from
Blohm and Crawford (2009).

neuron in a whole population responding to the same RCFs, and therefore, the total
output of the population can be increased or decreased that allows to regulate the
total strength of the RCF. In the next steps, the brain can integrate such an output
in various ways and use them in next computations. For instance, something similar
to the output of the above mentioned ANN could be hypothetically compared with
information about the current hand’s location to produce the hand movement to
reach a target. It has been observed that the effect of gain modulation is also
produced by other types of signals, and GFs were found in many other brain areas

(Blohm and Crawford, 2009).

13



1.3.1 Links between Gain Modulation and Coordinate Trans-

formations

In order to demonstrate the role of gain modulation with the performance of the
task of coordinate transformation in the brain, we will discuss again the results that
have been introduced by Zipser and Andersen (1988). As mentioned, they trained
a neural network to solve coordinate transformation from the input signals, gaze
direction and retinal location to output stimuli in a body-centred RF. The model
was trained using one of the major-used training algorithms in machine learning
known as backpropagation (BP). This algorithm allows the learning of properties of
hidden units (neurons) in order to map inputs to corresponding outputs with the
effort to achieve as low error as possible. All of the output and input representations
of stimuli were composed to match the measured response of neurons in the brain,
thus the model was able to perform a coordinate transformation in the similar way
as it is made by the visual system (see Fig. 6). After a successful training, the
authors have shown that hidden units developed gaze GFs similar to those in PPC.
This experiment has brought a significant contribution that supports the role of gain
modulation within the process of solving a coordinate transformation in the brain
(Salinas and Sejnowski, 2001).

Other works also took an effort to study similarities between real and artificial
neurons, especially between their responses. Xing and Andersen (2000) trained a
more complex neural model to represent two consecutive saccades separated by a
delay interval. They used a recurrent neural network that is able to learn a sequential
task through their internal memory. Input data combined a visual map in retinal
coordinates, an auditory map in head-centred coordinates and eye-position units.
The model was taught to produce outputs that encode simultaneous movements of
both eyes (Xing and Andersen, 2000). After the training, they demonstrated that
their network developed GFs and sensory and memory responses matched those of
LIP neurons (Salinas and Sejnowski, 2001).

Salinas and Abbott (1995) studied the relationship between the coordinate trans-
formation described in Fig. 6 and gain modulation. Their research was focused on
neurons that are gain-modulated by the gaze and drive downstream neurons in an-

other neural population included in the process of generating arm movements. They
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Figure 6: A coordinate transformation performed by the visual system. While reading a
newspaper, you want to reach for the mug without shifting your gaze. The location of the
mug relative to the body is given by the angle between the two dashed lines. For simplicity,
assume that initially the hand is close to the body, at the origin of the coordinate system.
The reaching movement should be generated in the direction of the mug regardless of where
one is looking, that is, regardless of the gaze angle xgaze. The location of the target in
retinal coordinates (i.e., relative to the fixation point) is xtarget, but this varies with gaze.
However, the location relative to the body is given by xtarget -+ xgaze, which does not vary
with gaze. Through this addition, a change from retinal, or eye-centered, to body-centered
coordinates is performed. Adopted from Salinas and Sejnowski (2001).

considered a neural population that responds to the visual stimulus at the retinal
location y4,4¢¢ and is modulated by the gaze angle z4,.. that constitutes gain mod-
ulation. Then all responses r of such a population can be described by the following

equation:

r = [ (Ttarget = @) g (Tgaze) , (1.1)

where g (Z4qz¢) is the function of which result is the GF of particular neuron, and
[ (@target — @) represents the response of neurons as a curve with a single pick (see
Fig. 7). Then, downstream neurons driven by a population as mentioned must have

responses R theoretically formed by the following function of Zigrger and zgqze:

R=F (Clxtarget + C2~Tgaze) 5 (12)

where both constants ¢; and ¢, depend on the synaptic weight, and the RCF of a
downstream neuron is represented as the peaked function R.

This mathematical formulation is only a simplification of the problem but the
authors found conditions under which this can happen and they experimentally con-
firmed that the downstream neurons encode the sum of %1474t + Zgaze, Wwhich means

the downstream neurons that must encode target in a body-centred RF respond as a
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Figure 7: Visual responses that are gain-modulated by gaze angle. The response of a
parietal neuron as a function of stimulus location was measured in two conditions, with
the head turned to the right or to the left, as indicated in the upper diagrams. In these
diagrams, the cross corresponds to the location where gaze was directed, called the fixation
point; the eight dots indicate the locations where a visual stimulus was presented, one
location at a time; and the colored circles show the position of the recorded neuron’s
receptive field. This was centered down and to the left of the fixation point. In the
diagrams, the rightmost stimulus corresponds to 0 degrees, the topmost one to 90 degrees,
and so forth. The dashed line indicates the direction straight ahead. The graph below
plots the neural responses in the two conditions, indicated by the corresponding colors.
The continuous lines are Gaussian fits to the data points. When the head is turned, the
response function changes its amplitude, or gain, but not its preferred location or its shape.
Adopted from Salinas and Sejnowski (2001).

function of z4yge; that swifts if 2y, changes (Salinas and Abbott, 1995). A similar
swift has been demonstrated in several next cortical areas associated with a variety

of coordinate transformations (Salinas and Sejnowski, 2001).

1.4 Use of an artificial neural network

Zipser and Andersen (1988) have been the first ones who trained an ANN and they
have brought significant findings that ANNs are able to decode spatial transforma-

tion in a similar way to the brain.
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1.4.1 Findings from area 7a

The authors were concerned with the question of how the brain performs such a co-
ordinate transformation that translates sensory inputs into motor commands mainly
focused on the brain’s area named 7a and neural processes that are performed by
this area. This area is most likely used to perform spatial transformations. It also
contains cells that receive a convergence of both retinal and eye-position signals
as a non-linear interaction, and visual responses seem to be modulated by a func-
tion of position of the eyes multiplied by the response of retinal RCFs. It basically
means that the visual RCF remains retinotopic but the intensity of the response is
modulated by the position of the eyes (gain modulation).

To facilitate a comparison of cells of the ANN with cells of area 7a, they analysed
experimental data collected in studies with awake, unanaesthetized monkeys. The
experimental data were collected in the way of recording neuronal activities while the
monkeys performed various visuospatial tasks. They focused on three major kinds
of neurons in 7a area: the cells responding to eye-position only, the visual cells
responding to retinal stimuli only and the cells that respond to both of mentioned
cell classes. This interaction produces a head-centred representation of visual targets
that depend on the position of the eyes.

In order to test the eye-position cells, the following experiment was performed.
The animals were fixated on a small point during different eye positions, their heads
were fixated and the experiment took place in total darkness. During the experiment,
a linear increase was recorded for activities for a range of horizontal or vertical eyes
positions but some cells coded information of the position of the eyes in a more
complex way. For the testing of RCFs of visual cells, there was used a flashing spot
stimulus placed at different locations of the visual fields while the animal was fixated
on the target. These cells had usually large RCFs that were uniformly distributed
over the visual field for the population of neurons. These activities respond to a
single peak function.

The neurons that were specially tuned, showed a convergence of eye position and
retinal position. That means the visual responses of the neurons alter as a function
of the eye position. That was observed by collecting data under the condition in

which the visual stimulus appears at the peak locations in the retinal RCF with an
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Figure 8: The receptive fields of spacially tuned neurons from area 7a, arranged in rows
with the eccentricity of the field maxim increasing to the right, and in columns with the
complexity of the fields increasing downwards. Receptive fields were sampled at 17 radially
spaced points, with one sample taken at the centre of the field, and four samples taken on
each of four circles of radius 10, 20, 30 and 40 degrees. All the fields in row a have single
peak. Those in row b have a single peak but some complexities in the field. The fields
in row ¢ are the most complex with multiple peaks. The data have been normalized so
that the highest peak in each field is the same height. Adopted from Zipser and Andersen
(1988).

animal fixating at nine different eye positions. The visual RCFs of these neurons
are shown in Fig. 8.

Fig. 9 refers to the spatial GFs of 9 neurons in the area 7a, where the diameter
of the black inner circle represents the visually evoked GFs that are calculated as
the difference between the background activity recorded before the stimulus onset
and the total activity during the stimulus. The outer circle’s diameter corresponds
to the total activity. Most of the spatial GFs were planar, thus, the diameter of the
inner circle is proportional to the outer diameter representing the total response. By
the comparison of the black inner circles and the white annuli, which corresponds to
the eye position contribution, there were shown three types of GFs. The activities
of the first type (Fig. 9b, e, f) change in a parallel fashion. The activities of the
second type (Fig. 9a, ¢, d) change with eye position and the background activity
remained constant. For the last type of neurons, the background and the evoked

activities changed in different directions (Fig. 9g, h, i).

18



N OJCIOROIOKe
c e ® @O O HOO
0e@O 00l (H®O

s DOG) @O s
@ o ®@@® O@e°
@® o °® @®o

000 ¢ - - ' @@0O
©ee® 00 O@®
@.@©®®°°®

Figure 9: The spatial gain field of 9 neurons (a-i) from area 7a. Adopted from Zipser and
Andersen (1988).

1.4.2 Model and results

They used a three-layer neural network. The network was trained to learn the
mapping of visual targets to head-centred coordinates. The input data had two
parts, an array of units that represent the visual stimulus and representation of eye
position via another set of units. Both of the retinal and eye position inputs were
formed by using characteristics of the cells in PPC that response to visual stimuli
and to eye stimuli, respectively. For the output layer of the network there were used
two representations. The neurons of the first format had gaussian RCFs coding
location in a head-centred RF. The second representation was a monotonic format
in which the activity of each neuron is a linear function of stimuli in head-centred
representation. These two formats were chosen because they represent the most
common types of coding formats discovered in brain cells. The hidden layer was
trained using BP.

BP (Rumelhart et al., 1986) is used to train a feedforward neural network, in-
formation that is provided by the input z is propagated up to the hidden units at
each layer to produce output g, this part is called the forward propagation. BP is an
algorithm that finds a minimum of a cost function of mapping = to y completed by

updating the strength of synapses between neurons. Therefore, during the backward
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flow through the network the algorithm computes the gradient of the cost function.
Here, it is used the chain rule that lets computing derivatives of a function (cost
function) that is formed by the composition of other functions with derivates that
are known. Consider the following: x € R™,y € R", the function g maps values
from R™ to R", and f from R™ to R, and if y = ¢g(x) and z = f(y), then the

partial derivates of the z with respect to variable x; is:

0z 0z Oy,

(1.3)

The result of the cost function E that expresses an error between the output of
the network and the expected output is calculated via the composition of activation
functions of neurons, which is a continuous and differentiable function of weights w,
Wy, ..., w; in the network. Therefore, the minimalization of E' is calculated by using

an iterative process of gradient descent that consists in calculating the gradient:

OFE OF OF
E= 1.4
V <aw17 aw27 Y awl> Y ( )
and using the chain rule, each weight is updated as:
E
Aw; = —fyawi fori=1,...,1, (1.5)

where 7 donates a variable that defines the speed of learning (Goodfellow et al.,
2016; Rojas, 1996).

The model was trained using 1,000 samples and after successful training, the
authors compared the experimental and trained RCFs. This comparison has shown
that the trained model generates single-peak as well as some moderately complex
RCFs, thus, the RCFs of the model match those that were observed experimentally.
The characteristics of generated respective fields of the trained network were ob-
tained by holding the eye-position input to the network constant and simulating
visual stimulation at the same retinal positions as used in the experiment on area
7a. The GFs were illustrated by the graphics method described above, and the
comparision with the observed GFs in the brain was also shown similarities in this

aspect.
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By this comparison, the authors have shown that their model trained through
BP gives similar results like experimentally observed ones during performing the

task of the coordinate transformation.
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Chapter 2

Methods

2.1 Artifical neural networks

The human brain can be described as a highly complex, nonlinear and parallel
information-processing system capable to organize its information-processing units
know as neurons to solve plenty of such cognitive tasks as, for example, coordinate
transformation or multisensory integration. Investigations of the brain have brought
the inspiration that was at the beginning of the history of artificial neural networks.
In general, an ANN is a machine that is usually implemented by electronic compo-
nents or is simulated in a software and is designed to perform a particular task or
function of interest. The neural networks are characteristic by strong interconnec-
tivity among neurons through those basic computations that are performed (Haykin,

2009). Sometimes a neural network is defined as an adaptive machine (Haykin, 2009,
p. 2):

A neural network is a massively parallel distributed processor made up of simple
processing units that has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the metwork from its environment through a
learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge.

As already mentioned above, neuron is a basic computation or information-
processing unit of neural networks. In order to achieve a better understanding of

neural networks, it may be helpful to elucidate the model of an artificial neuron. For
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this purpose, we introduce Fig. 10 that illustrates the model of a single neuron. Via
the Figure, we can observe three basic elements of a single artificial neuron. The
first of them, the connecting links between every input and a specific neuron, are
also known as synapses and are characterized by strength or weight. For example,
the input x; is connected to the neuron k through the synapse characterized by the
weight labelled as wy; which determines the strength of the synapse. It basically
means that the input x; is multiplied by the weight wy;.

Synapses Bias

Activation
Function

Input Duiput

Signals

\ E/,
ﬁn ditive

Junction
ol
L

Synaptic
Weights

Figure 10: Nonlinear model of a neuron, labeled k. Typically, the normalized amplitude
range of the output of a neuron is written as the closed unit interval [0,1], or, alternatively,
[-1,1]. Adopted from Haykin (2009).

The second element of a neuron is the summing junction that basically sums each
one of input signals weighted by the particular synapse strength. In mathematical

terms this operation may be described by the following equation:

m

up = Zwijj, (2.1)

Jj=1

where uy, is the result of summing operation for a single neuron. This result is also
named as input net. The last element is an activation function that forms the output
of a neuron applying an elected function ¢ (.) on the input net. In Fig. 10, we can
observe the element labelled as b; which expresses external bias that is responsible

for increasing or decreasing the input net of the activation function (Haykin, 2009).
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Finally, we can express the output of the neuron £ as the following equation:

yj = (f: Wy T; + bj) ) (2.2)

=1

There are a lot of different architectures of neural networks, where each architec-
ture has its own unique properties and is designed for specific tasks, or better said,
each architecture is more suitable for some kinds of tasks and less capable to perform
other kinds of tasks. For an illustrative purpose, we introduce the model named the
multi-layer percepton (MLP). The MLP is a feed-forward network composed of an

input layer, hidden layers and an output layer as shown in Fig.11.

Input Hidden Output
layer layers layer

Xm A

Figure 11: Typical architecture of an MLP with two hidden layers. Adopted from Cruz
et al. (2013).

This term groups neural models within which the input signals are transmitted
in one direction. Thus, there are not any loops, so the output of a particular
neuron does not affect the neuron itself. Feed-forward networks neither contain
any backward connections between two neurons. The kind of NNs that allows such
connections are called feed-back networks. The input layer of MLP is not composed
of such neurons as we described above but its job is just to transmit the input
signals to the first hidden layer. Hidden layers are layers that do not have a direct
connection to the environment (Marius et al., 2009).

Weights on all synapses between every two adjacent layers are set by a procedure
named learning. During the training of a feed-forward neural network, a learning

algorithm drives hidden layers to acquire the best possible input-output mapping.
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In more mathematical terms, we can label the best-approximating function of real
estimated outputs as f* (z) and let f (x) be the function that is driven by a learning
algorithm to match f*(x). The function f(x) in our case in Fig. 11 composes

together three different functions to the form:

Fx) =19 (1 (Y x)). (2:3)

where f(V is the first hidden layer, f® is the second hidden layer, and f® is
the output layer. Then, the learning algorithm is responsible to drive each of the
functions fM) to f® to acquire an approximation of f*(z). ANNs can be used to
learn some tasks of regression or classification, where for classification, y = f* (z)
maps an input x to a category y. For a regression problem, an input x is mapped

to the particular numeric target y.

2.1.1 UBAL

In this section, we introduce a biologically-inspired algorithm named the Universal
Bidirectional Activation-based Learning (UBAL). UBAL is one of the answers to
biologically-more-plausible alternatives to BP that is based on the backward prop-
agation of errors and its biological plausibility is contentious (Malinovska et al.,
2018).

In order to provide a more biologically-plausible algorithm, Oreilly (1996) intro-
duced the model named Generalized Recirculation (GeneRec) that has been designed
to avoid the computation of error derivates. This model consists of three layers with
full connectivity between the layers and its learning process is based on the local dif-
ferences of activations. The activations of the model flow in two directions through
the same weight matrix. The flow of activation from input to output is named the
minus phrase. In the second phrase, the plus phrase, the desired target is clamped
on the output layer and activations flow back from the output to the hidden layer.
The learning rule is given by:

Awpy = Aa, <a+ - a;) : (2.4)

q
where A is the learning rate, a, denotes the presynaptic activation, a, denotes the
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postsynaptic activation of a unit in the minus phrase, and a; denotes the presynaptic
activation from the plus phase (Farkas and Rebrova, 2013).

Based on GeneRec, Farkas and Rebrova (2013) proposed an algorithm named the
Bidirectional Activation-based Learning algorithm. The difference between GeneRec
and BAL is that BAL does not use the same weight matrix for the minus and
plus phrase, but uses different weight matrices for both directions. However, BAL
failed to reach 100% convergence on basic tasks such as the canonical 4-2-4 encoder.
Therefore, the Malinovska et al. (2018) have brought an improvement of BAL named
UBAL.
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Figure 12: Activation propagation in a network with input-output layers x and y and one
hidden layer. Adopted from Malinovska et al. (2018).

The layer’s architecture and flows of activations are illustrated in Fig. 12. UBAL
uses two separate matrices W and M for each direction of activation flow. In contrast

with BAL, both flows contain two phases: prediction and echo. In the forward

Forward prediction ~ FP ¢ff =0 (Zi wipf? + bj)

Forward echo FE pfP=o¢ (Zj myiq; "+ di)
Backward prediction BP pPf =g¢ (Zj mjiqf Py di)
Backward echo BE ¢PF =0 (Zi w;pP? + bj)

Table 1: Propagation of activations between two layers p and q.

prediction phase, input signals are propagated to the layer p and subsequently, the
activations are propagated to the layer q. The backward prediction phase is carried

out in reverse. Echo activation phases consist of echoing previous outputs grp and
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pep back to p and ¢ via the matrices M and W. Table 1 depicts these phases in
mathematical terms.

The learning rules updating weights of matrices W and M are the following:

Awgj = M7 (tf — eF) , (2.5)

J

Am;; = )\tf (tf; - eB) : (2.6)

[

where A is the learning rate and the other terms are described in Table 2.

Forward target tr B+ (1 — 55) a7
Forward estimate el ~Fqf" + (1 - ) q7"
Backward target tP BIpPt + <1 - B2 > pi”
el + (1—n7) "

%

Backward estimate e

Table 2: Definition of elements used in learning rules

Every ANN has attributes that are set before the training procedure. These
attributes are called hyperparameters and their best configuration, for a particu-

lar learning problem, is searched experimentally. Hyperparameters of UBAL are

described in Table 3.

Learning rate A
Hidden layer size h
Initial weights: mean v and variance 0® N (v, 0)
Forward clamping strength pr
Backward clamping strength BB
Forward estimate strength ~F
Backward estimate strength 7B

Table 3: UBAL hyperparameters

UBAL was tested with experiments that consisted in learning the 4-2-4 encoder.
As mentioned, BAL failed to learn this task, but UBAL was already able to converge
to a solution. At the time of writing this thesis, UBAL was not tested by a very
complex learning problem yet. Despite this, there was a suggestion that UBAL

could be a more biologically plausible alternative to BP.
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2.2 The 1Cub: Humanoid Robot

Robotic platforms are being used by cognitive scientists with great popularity. One
of these platforms is the iCub, a humanoid robot replicating the size of a three-and-
a-half-year-old child. The platform was developed within a collaborative project
RobotCub funded by the Europan Commission. The height of the robot was proposed
to correspond to the size of a three-and-a-half-year-old child, which is approximately
100cm high. The overall weight of the robot is around 22kg. The iCub provides 53
degrees of freedom (DoF) that allow the robot’s moving ability and the ability to
manipulate with objects (Metta et al., 2019). Fig. 13 shows the iCub robot and its

proportions.

1046

Figure 13: The iCub. (a) The figure shows a photograph of the iCub robot. (b) The overall
robot dimensions. Adopted from Parmiggiani et al. (2012).

Such a real humanoid robot like the iCub can be too expensive for some science
departments. The cost of one iCub is about 200,000$. Therefore, a lot of researchers
use a robotic simulator instead. A robotic system provides a biased model of the real

environment, although not so fully complex as the real environment, that might be
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very useful, for example, in order to test algorithms performing cognitive functions
or to collect suitable data for neural modelling via ANNs (Tikhanoff et al., 2012).
The simulator of the robot iCub is distributed as Open-Source system following the
GPL licenses and it is supported by Windows, Linux, and also MacOS (Parmiggiani
et al., 2012).

The iCub simulator is based on the widely used physics engine called the Open
Dynamics Engine (ODE). The ODE is used for simulating rigid bodies and for
computing the physical interaction with objects. In order to render the scene, the
combination of OpenGL and SDL is used, that enables to render the scene in such an
easy way that is sufficient to carry out computationally-efficient simulation experi-
ments. Another tool the iCub simulator is based on is an open-source middleware
called Yet Another Robot Platform (YARP). The YARP is very suitable for real-
time applications interfacing with complex and changing hardware. From the view
of the device’s API or network, the real robot and the simulator have the same
interface and are interchangeable from the user perspective (Tikhanoff et al., 2012).

The architecture of the simulator is illustrated in Fig 14.

Processes

. J

iCub Simulator
World | Robot / \' z
0
LA 2
\“—_\l_—a 0 User Code
;— Platform
independent
Physics Engine E
ODE a
Iy] 3
YARP
1]
1

OpenGL-SDL

[ Rendering Engine

Figure 14: This figure shows the architecture of the simulator with YARP support. The
User code can send and receive information to both the simulated robot itself (motors/sen-
sors/cameras) and the world (manipulate the world). Network wrappers allow device re-
motization. The Network Wrapper exports the YARP interface so that it can be accessed
remotely by another machine. Adopted from Tikhanoff et al. (2008).
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2.2.1 The Cartesian Controller

Pattacini et al. (2010) developed a cartesian controller (CR) that is capable of dealing
with issues like a large number of DoF, computing of trajectories effectively and
producing smooth movements, designed such a kind of controller around the iCub
robot.

Reaching the cartesian position of the target by the CR is performed in two

modules:

e the Solver module including a nonlinear optimization technique,

e the Controller module consisting of a biologically inspired kinematic controller.

The first module allows computing the arm joints configuration that reaches the
desired position. The second stage, the biologically inspired kinematic controller, is
responsible for performing a human-like trajectory of the end-effector by computing

the velocities of motors (Pattacini et al., 2010).

Solver 9d q

(x,y,2,9,0,p)
) module

q

Figure 15: Diagram of proposed Cartesian controller. Adopted from Pattacini et al. (2010).

To introduce an example of working with the CR that is used in our experi-
ments, we introduce the method askForPosition(...). This method returns the
joints configuration that achieves the desired position without performing any move-
ments. For instance, if we want to know joints configuration for the position that
is determined by x = —0.25, y = 0.0 and z = 0.1, then, we just run the following

code:

Vector xd(3);

xd[0]= —0.25;
xd[1]=0.0;
xd[2]=0.1;

Vector xdhat, odhat, qdhat;
icart —askForPosition (xd,xdhat , odhat , qdhat );
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where xd is the vector determining the desired position, the parameters xdhat,
odhat and gdhat are filled up inside the implementation of the method. Xdhat and
odhat represent the results of the optimization process for the cartesian position
and orientation, respectively. The parameter qdhat contains the joints configuration

composed of three joints for the robot’s torso and seven joints for the arm.

2.2.2 The Gaze Controller

A robotic system that is supplied with moving cameras has to be able to focus on
the object of interest in order to perform such operations like the exploration of
the surrounding environment, manipulation with seen objects or tracing an object.
The performance of mentioned tasks includes movements of the neck and both eyes
that must be performed as effectively and smoothly as possible. The iCub robot’s
head has six DoFs and that creates such a complex kinematics that achieves the
complexity of the human ocular system.

Roncone et al. (2016) designed a gaze control architecture that is implemented
around the iCub’s technologies. Their approach of how to solve the controlling of a
robot’s gaze consists in the explicit control of the 3D point that is defined by both
eyes of a generic binocular system. This fization point can be defined as a virtual
end-effector that is the result of the kinematics involving the eyes and the neck (see
Fig. 16).

Figure 16: Kinematics of the head
system for the iCub humanoid
robot. It is composed of a 3-DoFs
neck and a 3-DoFs binocular sys-
tem, for a total of 6-DoFs (depicted
in red). Each of these joints is re-
sponsible for the motion of the fix-
ation point. The Inertial Measure-
ment Unit (IMU) is the green rect-
angle, whose motion is not affected
by the eyes’ movements. Adopted
from Roncone et al. (2016).

We used the gaze controller in order to find out where the robot is looking at.
For this purpose, there is the method textttgetFixationPoint(...) that returns the
current fixation point. The following example corresponds to the call of the method

in C4++:
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Vector x;
igaze —>getFixationPoint (x);
After a successful carry-out, the vector x contains the fixation point corresponding

to the current configuration of the neck and the eyes.

2.3 Neuronal Population Vector

The neuronal population vector has been introduced by Mahan and Georgopoulos
(2014) who investigated the brain mechanisms coding the direction of the arm in
2D space. Their approach consisted of recording activities of cells in the monkeys’
motor cortex while the monkeys were performing various arm movements in different
directions. Particular neurons of the neural population had the orderly variation of
neural activities corresponding to the directional tuned rate of firing action poten-
tials shaped in the form that the highest firing was reached by a particular movement
(named as the preffered direction of a cell). The activity was being decreased pro-
gressively as movements differed more and more from the preferred direction. The
function describing the behaviour of a particular cell’s activity against its preferred
direction is known as the directional tuning curve. The example of a tuning curve
is illustrated in Fig. 17 (Mahan and Georgopoulos, 2014).

We introduce an example of the neuronal population vector where the activity
tuning function of every single neuron is the gaussian function, and thus, the activity

of a particular neuron fires as the following equation:

(z—b)?

f(z) =aexp™ 27, (2.7)

where the parameter a determines the height of the curve’s peak, b determines where
the centre of the curve’s peak is placed at, and the parameter ¢ controls the width
of the curve.

Consider a population of neurons that is composed of five neurons. The preferred
directions of neurons are uniformly distributed on the interval [—30,30], and the
parameters of their Gaussian tuning curve are a = 1, ¢ = 7 and values of b for
each one of the five neurons correspond to [—30, —15,0, 15,30]. Then, for instance,

the value x = 12° encoded by activities of the population’s neurons corresponds to
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Figure 17: A fitted cosine curve with the preferred direction at the peak of the fitted curve.
The ambiguity of the curve with respect to other movement directions is indicated by the
red horizontal line at a given discharge rate: the line crosses the curve at two symmetric
points corresponding to two different movement directions (blue arrows). This ambiguity
points to the need for a unique, unambiguous coding of movement direction by a neuronal
population. Adopted from Mahan and Georgopoulos (2014).

values: {0,0,0.23,0.912,0.036}, the same example is also illustrated in Fig. 18.
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Figure 18: The example of a neuronal population vector with gaussian tuning curves.
The population is composed of five neurons with preferred directions uniformly distributed
over the interval < —30,30 >. This Figure illustrates the encoding of the value 12° that
corresponds to the following activities of the neurons: {0,0,0.23,0.912,0.036}.
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Chapter 3

Experiments

We carried out three experiments of learning coordinate transformations via UBAL
in order to demonstrate the capability of the algorithm to learn such a complex
task like a coordinate transformation, and to point out to the properties of neurons
of learned models in comparison with another experiment performed by learning a
different type of ANN, and with real neurons in the brain. Experiment 1 consisted of
the learning of coordinate transformation where one modality is mapped to another
one. Particularly, the direction of the gaze is mapped on arm angles that correspond
to the point where the gaze is focused on. The aim of this experiment was to test the
capability of UBAL model to learn the mapping of more complex data. Experiment 2
and 3 were designed to map the combination of two modalities to the third modality.

That allowed us to examine the presence of gain modulation in neurons of hidden

Figure 19: Block schema of more complex models.

layers. The mapping consisted of the gaze direction and the position of an object on

retinal images mapped to the angles of the right arm (see Fig. 19). The difference
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between these two experiments was only in the encoding of input and output data,
whereas the first experiment had data scaled to the same interval, in the second, we
used the method called the neuronal population vector that is described in Section

18. We describe each experiments in more detail in the following sections.

3.1 One-to-one coordinate transformation

3.1.1 Data

The model of the first experiments (model A) was trained to learn a one-to-one
mapping in the sense of modalities. Data for this model we collected using the iCub
simulator (2.2). The fact that communication with the iCub simulator is established
through YARP allows us to control the simulator via a program written in C+-+ or
Python. We wrote the implementation of a collecting algorithm that we designed
to produce data. The entire code was written in C++ and it generated data in
the form composed of seven angles of right arm joints, three angles that control the

rotation of the robot’s head, and points placed where the robot looked at.

Figure 20: The iCub looking at the palm centre of its right hand. The figure illustrates
the data collecting process. For randomly generated values of the robot’s head joins, we
collected corresponding angles of the right head joints that move the palm to the position
where the iCub is looking at. In Experiment 1 we used two joints controlling the head’s
horizontal and vertical movements. In Experiment 2, two joints moving with eyes are used
instead.

Particularly, we chose two joints (denoted as neck_pitch and neck_yaw) that

control the vertical and the horizontal rotation of the head, respectively. These two
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joints combined with the third joint (eye_vergence) define the fixation point of the
gaze, where neck pitch and neck yaw define the gaze direction because the rotation
of the eyes keeps the same during the whole process, and the vergence defines the
distance value from the virtual ’cyclopean’ eye that can be imagined as placed in
the middle between eyes. In this case, we chose the neck pitch and yaw instead of
the joints controlling the rotation of the eyes because it allows us to cover a bigger
space of the points which the robot is able to be focused on. These two modalities
are supposed to correspond to the same point in the space. Thus, the head joints
force the robot to be focused on the same point that represents the position of the
palm centre which is defined by the values of seven arm joints.

In order to describe a precise way of how the data was collected, we introduce the
most important examples of the code that can help us to get a better understanding

of the collecting procedure.

getHeadController ();
getRobotGazelnteface ();
getArmController (RIGHT);
getDataFile (path);
setRandomVergenceAngle ();
srand (NULL) ;

const double maxError = 0.03; // 3cm error limit
double maxAngle = 15;
double minAngle = 3;
int direction , steps;
steps = 6;
tuple<int, int> doneCorrectly = make tuple(—1, 0);
for (int i=0; i < 10; i++ ) {
int cntSamples = 0;
setVergenceAngle(24+1);
while (cntSamples < 100) {
direction = (get<0>(doneCorrectly) — —1 ||
(get <0>(doneCorrectly) > 7 &&
get <0>(doneCorrectly) < 11)
? (rand() % 9): get<0>(doneCorrectly);
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doneCorrect = randomHeadMotions (
direction , steps, minAngle, maxAngle, maxError);

cntSamples += get <1>(doneCorrect );

After initialization of all the required controllers of robot parts, the main pro-
cedure, that controls data collection, increases the vergence angle gradually on the
interval [24, 44] that was chosen experimentally in order to not exceed the distance
that is the robot able to reach with the arm as well as to avoid collisions between
the head and the hand. For each vergence value from the interval, we collect several
samples by calling the sub-method named randomHeadMotions(...), the core of

which corresponds to the following code example.

for (int i=0; i<steps; i++) {

nPitchDiff = randomDoubleValue (minAng, maxAngle)*xDir ;
nYawyDiff = randomDoubleValue (minAng, maxAngle)xyDir;
headAngles [0] += nPitchDiff; headAngles[2] += nYawyDiff;
if (!checkHeadAngles(headAngles)) {

return make tuple(10, i);

// Break the cycle if a joint angle is out of range!
}
setHeadAnglesAndMove (head Angles ) ;
getCurrentFixPoint (fixPoint );
icart —askForPosition (fixPoint , xd, od, jointConf);

getArmJoints (jointConf );

for (int j = 0; j < 3; ++j) {
error [j| = fixPoint[j] — xd[j];

if ((errChck = checkError (error, maxError)) != —1) {
return make tuple(errChck, 1);
} else {
datafile << vectorDataToString (headAngles)
<< vectorDataToString (jointConf)
<< vectorDataToString (fixPoint)

<< vectorDataToString (error) << ’'\n’;
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datafile . flush ();

¥
return make tuple(—1, steps);

This sub-procedure was designed to move with the head in one of the eight
directions (left, left and up, up, up and right, and so on...), where every movement
in a particular direction consists of a series of steps. For each step of a movement,
the procedure randomly moves with the head in a particular direction and then,
checks if updated values of the head joints do not exceed the robot limits. If this
check is successful, then the process continues with receiving the fixation point of the
gaze, values of joints of the right arm (see the example in Section 2.2.1). After that,
the difference is evaluated between the fixation point and the point that defines the
centre of the palm. If the difference is not over the designed limit (3cm), the values
of the seven arm joints, values of the three head joints, the current fixation point
and the difference between the fixation point and the centre of the palm are saved
as one sample. The returning value contains the number of successfully collected
samples and the number that indicates whether it was possible to perform all steps

of the particular movement or not.

3.1.2 Training and Validation

We collected 1870 unique samples in total. As described in the previous section we
used them to train the UBAL model to perform a coordinate transformation from
the head angles stimuli representing a fixation point to the angles of the right arm
corresponding to the same point, and also vice versa, from the hand angles to the
head angles.

Before training, we scaled each feature in the dataset on the interval [0, 1] using

a min-max scaler, the transformation of which is given by:

x — min (x)

, (3.1)

Focaled = 1 ax () — min (x)

where x denotes the feature value.
The scaled dataset was randomly split to the training dataset (1590 - 85%) and

testing dataset (250 - 15%) and we kept the datasets without any change during the
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whole process of searching for best hyperparameters.

In total, we trained 192 models with different configurations of hyperparameters.
We tried various values for the learning rate, the size of the hidden layer, forward
and backward clamping strengths, and forward backward estimate strengths (see
UBAL hyperparameters in Section 3). Each one of the trained models consisted
of one hidden layer, initial values of weights were always set to zeros, and as an
activation function was used the sigmoid function. The rest of the hyperparameters
were tested iteratively. We used the same ~ value for the forward and the backward
estimate strength, and for the clamping strengths was used pairs of values calcu-
lated as [§,1 — (] for the forward strength, respectively, [3,1 — 3] for the backward
strength. The particular values that were included during the process finding the

best configuration can be seen in Table 4.

Learning rate A {0.05,0.1,0.15}
Hidden layer size h {10,15,20,25}
Forward /Backward clamping strength 5 {0.2,0.5,0.7,0.9}
Forward /Backward estimate strength v {0.25,0.5,0.75,0.9}

Table 4: Sets of values used in the process that seached for the best configuration
of hyperparameters.

Each model was trained during 200 epochs, and after each epoch, we carried
out testing on the test dataset, and if the sum of errors of forward and backward
predictions was less than the best previous result, then the current weights were
saved as the best result. To measure errors between outputs predicted by a model
and the real output we used the mean square error that is given by:

1 & AN 2
MSE==% (Yvi-Y) (3.2)
i=1
where Y is the vector of predicted values, Y denotes the vector of the real values,
and n is the size of the vectors.

After the training of each model, we evaluated the error on each joint belonging to

the head or to the arm. This evaluation was carried out by comparing the predicted

dataset and the real dataset, and as the error function we chose the mean absolute

error (MAE):
1 & .
MAE =Ly (33)
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where Y is the vector of predicted values, Y denotes the vector of the real values,
and n is the size of the vectors.

As the best model, we chose the model with the best combination of the MSE
during training and the MAE with an emphasis placed more on errors of the arm
joints. Hyperparameters for the best model are A = 0.1, h = 20, f = 0.2 and
v = 0.9. The model achieved the best result after 149 epochs.

Histogram of Distance Error: Gaze fixation points Histogram of Distance Error: Points of the centre of palm
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Figure 21: Histograms of errors given by distances between predicted and real values.

To evaluate the accuracy of the best model we achieved fixation points of the gaze
and the points of palm centre for predicted head and the arm angles, respectively.
These points we compared with corresponding points in the collected dataset in the
following way. We calculated the average Fuclidean distance between the points
resulting from predicted values of the arm joints and the points determined by the
angles in the collected dataset, and also between the gaze fixation points defined by
predicted and real values of the head joints. The average distance between fixation
points reached 2.6 cm, and the average distance between the points of palm centres
matches up to the value 4,03 cm. Fig. 21 shows histograms of the numbers of points

with a specific distance error.

3.2 Eye-hand coordinate transformation

After we successfully trained the first model, we decided to carry out more complex
experiments where stimuli coming from two different modalities are mapped to one
stimulus, and vice-versa. We gathered new data where the joints controlling the

head rotation were replaced by joints maintaining the rotation of the robot’s eyes,
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thus the iCub’s head stayed motionless and the shifting of the gaze was caused by
eyes movements. In order to include another modality, retinal images were also
included in the data collecting process. The third modality was composed of the

right arm joints that correspond to the same point as the fixation of the gaze.

3.2.1 Data

We again use an example of the code to gain a better clarification of the gather-
ing process. The example refers to the core of the collecting process that collects
data in the way that we describe in a few following lines. For each value of the
vergence on the interval [17,41] (determined experimentally), the procedure col-
lects the same number of samples. One sample consists of the values of the three
eyes joints (eye tilt - horizontal movement, eye version - vertical movement, and
eye vergence - the distance between the fixation point and the eyes), the values of
the right arm joints, and two retinal images containing the green object (the square)
that represents the point of the palm centre. The first step of the process is the gen-
eration of a random rotation of the eyes, and subsequently gaining the fixation point
of the gaze. The second step acquires values of the angles for the arm joints answer-
ing to the gaze point, and the evaluation of the distance error between the point
describing the centre of the palm and the gaze fixation point. If the distance between
these points is not over the designed limit, the process continues to the path of the
dealing with retinal images. For every random configuration of eyes as previously
described, the green square is placed on the position of a fixation point (or a palm
centre) and four movements of the eyes are proposed in order to capture the green
object at different locations on retinas. By following the described algorithm, we

received four samples that differ from each other only in different retinal images.

int vergence = 17;

// For each wvalue from interval <17, 41> collect
// "numberForVergence" of points in the space
while (vergence < 41) {

if (totalCountVergence > numberForVergerce) {

totalCountVergence = 0;
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vergence -+-+;
setVergenceAngle (vergence );
}
// Generating new random orientation of the robot’s eyes
xDiff = randomDoubleValue(—20, 10);
yDiff = randomDoubleValue(—30, 30);
// Setting new orientation of the eyes
setEyesPosition (xDiff , yDiff, false);
// Receiving the point where the gaze is focused on
getCurrentFixPoint (gazeFixation );
// Receiving angles of hand’s joints corresponding
// to the fization point
getInvKinHandAngles (gazeFixation , xd, od, handAngles);
Vector error (3);
for (int k=0; k<3; ++k) {
error [k] = abs(gazeFixation[k] — xd[k]);
}
// Check if the difference between the hand point and fization
// point is not over the limit!
bool success = checkErrorGazeHand (gazeFixation, xd, 3.0);
if (success =— true) {
totalCountVergence ++;
// Creating an object representing the position of the palm
// in the space
runYarpCommand (WorldYaprRpc:: delete AllObjects ());
runYarpCommand (WorldYaprRpe : : createBOX (gazeFixation ));
Vector angles, results, headAngles;
getCurrentAyesAngles(angles);
// Designing of four head motions
designChanges (angles, results);
// Take image for each head conf in results and save data
for (int r=0; 4 > r; r++) {
double xEDiff = results|[r*2];
double yEDiff = results[((r=*2)+1)];
setEyesPosition (xEDiff , yEDiff, false);
takeAndSavelmages (...);
Vector changedAngles (2);
getCurrentAyesAngles (changedAngles);
datafile << vectorDataToString (changedAngles)
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<< vectorDataToString (handAngles) << endl;

totalCount++;

}

After we collected all data, retinal images were further processed using OpenCh.
Each image was converted to green-black colours to remove the background, and
images received in this way were used to gain a point that determines the position
of the green object on retinas. From images, we were extracted the size (the number
of green pixels) of the green mass, and the value on axes x and textity defining the
point of the object’s centre. One example is illustrated in Fig. 22, where the size of
the object corresponds to the value s = 180 and the centre is located at coordinates
(r = 148,y = 135). After collecting up a significant number of samples, we filtered
out those samples that did not contain the green object or contained just a small
piece of the object. After that, we got 934 samples prepared to be used for training

of new models.

Figure 22: Processing of retinal images using the library OpenCV. (A) The original form
of images from one retina. The green square is placed at a point that represents the
robot’s palm centre instead of the image of the whole palm. (B) The first step of images
processing. Only the green pixels are preserved, all others are converted to the black colour.
(C) The redpoint corresponds to the centre of green mass. Final information about the
palm centre is given as x- and y- coordinates on both axes of the point. In this particular
case, coordinates correspond to values (x=148, y=135).

3.2.2 Training and Validation
Model B1

Data for Model B1 were scaled using the min-max scaler (see Eq. 3.1) on the interval

<0,1>, and randomly split to training (793 - 85%) and testing dataset (141 - 15%).
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The network was composed of three layers, where the input layer contained three
neurons for eyes joints (tilt, version, vergence), three neurons coding the position
of the object (x, y, and size) of the left retinal image, and the next three neurons
for the right image. The output layer was the same as used for the first experiment
and contained seven neurons for seven particular joints of the arm. In order to
find the best hyperparameters, we first experimentally determined boundaries of
each one of the searched hyperparameters, and then, iteratively trained 108 models
with different configurations of hyperparameters, the values of which are listed in
Table 5. We again used the same value of v for the forward as well as for the
backward estimate strength, and the clamping strengths were determined as the
pairs of values calculated as [#,1 — ] for the forward strength, and [5,1 — ] for
the backward strength. As the activation function, it was used the sigmoid function

and the training lasted 200 epochs.

Learning rate A {0.08,0.1,0.12}
Hidden layer size h {10,12,15,17}
Forward/Backward clamping strength g {0.5,0.7,0.9}
Forward/Backward estimate strength v {0.5,0.7,0.8}

Table 5: Sets of values used in the process that seached for the best configuration
of hyperparameters.

We determined the best model in the same way as in Experiment 1, and its
hyperparameters were the following: o = 0.12, h =15, § = 0.8 and v = 0.9.

In order to validate Model B1, we collected all predictions of the arm and eyes
joints, and these data were set as values of particular joints in the iCub simulator.
The predicted values of the arm were used to obtain points of the centre of the
robot’s palm. Such gained points, we compared with points, defining the centre of
the palm, that correspond to samples in the test dataset. We evaluated the average
Euclidean distance error between these points and the average distance between the
palm centre of collected data. The mean was 2,4cm. The histogram of the error can
be seen in Fig. 23.

The mean distance error is smaller than the error in Experiment 1, where we
used joints that rotate the head instead of eyes. However, the space of points, where
the iCub is able to look at as well as to reach the place with its palm, is bigger than
the space of such points reached by rotating the eyes.
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Histogram of Distance Error: Points of the centre of palm

Number of points
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Distance error (cm)

Figure 23: Histogram of errors given by distances between predicted and real values.

For backward predictions, where angles of the arm were mapped to two modali-
ties, we did not compare distances between predicted and collected points because
for one sample of the arm joints there are different configurations of the angles of
the eyes and retinal positions. Therefore, we rather decided to examine where the
iCub looks at using predicted values of eyes joints, and whether the robot using the
trained model is able to look at the point that represents a particular palm centre.
For each test sample, we set predicted angels of eyes to the iCub, and at the position
where the centre of the palm given by a specific sample of the arm joints was placed,
we created a green object of the same size as the one used during the procedure
of collecting data. Then, we stored both the left and the right retinal image to
evaluate whether the iCub looked at the object or not. Such collected images we
converted to the 2D binary matrices, where the values of pixels containing the green
object (green colour) represented the value 1, and all black pixels were represented
by value 0. These matrices of the left, respectivelly the right retinal images, were
summed up to two matrices and we used them to create heatmaps showing how the
green object was projected on retinas. As we can see in Fig. 24, the iCub was able
to look at the object in such a way that the projections of the object fell down near
the centre of the field of vision.

We can imagine these results as someone trying to look at the centre of palm
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Figure 24: Preferred way of looking at green objects that represent the robot’s palm
centre. After the training of Model B1, the predicted values of eyes joints together with
corresponding original points of the palm centre were used to examine whether the iCub
is able to look at the positions or not. It was found out that the robot is able to look at
the positions in a preferred way. These images represent positions where the projections
of green objects, representing the palm centre, were most often falling on the left and right
retina.

with closed eyes and only by using rotations of the eyes. This property of backward
predictions probably results from the nature of the training data, where for one
sample of the arm joints there are more configurations of eyes joints, therefore, the

network was able to learn a preferred way how to look at the centre of the palm.

Model B2

Model B2 was trained in the similar way, but instead of single input and output
neurons that encode an angle of the arm’s or eyes’ position we used population coding
for each joint (see Section 2.3) which is a biologically plausible way of information
encoding. The network again contained one hidden layer with a sigmoid activation
functions. The preferred direction of neurons in a population was shaped by the
Gaussians. The width of the Gaussians and the number of neurons in a particular

population were selected experimentally to get the best results shown in Table 6.

Coded values Number of neurons Parameter ¢
Retinal positions (x, y) (10,8) (15,13)

Three eyes angles (4,5,4) (7,8,7)

Seven arm angles (4,2,5,5,10,3,4) (7,1.5,9,9,14,9,9)

Table 6: Model B2: Lengths of used population coding vectors.

By using the technique of the neuronal population vector, the first layer contained

13 neurons for the joints of eyes and 36 neurons coding the position on one retina,
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thus, 49 neurons in total. The third layer was composed of 33 neurons coding the
arm’s angles. The hyperparameters were being searched just experimentally and the
best result was acquired using o = 0.1, h =24, § = 0.7 and v = 0.9 and the model
was trained for the duration of 400 epochs.

The distance error between fixation points from the collected dataset and the
points resulting from predictions was 4.3cm, thus, bigger than the first version
reached. The increased error was probably caused by increased dimensions of data,
and therefore, UBAL model with only one hidden layer has a bigger problem to learn
more accurate transformation. The increased dimensionality of data was probably
also the reason why the network did not learn a preferred way in backward predic-

tions.

3.2.3 Receptive fields

To compare our models B1 and B2 to the model of Zipser and Andersen (1988) and to
data experimentally collected during the experiments with monkeys, we examined
RCFs. The RCFs of both versions of models, mapping the position of eyes with
the object’s position on retinas to the values of arm joints, were examined in the
same way and this way corresponds to the approach of the mentioned authors. The
information about the position of eyes stayed constant during the whole process,
and for every possible position of the green object, the activity of a neuron was
recorded and scaled using the min-max scaler to gain the height of a peak same for

all neurons.

Figure 25: The receptive fields of Model B1. (A) The first kind of receptive fields, the
peak of which is placed at the position of maximal values of axes. (B) The second kind
of receptive fields that increase along x-axis regardless of y-axis. Surfaces fit activities
of neurons while eye stimulus is kept constant, and as retinal stimulus are sampled all
combination of values for x- and y-axis.
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All neurons of Model Bl had RCFs of two kinds (see Fig. 25). The type had a
peak always placed where the horizontal and vertical position reached the highest
values, and the type 2 one was increasing from the minimal to maximal value along
the horizontal axis regardless of the vertical axis. The reason why the network did
not develop more complex RCFs with the peak placed on different position is the

fact that the model B1 used just single neurons coding the retinal position.

Figure 26: The receptive fields of model B2. (a) The group of receptive fields with single
peaks. (b) More complex receptive fields with a single-peak. (c¢) Very complex receptive
fields with multiple peaks. Surfaces fit neuron activities while the eye stimulus is kept
constant, and as retinal stimuli are sampled all combination of positions corresponding to
peaks of two populations that encode x- and y- positions.

Model B2, using the neuronal population vector coding, showed more common
RCFs compared to Zipser and Andersen (1988)’s artificial model. The RCFs, in
this case, were plotted as the fitted surface of 80 points that correspond to all
combination of the peaks of populations coding the horizontal and vertical position.
Fig. 26 illustrates 3 groups of RCF sorted from less complex to the most complex.
We found similar groups to those developed by the authors’” ANN, and also to
those experimentally observed during the experiments with monkeys (see Fig. 8).
The RCFs of the first group (a) had single peaks, the second group (b) of RCFs
with a single peak but more complex than the first group, and the last group (c)
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containing the most complex multi-peak RCFs. Despite the fact that this version
was less accurate, these results indicate that a UBAL model is able to develop retinal
RCFs that are comparable to those that were developed by the feed-forward NN of

mentioned authors as well as to those experimentally observed in monkeys’ brains.

3.2.4 Gain modulation

After analysis of RCFs, we took a closer look at the presence of GFs in neurons
of both models. The term gain fields, as mentioned in Section 1.3, comes from
experiments where visual RCFs were tested at different position of eyes, and it was
observed that the RCF of a neuron was multiplied by the gaze angle scaled by some
constant values. In order to illustrate the GFs of our trained models, we took the
graphic method from Zipser and Andersen (1988) that we described in the section
1.4 reviewing their results. However, we made some changes against the method
that were inspired by Svec and Farkas (2014).

In Fig. 27 there are shown the GFs of a hidden neuron in model B2. Each
one of the nine subplots corresponds to the gain modulation of the neuron’s RCF
where the retinal stimulus is placed at nine different positions in the visual field,
which are indicated by the green coloured square situated left down. The 20 circles
placed in each subplot represent 20 different gaze directions determined by the tilt
and version joints controlling the rotation of eyes, whereas the value of the vergence
stays constant during the whole process.

The green circle denotes the maximal possible firing activity of a neuron, which is
given by the nature of a used activation function. The red circles illustrate the total
output response of a neuron, and the blue filled circle represents the contribution of
the eye-angle stimulus to the total output.

The GFs of the hidden neuron correspond to the top left RCF in the group a
illustrated by Fig. 26. This example shows that the RCF of the neuron is truly mod-
ulated as observed in the brain neural population performing the task of coordinate
transformation, and also as in hidden neurons of the Zipser and Andersen (1988)’s
model. We observed the effect of gain modulation in both models, and this fact
confirms that UBAL is suitable for biologically plausible learning of the coordinate

transformation.
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Figure 27: Gain fields of a hidden neuron of Model B2. This image illustrates the effect
of gain modulation in one neuron of Model B2. Nine subplots correspond to nine retinal
stimuli carrying the information about different positions on retinas. Each subplot shows
neuronal activations while the retinal stimulus was constant, and the eye stimulus acquires
20 different combinations of two eyes angles. The green circle represents the total possible
value of the neuron’s output activity, which matches up to the value 1 because of the
used activation function. The red circle represents the total output of the neurons for a
particular configuration of eyes and retinal stimuli, and the contribution of the used retinal
stimulus to the total output is expressed by the blue filled circle. In the figure, it can be
seen that the shape and the placement of the neuron’s receptive field stay preserved, but is
only scaled in the sense of gain modulation. The graphics method was taken from Zipser
and Andersen (1988), and some changes were inspired by Svec and Farkas (2014).
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Chapter 4

Conclusions

Coordinate transformation is always carried out by the brain, if we want to manip-
ulate with an object. Humans use typically their hands to perform such a task as
grabbing, reaching or pointing to an object. During all these tasks, we use mainly
information from retinas that is initially coded in a gaze (or eye-)-centred reference
frame and must be transformed into the activation of muscles (Blohm et al. (2009)).
This process is called eye-hand coordinate transformation and is frequently studied
by neuroscientists. One of the most popular approaches is the use of artificial neural
networks to train the task of the eye-hand coordinate transformation, and subse-
quently to compare the properties of artificial neurons with findings observed in the
brain. Over several years there were a couple of studies that used various artificial
models to perform a type of coordinate transformation. The first significant model
was trained by Zipser and Andersen (1988) who used a feed-forward network trained
via the algorithm called backpropagation. Other studies focused on more biologi-
cally plausible learning algorithms. Salinas and Abbott (1995) L. used an associative
learning rule, and Navarro et al. (2018) trained a self-organising neural network. Our
approach consisted in using a novel biologically plausible training algorithm called
UBAL that was designed by Malinovska et al. (2018). This algorithm allows us to
train a bidirectional model, and we used it to train three models on data that we
produced using the simulated robot called iCub. Model A was trained to perform
a transformation between two modalities where the head angles of the robot, which
define the gaze fixation point by rotation of the head, are transformed into the an-

gles of the right arm’s angles that control the hand to reach a point, and vice versa.
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The best average euclidean distance between the fixation points resulting from the
predicted values of the head’s angle and the original fixation points was 2.6cm. The
average distance between the position of the centre of the robot’s palm reached the
value 4cm. The robot driven by the model is able to look at its palm, or reversely, to
move its palm to its visual field. The next two experiments used the robot’s joints
that move with the eyes instead of the head, and we added retinal information about
the palm’s centre position. These two sensory signals were mapped to the angles
of the head, and vice versa. The first of these models (Model B1) was trained on
data that was just scaled to the same interval. After training, the robot gained the
abilities to move the palm to the gaze fixation point with an average error 2.4cm
and to look at the palm in the preferred direction. The last model (Model B2) used
population of neurons to code input and output data. However, this coding implied
an increase of dimensions and the average distance rose to 4.3cm and the model
did not learn a preferred way how to look at the palm. Despite the increased error,
we examined the receptive fields of the model and observed that they correspond
to the kinds of receptive fields of Zipser and Andersen (1988)’s model as well as to
those observed experimentally while recording neural activities in the brain. The
similarities between the neurons of both models are worked out by the presence of
gain modulation of the receptive fields that was also very similar to the mentioned
authors’ model.

We can conclude that an artificial network learned via UBAL is suitable to
perform the task of a coordinate transformation in both directions and can be used
in a robotic platform. All our models used only one hidden layer, but we think that
the addition of next hidden layers would increase the precision of transformations.
Regarding the comparison between our hidden neurons and the neurons in the brain,
or developed by another artificial network, we observed some similarities but there

are certainly many possibilities for further experiments.
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Appendix

The appendix contains source codes that we used in experiments. The implemen-
tation of the data collecting algorithm was written in C++ and the used IDE was
JetBrains Clion Professional 2019.1. Source codes for the training of neural net-
works, visualisations, and data processing were written in Python using JetBrains

Pycharm Professional 2019.2. All source codes were developed under Linux Mint.

List of used Python libraries:

Pandas

NumPy

MatPlotLib

sklearn

e seaborn

e cv2

List of used C-+-+ libraries:

e YARP

e Figen3
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