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Abstract

Purpose  of  this  work  is  to  test  ability  of  Deep  belief  network  in  object  classification 

problems.  This  model  is  deep  network  with  two  phase  training.  The  first  one  is 

unsupervised pre-training based on stack of Restricted boltzman machines. The second one 

is fine-tuning which uses back-propagation of error derivates. In this work are used two 

main datasets for experiments. The first dataset is composed of 11 leaves classes. This 

dataset  includes  rotational,  color,  size  and  noise  variability.  The  second  dataset  is 

composed of normal and abnormal faces.  The goal was to find out relationship among 

different network topologies, dataset parameters and final testing error. I found out that 

unsupervised pre-training, which is used for weight initialization helps to achieve better 

classification  performance  than  random  weight  initialization.  Significance  of  this  help 

depends on type of dataset. In faces dataset this help is bigger (6.8%) than in leaves dataset 

(1.1%).  I  also  confirm  that  a  higher  number  of  neurons  and  hidden  layers  increased 

classification performance.

Key words

Deep belief networks, object recognition, leaves dataset generator

7



Abstrakt

Cieľom  tejto  práce  bolo  otestovať  schopnosti  Deeb  belief  network  pri  úlohach  z 

klasifikácie  objektov.  Model  Deep  belief  network  pozostáva  z  dvojfázového  tréningu. 

Prvou  fázou  je  trénovanie  bez  učiteľa,  ktoré  je  založené  na  postupnom  trénovaní  a 

následnom spájaní boltzmanových strojov. Druhá fáza pozostáva z dolaďovania výkonu 

pomocou metódy spatného šírenia  chyby.  V tejto  práci  sú experimenty vykonávané na 

dvoch rôznych datasetoch. Prvý pozostáva z 11 tried listov. Tento dataset obsahuje listy, 

ktoré majú variabilnú rotáciu,  veľkosť,  jas a úroveň šumu. Druhý dataset  je zložený z 

obrázkov  normálnych  a  potencionálne  nebezpečných  tvárí.  Cieľom  bolo  nájsť  vzťahy 

medzi topológiou siete, parametrami datasetu a finálnou testovacou chybou. Ukázalo sa, že 

predtrénovanie,  ktoré sa použiva na inicializáciu váh pomáha dosiahnuť celkovo lepšie 

výsledky.  Avšak  veľkosť  tejto  pomoci  výrazne  závisí  od  zvoleného  datasetu.  Pri 

klasifikácii tvári bol prínos pretrénovania 6.8%. V prípade listov to bolo 1.1%. Taktiež sa 

potvrdilo,  že  vyšší  počet  neurónov  a  skrytých  vrstiev  má  priaznivý  vplyv  na  celkovú 

úspešnosť klasifikácie.

Kľúčové slová

Deep belief networks, rozpoznávanie objektov, generátor listového datasetu
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1. Introduction
The main target of this work is an object recognition. I choose two dataset to test  real 

classification performance.  The first  one is  leaves dataset,  because it  poses a nice real 

world example and it could exhibit typical problems of classification. Input data are highly 

variable and noisy. This variability includes class (different kinds of leaves) and intra class 

variability (different leave units from the same class). It also includes variability in size, 

color  and  rotation.  Leaves  datasets  are  created  by  my  own  data-generator,  which  is 

described below. The second dataset contains pictures of faces (there are two groups of 

faces – normal and abnormal). The goals of this project are to find appropriate features to 

learn, find an appropriate dataset parameters (like size and variability), find out learning 

parameters for classifier (to achieve sufficient results) and compare it to another method. 

As a  classifier  is  used Deep Belief  Network (DBN) because of  good results  in  image 

classification  [1,  17,  19,  21].                           

This document describes my work on project in two main steps. At the beginning 

there  is  theoretical  part  with  explanation  of  fundaments.  In  the  second  part  there  are 

presented achieved results (Source codes and datasets are in attachments).

1.1 Connectionism and neural networks
Neural networks (artificial and non-artificial) are important part of recent cognitive science 

and are related to connectionist theory. They are very important part of computer based 

artificial  intelligence.  Neural  network is  universal  mathematical  approach in  study and 

modeling of learning process, adaptation process and artificial cognitive systems. Whole 

concept of interconnected simple units is based on metaphor of human brain. They are 

biologically motivated mechanisms of knowledge acvisition and learning (applicable on 

different levels of abstraction)  [23, 24].  Many of connectionists think that brain executes 

computations and that neural computing explain human cognition [24, 25]. In general, we 

suppose that we can use neural networks to explain mental processes. Connectionism in 

artificial  intelligence  and  cognitive  science  is  consider  like  a  process  of  parallel 

information processing. Artificial neural networks have important role in cognitive science, 

linguistic [14], neuroscience [26], controlling of different processes of natural and social 
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science. In these wide spectrum of possible applications neural networks are not used only 

for  modeling  learning  and  adaptation  process.  They  are  also  used  for  solving  wide 

spectrum  of  different  tasks  and  problems  like  object  classification  [17,  21],  speech 

recognition  [14],  financial  forecasting  [27]  and  navigation  [19].  But  one  of  the  main 

purpose of studying neural networks is their relation to human brain.  In cognitive science 

and neuroscience neural networks are part of basic theoretical methods that model activity 

of our brain. In these two scientific disciplines are created basic connectionistic principles 

and is shown plausibility of neural networks for modeling different kinds of activities and 

aspects of human brain. One of the main purpose of studying artificial neural networks is 

finding  relation  between  implemented  mechanisms  (interaction  between  neurons)  and 

cognitive phenomena [26]. Connectionism represents important knowledge base which is 

able  to  interpret  and  explain  different  cognitive  activities  of  human  brain.  This 

connectionistic representation of human brain is plausible with our knowledge about brain 

structure and it is supported by information about brain physiology. 

1.2 Symbolic and sub-symbolic representation
In  this  part  is  explained  difference  between  symbolic  and  sub-symbolic  approach  in 

studying of cognitive processes.  In symbolic  approach the central  idea is  a concept  of 

symbol. The symbols are transformed to another symbols by using concrete hierarchical set 

of rules. Symbolic point of view is often consider like algorithmic. Many experts consider 

this  approach  as  method  with  right  level  of  abstraction  (mostly  in  context  of  higher 

cognitive processes like reasoning, planing and usage of language). The main advantage is 

usage of mathematical language and therefore it is easy to read for human. Sub-symbolic 

approach  is  based  on  connectionism.  The  main  concept  is  based  on  idea,  that  these 

processes,  which  occurs  in  neural  network,  include  many  of  interconnected  neurons. 

Neurons  are  elementary  processing  units  and  weighted  connections  between  them 

represent  long  term  memory.  One  of  drawbacks  of  neural  networks  as  non  linear 

transformation system is that operations inside are not transparent and they resemble black 

box. Parameters of network – weights are not explicitly set. It is practically impossible. So 

it  is  necessary  to  provide  suitable  learning  mechanism,  which  can  network  use  for 

adjusting weights. Learning process is similar to human learning – it is based on examples. 
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During learning process weights are changed in appropriate way. Result of this process is 

requested behavior of neural network. In the connectionistic approach an information is 

represented by individual neurons, which are interconnected and form the network. The 

important  aspect  in  representation  of  information  is  recent  impulse,  which  is  spread 

thought neural network. This impulse is essential in decision process (to discover active 

neurons). Spreading of this impulse is realized be simple calculations which are provided 

by each neuron.

2.  Basic properties of neural system 
A neuron cell is the basic building block of the nervous system (NS). The main difference 

between neuron and normal cell  is that neurons are specializes to transmit information 

inside the body. Neurons are highly specialized cells and are responsible for processing of 

input information and communicating (sending) output information to next neuron or to 

specific organ (e.g. Muscle). Communication between neurons is based on electrochemical 

interaction. For purpose of this work and further explanation of artificial neural networks 

are important these key properties of typical neuron:

• receiving signals from other connected neurons 

• processing of received signal

• sending processed  signal  in  form of  action  potential  to  another  interconnected 

neurons

2.1 Model of artificial neuron
Artificial  neuron is  a  mathematical  model,  which is  based on abstraction of biological 

neuron. Typically it is simplified simulation of biological neuron. There are many different 

models of neurons. These models differs in complexity. From simple models, which use 

simple  discrete  activation  functions  to  models  which  are  trying  to  model  complex 

processes inside biological neural cell. One of the most common models of neuron is the 

model introduced by McCulloch and Pitts.
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Y =Net (∑
i=1

N

(wi x i)+wb) (2.1)

Figure 1: Visualization of Formula 1

In  Figure  1  is  presented  how  output  of  neuron  is  calculated.  The  whole  process  is 

mathematically described in Formula 2.1. xi represents input of neuron (typical neuron 

has  many  inputs). wi represents  weights,  which  are  like  memory  of  neuron.  In  this 

memory is usually saved last experience of concrete neuron (it is like sensitivity for exact 

connection between two neural units). Higher weight also mean that this input is more 

important than input with lower weight. These weights influence each input vector so they 

actually influence all neural network. Special kind of weight is wb . It is bias of each 

neuron. In biological neuron is bias also called threshold (for activation of neuron). That 

means  if  sum of  all  inputs  (without  bias)  is  less  that  threshold  than  the  neuron stays 

inactive  (passive  state). Net ( x) is  activation  function  of  neuron  and  this  function 

computes output of whole neuron. Result of whole process is typically send to another 

neuron for further processing and it is called Y .

2.1.1 Artificial neuron types

Based  on  type  of  output  data  we  can  divide  neurons  into  2  groups  –  discrete and 

continuos.  Discrete usually support 2 types of output value. Typical discrete neuron is 

binary  neuron  (output  values  0  and  1  or  -1  and  1).  Discrete  activation  function  and 

visualization of this function is shown in Formula 2.2 and Figure 2. Continuos neurons 

have real number as an output. Standard continuos neuron uses sigmoid activation function 

(Formula 2.3, Figure 3). 
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2.1.2 Types of activation function

Figure 2: Step activation function

u=∑
i=1

n

wi xi y={1 if u≥θ
0 if u<θ } (2.2)

Formula 2.2 represents step activation function. For input greater than threshold θ returns 

1. For input smaller than threshold returns 0.

Figure 3: Sigmoidal activation function

f (x)= 1

1+e−kx (2.3)

Formula 2.3 represents sigmoidal activation function.  For x close to infinity it returns 1. 

For x close to negative infinity it returns 0. When x = 0 then output is 0.5.
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2.2 Artificial neural network (ANN)
Typically ANN is an adaptive system that is changing own structure based on information 

that is going thought the network during learning process. Artificial neural networks are 

tools  for  modeling  non-linear  statistical  data.  Usually  are  used  for  modeling  complex 

relationships  between  input  and  output  data  vectors  (finding  patterns  in  data).  

The word network referees to interconnection between neurons in different layers. 

Example of system with 3 layers  is  shown in Figure 4.  This example has  3 layers of 

neurons. In the first layer are input neurons. These neurons represent input vector. Input 

neurons send data to second layer which is usually called hidden layer.  At the end the 

signal from hidden layer is send to final or output layer. As is mentioned in section 2.1. the  

connections are weighted. The number of neurons may vary a lot. More complex systems 

have more layers of neurons.

2.2.1 Main properties of typical ANN:

• Interconnection pattern (it defines which neurons are interconnected)

• Type of learning procedure (defines the type of learning process that is used for 

updating the weights)

• Type of activation function (defines the basic behavior of neuron)

Figure 4: Example of interconnected neurons in multilayer neural network (2  
input units, 3 hidden units, 1 output unit)
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2.2.2 Learning of ANN

The main goal in learning process is to set up neural network in a way that will produce 

correct output (result). In biological networks is the experience of concrete neuron saved in 

dendrites. In ANN the previous experiences are saved in connection between neurons – in 

the  weights.  There  are  two  main  groups  of  learning  methods  (methods  for  changing 

weights).                       

First is supervised learning. In this type of learning the exact output value for each 

input vector is known. When real network output is different than expected – the weights 

are changed. Purpose of this change is to lower the difference between real and expected 

output. For each type of learning exists error function (it computes current error), that is 

minimized during process of learning (for detailed explanation of supervised learning and 

error function please refer to section 2.3.3.2). This process of changing weights is repeated 

until  the  error  function  result  is  not  sufficient.                        

Another type of changing weights is unsupervised learning. During this process the 

network has not access to correct output results. ANN has to find out which input vector is 

connected to concrete output values. Typically these networks have to model similarities of 

training data and merge similar inputs into groups.

2.2.3  Multilayer perceptron

Typical  example  of  artificial  neural  network  is  a  multilayer  perceptron  (MLP).  It  is 

feedforward network. It means that signal is spread only in one direction. The signal flow 

is from input neurons to output neurons. MLP consists of multiple layers of neurons and 

each layer is fully connected to the next one. Fully connected means that for each neurons 

in first layer exist exact the same number of connections as a number of neurons in second 

layer  (example  in  Figure  4).  Each  neuron  uses  nonlinear  activation  function  (typical 

sigmoidal function). MLP uses supervised learning method called back-propagation.

Back-propagation training method

In  the  next  chapter  is  described  principle  of  the  back-propagation  learning  rule.  This 

learning algorithm is the essence of fine-tuning – training phase of deep belief network, 
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which is used in my experiments. The back-propagation algorithm consists of two main 

parts – forward pass and backward pass. 

Forward pass – computes output of the network. It means that for one input vector the 

output of the each neuron in each layer is computed. This process is done one layer after 

another, starting from the lowest layer which uses the data vector as input. At the end the 

output of the network is then compared to the expected output vector. The final error can 

be represented as function of difference between desire output and real output (for more 

details see Formula 2.4).

E=∑
i=1

n
1
2
( ti−oi)

2 (2.4)

Formula  2.4  represents  mean  square  error  of  overall  network  (n is  number  of  output 

neurons, t is desire output, o is current output of the network).

Backward pass – Derivatives of final error are propagated backwards through the weights. 

It means that error is computed for each neuron separately based on weights and error of 

previous neuron. In Formula 2.5 is shown how to compute error for neurons in final layer. 

Than  error  is  propagated  backwards  through  net  and  individual  errors  for  all  hidden 

neurons  are  computed.  Computation  of  error  for  neurons in  hidden layer  is  shown in 

Formula 2.6.

δk=ok (1−ok )( t k−ok) (2.5)

Formula 2.5 represents error on output neuron (k is number of current neuron, δ is error, o 

is current output, t is desire output)

δh=oh(1−oh) ∑
k ∈Downstream(h)

wkhδk (2.6)
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Formula 2.6 is error on hidden neuron (w is the weight matrix, δ is error, h is number of 

current neuron, k is number of neuron from previous layer, δ is error, o is current output)

After computing all errors the weights can be changed.

Δ w ji=ηδ j x ji (2.7)

Formula 2.7 represents final change of weight between neurons i and  j. It is end of one 

learning cycle. This act of change is actually the essence of learning procedure. The whole 

process continue until the overall net error (Formula 2.4) is on sufficient level or is not 

another stoping criterion called.

2.3 Introduction to deep architectures 
Important feature of ANN is possibility to add multiple hidden layers. In many case it is 

sufficient to use only one hidden layer, but the same function can be represented in a much 

more compact way with a deeper net [30]. In the deep networks neurons form progressive 

and  more  complicated  feature  detectors.  It  has  been  proven  that  its  better  to  do  the 

classification  with  such  deeper  net  [31].  “It  would  be  worthwhile  to  explore  learning  

algorithms  for  deep  architectures,  which  might  be  able  to  represent  some  functions  

otherwise not efficiently representable. Where simpler and shallower architectures fail to  

efficiently  represent  (and hence to  learn)  a task of  interest,  we can hope for  learning  

algorithms  that  could  set  the  parameters  of  a  deep  architecture  for  this  task.”  [30] 

Schmidhuber with his team claim that their Multicolumn deep neural network is in traffic 

sigh recognition benchmark better than human [35].  Deep nets architecture were inspirited 

by visual systems of mammals [32]. There are comparison of sparse DBN output to the V2 

area  of  the  visual  cortex  [13].                                               

In next chapter is described Deep belief network (DBN) as example of stochastic 

deep architecture. The main motivation for creating such networks was poor performance 

of classical back propagation algorithm in nets with more layers [31]. Main problem of 
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back-propagation is initialization of weights, which cause tendency to get stuck in poor 

local optimum [31]. In the recent years, the way of training deep models is improved by 

using an unsupervised learning algorithm that is used by generative models called deep 

belief networks (DBN) one layer at a time [2].

2.4 Stochastic models
Now we take a look on stochastic models of neural nets. Especially we will describe DBN 

as  a  classical  example  of  such  network.  First  we  need  to  describe  basic  concepts  of 

probabilistic  neuron,  which  is  base  of  the  network.  Then  we  will  describe  Restricted 

Boltzmann machine (RBM) [33], which is composed of probabilistic neurons and represent 

one layer of DBN.

2.4.1 Model of stochastic neuron

Probabilistic  neurons typically  have a  state of 1 or 0.  The probability of turning on is 

determined by the weighted input from other neurons. Illustration of sigmoidal function in 

Figure 5 represents probability of firing of neuron si . 

Figure 5: Activation of probabilistic neuron. (X axle  
represents sum of all inputs, Y represents probability of  

firing)
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2.4.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a form of artificial neural network. RBM is 

undirected  graph,  which  is  formed  by  one  visible  and  hidden  layer.  Inside  are 

symmetrically  connected  units  that  make  stochastic  (also  called  not  deterministic  or 

probabilistic) decisions about being on or off [34].  All units are fully connected to the 

units  in  the next  layer.  Difference  between Boltzman machine and restricted Boltzman 

machine is in absence of visible-to-visible or hidden-to-hidden connections. Illustration of 

typical RBM is in Figure 6. Inventor of RBM was Smolensky (1986) [33]. RBM are base 

building blocks of more complex classification system like Deep Belief Network. In the 

next section are described fundaments of RBMs like sampling and training process.

Figure 6: Illustration of bidirectional connection  
between hidden (h) and visible (v) units in Restricted  

Boltzman machine

The goal of RBM is to generate input vectors with high probabilities. This means that we 

want to learn network base features of input vectors and connect this features to input data 

(image).

There are  2 main phases – data and reconstruction (Figure 7). At the beginning 

signal (e.g. an image) is initialized to input vector (time t=0 ). Then signal is spread to 

hidden layer.  Neurons in Hidden layer are also called feature detectors.  This spread of 

signal  is  special  form  of  sampling,  which  is  explained  in  formula  2.8.  This  formula 
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represents probability of firing of j–th neuron in layer h. Base on this probabilities are 

computed (sampled) output values (for more details check pseudocode below) for hidden 

and visible unit in data and reconstruction phase.

P (h j=1∣v)= 1

1+exp (−∑
i=1

n

(wij vi)−b j)
(2.8)

Formula 2.8 is probability of firing for j–th neuron in hidden layer (n – number of inputs 

neurons, v – array of visible neurons, b – bias of hidden neuron, w – weight matrix).

After data phase there is second phase (time t=1 ), which is called reconstruction or 

phantasy. Signal is spread back to visible units and than goes back to hidden (Figure 7).  

Well  trained  RBM  generates  same  data  in  both  phases.  Data  and  Reconstruction  are 

important for changing of weights in learning process. Let see how it works.

Learning of RBM

The key element in learning process of a RBM is changing the weights.  Result of this 

change is  that the model gets higher probability of generating the requested data.  This 

process could consist of multiple iteration of parallel updating visible and hidden neurons. 

However there is a much efficient way to train RBM. Hinton [34] discovered that learning 

works good only with use one step of reconstruction. He called this method contrastive 

divergence. This method is described in pseudocode 1-2 and Formulas 2.9-11. Key feature 

of this method is that only one reconstruction of model is needed.
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Figure 7: RBM (hidden and visible layers and  
connection between them)[4]

Δ wij=α(〈vi
0 h j

0 〉−〈vi
1 h j

1 〉) (2.9)

Formula 2.9 represents changing of weights during learning process.

Δb j=α(〈h j
0〉−〈h j

1 〉) (2.10)

Formula 2.10 represents changing of bias for hidden units.

Δ ci=α(〈 vi
0〉−〈vi

1〉) (2.11)

Formula 2.11 represents changing of bias for visible units.

In Formula 2.9 the 〈vi
0 h j

0〉 represents the number of cases when i-th visible neuron and j-

th hidden neuron fire together (for input vector v). As was mention before in contrastive 

divergence algorithm, sampling is typically done only once for each input. The model is 

driven by a reconstruction of the data [31, 34]. In other words the weight between visible  

and  hidden  units  is  strengthened  if  booth  units  are  on.  If  both  units  are  on  during 

reconstruction phase the weights are weakened. Because of this preference of generating 

data instead of reconstruction the RBM learn to generate data instead of reconstruction. If 
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the data and reconstruction are identical, the weights are not changed. Similar procedure is 

applied on biases b and c, which are presented in Formula 2.10 and 2.11. Change of bias on 

j-th hidden neuron is represented as difference of activation of hidden neuron j during data 

and reconstruction phase. Analogically change of bias on i-th visible neuron is represented 

as difference of activation of visible neuron i during both phases.

Pseudocode 1: Example of update method in RBM [30, 36]

RBMupdate(v[0], alpha, W, b, c):
for all hidden units i:
  compute Q(h[0][i] = 1 | v[0]) 
# Formula 2.8 - sigmoid(b[i] + sum_j(W[i][j] * v[0][j]))
  sample h[0][i] from Q(h[0][i] = 1 | v[0])

for all visible units j:
  compute P(v[1][j] = 1 | h[0]) 
# Formula 2.8 - sigmoid(c[j] + sum_i(W[i][j] * h[0][i]))
  sample v[1][j] from P(v[1][j] = 1 | h[0])

for all hidden units i:
  compute Q(h[1][i] = 1 | v[1]) 
# Formula 2.8 - sigmoid(b[i] + \sum_j(W[i][j] * v[1][j]))
  sample h[1][i] from Q(h[1][i] = 1 | v[1])

W += alpha * (h[0] * v[0]' - h[1] * v[1]')
b += alpha * (h[0] - h[1])
c += alpha * (v[0] - v[1])

● v[0] is a sample from the training distribution for the RBM (v[x]' represent transposed 
matrix)

● alpha is a learning rate for the stochastic gradient descent in Contrastive Divergence

● W is the weight matrix

● b is the RBM biases vector for hidden units

● c is the RBM biases vector for input units

Pseudocode 1 shows example of training (updating weights W and biases b, c). In the first 

step are computed probabilities of firing of i-th neuron in hidden layer for input vector 

v[0]. These probabilities are computed for each unit in hidden layer (Formula 2.8). Base on 

this probabilities is created sample vector h[0] (one possible distribution of activations). 

Analogically are computed probabilities and samples for reconstruction of visible units 

v[1] and for hidden units h[1]. At the bottom of pseudocode is described change of weights 

(Formula 2.9-11).
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Stacking of RBMs

After  training of one layer of RBM this procedure can be applied again with additional 

layers. This is done by adding one layer on the top of the network. This method of stacking 

RBMs is  called layer-wise [5].  As you can see in the Figure 8,  newly added layer hd 

become new hidden layer and old(previous) hidden layer h1 produces inputs for it. Weights 

between previous hidden and visible layers are locked. This procedure can be repeated as 

many times as is needed (it depends on how many layers final network should contain). “It  

can be proved that each time we add another layer of features we improve a variational  

lower bound on the log probability of the training data” [29]. Adding more layers improve 

probability  of  generating  training  (input)  data  [30].  For  more  detailed  explanation  of 

stacking RBMs together refer to Pseudocode 2.

Pseudocode 2: Pre-training of DBN [30, 36]

PreTrainUnsupervisedDBN(X, alpha, L, n, W, b):

  initialize b[0]=0

  for l=1 to L:

    initialize W[i]=0, b[i]=0

    while not stopping criterion:

      sample g[0]=x from X

      for i=1 to l-1:

        sample g[i] from Q(g[i]|g[i-1])

      RBMupdate(g[l-1], alpha, W[l], b[l], b[l-1])
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● X is the input (training) distribution for the network

● alpha is a learning rate for the stochastic gradient descent in Contrastive Divergence

● L is the number of layers to train

● n=(n[1], ...,n[L]) is the number of hidden units in each layer

● W[i] is the weight matrix for level i, for i from 1 to L

● b[i] is the bias vector for level i, for i from 0 to L

Pseudocode 2 illustrates the process of unsupervised pre-training of Deep Belief Network. 

The main part of the pseudocode is loop. Each iteration of this loop creates and train one 

layer of the network. Inside this loop is initialization of weights and biases (there is unique 

weight matrix for each layer). Another important matrix is g[l] which represents sampled 

outputs of network for  layer l. The last part of the pseudocode is function  RBMupdate 

(explained in previous section) which provide weight changes for the final layer.

2.5 Deep Belief Network (DBN)
“Deep belief nets are probabilistic generative models that are composed of multiple layers  

of stochastic, latent variables. The latent variables typically have binary values and are  

often called hidden units or feature detectors.” [2]. DBN can be viewed as composition of 

restricted type of Boltzmann machine (learning module) and is useful for representation of 

high  dimensional  and  complicate  data.  It  is  trained  in  a  greedy  layer-wise  fashion 

(generative model with many layers of hidden causal variables). The common way how to 

use Deep Neural  network for  image classification is  with  cooperation  of  unsupervised 

pertaining and supervised fine-tuning. The main fields of use are dimensionality reduction 

and object recognition. Learning time of MLP does not scale well (problem with effective 

training of multiple  hidden layers).  Stack of  Restricted boltzman machines is  used for 

initialization of weights in network.  This process of initialization is called pre-training. 

Each layer of the network tries to model the distribution of its input, using unsupervised 

training [3].  Second phase (after pre-training) is called fine-tuning. In this phase a final 

layer of neuron is added (each output neuron represent one category). 
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2.5.1 Unsupervised pre-training

Each layer of the network tries to model the distribution of its input, using unsupervised 

training in a Restricted Boltzmann Machine (RBM).  The unsupervised greedy layer-wise 

training serves as  initialization,  replacing the traditional random initialization of multi-

layer networks [2].

2.5.2 Fine-tuning (supervised training) 

After a DBN has been initialized by pre-training (RBM), this procedure of fine-tuning will 

optimize all  the  parameters  (weights).  It  can be performed by adding a  final  layer  of 

variables  that  represent  the  desired  outputs  and  back-propagating  error  derivatives. 

“When networks with many hidden layers are applied to highly-structured input data, such  

as  images,  back-propagation  works  much better  if  the  feature  detectors  in  the  hidden  

layers are initialized by learning a deep belief net that models the structure in the input  

data“[2]. In other words the whole network is trained like MLP with back-propagation 

learning method [4, 5].

2.5.3 Advantages of unsupervised pre-training

In the next section is investigated why does unsupervised pre-training works successfully. 

“Searching  the  parameter  space  of  deep  architectures  is  a  difficult  task  because  the  

training  criterion  is  non-convex  and  involves  many  local  minima.  This  was  clearly  

demonstrated in  recent  empirical  work [9] showing consistently  that  with hundreds of  

different  random  initializations,  gradient  descent  converged  each  time  to  a  different  

apparent local minimum, with solutions obtained from random initialization and purely  

supervised training consistently  getting worse for  architectures with more than 2 or  3  

levels. This points to why, until recently, deep architectures have received little attention in  

the machine learning literature.” [8] In the other words we can look at pre-training like on 

regulation  mechanism,  that  minimize  variability  and  bias  weight  values  towards  such 

configuration of parameter space that is better for classification tasks (higher performance 

in classification).
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Features of unsupervised pre-training:

• Better generalization ability.

Results from various range of experiments with object recognition datasets (dataset 

examples size from 10000 – 50000) shows that for the same topology of network 

the test error is lower when unsupervised pre-training is used [8, 9, 10, 11, 12].

•  Smaller difference in test performance. 

The difference in final test error between different test runs on the same dataset is 

lower when unsupervised pre-training is applied. This impact is bigger when more 

hidden layers are used. [8, 9]

• Scaleability of network. 

The advantage of using pre-training is  visible  when network topology is  robust 

(many neurons in layer). When the network size is constrained to small size the 

performance is decreased (in some cases is even worse than without pre-training) 

[8, 9]

2.5.4 Application of DBN

In this section are described examples of implementations of Deep Neural Nets. This type 

of networks were invented in 2006 by G. Hinton and still are not very common. There is  

range  of  possible  applications  in generating,  recognizing  images [15,  17,  19],  video 

sequences [16] and voice recognition [20]. Through cognitive science perspective there are 

interesting application for post-processing EEG signals [21].

Application in Image processing.

Raia Hadsell [19] with her group presented example of deep learning for long range vision 

application. They tried to classify complex terrain features from robot position up to the 

horizon of the area where robot was positioned. This classification of important features 

allow  high-level  strategy  to  be  applied.  Deep  belief  network  was  trained  to  learn 
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informative and important features of the input image. The main goal of this experiment 

was to predict traversability of concrete terrain in a realtime. They achieved impressive 

results.“The classifier is able to see smoothly and accurately to the horizon, identifying  

trees,  paths,  man-made  obstacles,  and  ground  at  distances  far  beyond  the  10  meters  

afforded  by  the  stereo  supervisor.”  [19]                                     

Another example of DBN application is classification of 3D object presented by 

Nair and Hinton. [17]  They used NORB database for evaluation of performance. This 

database contains of  stereo paired images  of  different  3D object.  There is  variation in 

lightning conditions and viewports. Images are stereoscopic (2 pictures for each sample). 

Their model achieved 6,5% error rate on test dataset. This is good result compared to best 

published  (5,9%).  They  also  compared  it  to  SVM  which  scores  11,6%.  

Alex Krizhevsky [21] provided interesting experiment. He used convolutional DBN 

for classifying 1,6 million tiny images from CIFAR-10 dataset.  This dataset contain of 

various  images  of  objects  from 10 categories.  His  best  test  classification  success  was 

78,9% (The best published result was achieved with Multi-column Deep Neural Network 

[22] with 88,79% successfully classified images). 

Application in speech recognition

A.  Mohamed  and  his  team  experiment  with  speech  recognition  by  using  DBN.  They 

showed that  “The DBNs learned using the sequence-based training criterion outperform  

those  with  frame-based  criterion  using  both  three-layer  and  six-layer  models,  but  the  

optimization procedure for the deeper DBN is more difficult for the former criterion.“[20]

Application in EEG signals filtering

D. Wulsin and his team applied DBN to classification and abnormally data detection from 

EEG (electroencephalography).  They found that  DBN performance was comparable  to 

another standard classifiers and classification was 1.7 – 103.7 times faster than comparable 

classifiers. “These results indicate that DBNs and raw data inputs may be more effective  

for online automated EEG waveform recognition than other common techniques.” [21]
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Leaves recognition application

One part of my experimental setup is test performance of DBN on my own leaves dataset. 

There are few projects in leaves recognition [6, 7]. But these project do not use DBN as 

classifier and use different approach in dataset creation (no huge variability and no noise). 

Also  there  is  no  widely  used  dataset,  so  it  is  hard  to  compare  performance  between 

different approaches (it is not good to compare results based on different datasets).
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3 Experimental part

3.1 Motivation and goals
In this section are described experiments with DBN classifier. I used two different dataset 

classes (leaves and faces). At the beginning is described process of generating leaves. Then 

are presented experiments  and comparisons between different  setups  of Deep network. 

This work is focused on how unsupervised pertaining helps to improve error rate of whole 

classifying system. I wanted to find out relation between number of neurons and layers 

(topology) and its influence on performance.

3.2 Creation of leaves dataset
I have decided to create my own dataset for testing because there is an absence of complex 

configurable leaves dataset,  which is suitable  for testing the performance of classifiers. 

There are popular datasets like CIFAR-10, MNIST or NORB, but these do not include 

leaves. I consider it like good example for testing classification performance of artificial 

neural networks. I wanted to test my ability for handle complex process from creation of 

dataset to successful classification. Leaves are nice example for possible application in real 

world environment (e. g. application for mobile phones). Another and main motivation for 

creating own dataset generator was ability to generate number of different kinds of training 

sets and find interesting relations between features of datasets and features of networks (e. 

g. how noise level or number of samples influence test performance). In next section is 

described how was this dataset generator created and how to use it. Generator is accessible 

for public use at the web page: http://dbn.meshmatrix.com .

3.2.1 Leaves gathering

For purpose of my work I have decided to collect leaves from my home town location 

Levice, Slovakia. The location is marked on Figure 9 with A sign. 
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Figure 9: A sight represent Levice, Slovakia (GPS coordinates: 48.214526,18.606523)  
[google maps] 

3.2.2 Photo method

For purpose of taking pictures has been used Sony HX-1 camera with tripod. I used 3 

lights placed around the scene, because there was a demand to prevent shadows, which 

may cause problems for further processing. I used long exposures (1/15 of second) for 

brighter output pictures. For detailed information of camera setup please look at EXIF info 

of each picture (in attachment). Some of collected leaves were creased so I tried to flatten 

them by putting them into a book for 2 weeks. Finally I have created 2 databases of leaves 

images – with flattering and without.  I  have also some problems because some leaves 

change color from green to yellow or brown during this process. This was the reason why I 

was unable to use all leaves in the experiments

3.2.3 Leaves database example 

I have collected more than 200 samples of 17 kinds of leaves. The example of these leaves 

is presented in table 1. It is example from non flattered picture dataset. For full  leaves 

database with original source photos is in attachment.
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Apple Apricot Sweet Chestnut

Field Maple Hornbeam Platonoides Maple

Red Maple Oak Pear

Cottonwood Willow

Table 1: Example of raw leaves pictures

These images are essence for dataset generation. For further processing I chose 11 tree 

categories with best picture quality (e.g. walnut picture was bad, because of yellow color). 

Also key aspect why there was decision to reduce number of categories was insufficient 

quantity of some samples (I have decided to work with trees with 5 or more sufficient 

photos). Chosen tree categories are presented in Table 1.

3.2.4 Texture creation

In this process the raw picture from camera is transformed into a form suitable for dataset 

generator program. Main purpose of this process is to create a texture, which is used in 

next process. Texture is image of leaf which is placed into generator and transformed into 
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output for training. As you can see in Figures 10, 11, 12 and 13 (Table 2) this process 

contains of next steps: 

• Cut leaf from base image 

• Convert to black and white 

• Normalize color 

• Invert colors 

• Increase contrast value 

• Resize into 64 x 64 pixels. 

Whole process was done in GIMP picture editor.

Figure 10: Raw image Figure 11: Covered to black and white +  
colors are normalizes

Figure 12: Inverted color and increased  
contrast

Figure 13: Resized to 64x64 pixels

Table 2: Creation of final texture

36



3.2.6 Implementation of dataset generator

Dataset generator is created in javascript by using webGL for 3D graphics processing. I 

choose HTML5 and javascript because of multi-platform usage and for possibility to place 

this application on webpage. It is implemented base on http://learningwebgl.com/ source 

codes.  For  more  information  about  implementation  please  look  into  source  code  (in 

Attachment). For running this web application you need OpenGL 2.0 compatible graphic 

card and also compatible web browser. I recommend Chrome or Firefox.

3.2.7 Functionality of dataset generator

In Figure 14 you can see top part of application interface. There are two main parts. Panel 

on the left side is collection of leaves where you can select leaves which will be used in 

generation process. Panel on the right side is for setting variables which influence final 

shape of output dataset. There are 4 main parts:

Rotation settings

In rotation settings you can choose variability level of rotations in all axles. X and Y axle 

simulates different view angle and are calculated like random number between zero and 

selected value. Z axle rotation is calculated like: selected value + random between 0 and 1. 

This small randomness in calculation is to prevent rotational periodicity in output data. As 

you can see, there is factor of randomness so when you run same setup 2 times there will 

be different outputs. My recommendation is to create datasets with more than thousand 

samples to cover more cases of state space (combination of randomness and many samples 

should lead to almost uniform distribution of different states). Z rotation variable influence 

size of output dataset (if value is lower than the size of dataset is bigger). 

Size settings

Another setting area is called Size. Here user can set inner constants that represent start and 

end distance of object  to camera.  Step setting represents the decrease in distance after 

turning an object in 360 degrees (during generation process). By setting this variablel user 
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influence the size of output dataset (if there is smaller step size or difference between start 

and end size is higher → more samples will be generated)

Noise settings

Another setting area is called Noise. Here user can select color range for noise pixel, level 

of noise and also he can decide if noise will be applied only in background or in whole 

image. 

Brightness settings

The last setting area is called Brightness. In this area user can choose the variability in 

brightness of the texture. 

Figure 14: Screenshot of Dataset Generator application interface:  
http://dbn.meshmatrix.com/

At bottom part of application is output generated. It is generated in textual (Figure 16.) and 

visual (Figure 15) form. In textual form there are 1024 numbers, which represent color and 
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one number more, which represent category of sample. Visual form can be saved as PNG 

image file. 

Figure 15: Screenshot of bottom part of application, which shows generated output in  
visual form

Figure 16: Screenshot of bottom part of application, which shows generated output in  
textual form
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3.3 Faces dataset 
Another testing dataset, which is used for experiments is faces dataset [18]. This dataset 

was created at Slovak Academy of Sciences. There are 2 face classes – normal (Figure 17) 

and  abnormal  (Figure  18).  It  contains  2280  samples.  For  purpose  of  this  project  the 

pictures were resized from 128x128 pixels to 64x64 pixels. Motivation for creation of this 

dataset was ability to recognize potentially dangerous or suspicious people near ATMs. The 

assumption was, that suspicious people wear some type of face cover.

Figure 17: Example of normal face class from Faces dataset [18]
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Figure 18: Example of abnormal face class from Faces dataset [18]

3.4 DBN implementation
DBN used in this project is based on http://deeplearning.net/tutorial/DBN.html . It is using 

fast  Theano mathematical  library,  which  is  written in  C.  Whole program is  written  in 

Python.  RBMs used to pre-train and initialize each layer of the network, that is used for 

classification (“construct each RBM such that they share the weight matrix and the hidden  

bias with its corresponding sigmoid layer” [36]). For more info refer to source code (in 

attachment). 

3.5 Experiments on leaves dataset with DBN
In this section are presented 5 experiments with different variations of leaves dataset. The 

goal of this experiments is to find out how parameters of the network as number of hidden 

layers, number of neurons, number of fine-tuning epochs, number of pre-training epochs 

41

http://deeplearning.net/tutorial/DBN.html


and learning rate influence the final testing error. Variations in dataset parameters are in 

size (number of samples) and noise level. Each of these experiments has these common 

properties:

• Training,  validation and testing sub-datasets  were created from main dataset  by 

random selection.

• Each experiment setup was run one time, expect last 5 setups in Table 6. They were 

run 4 times and in table is average value of these runs. 

3.5.1 Experiment 1

Description of Dataset 1

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation. 

• Training set = 2000

• Valid set = 400

• Test set = 504

(In Figure 19 is example of this dataset samples.)

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=5

Size

Start=-4 Step=0.1 End=-2.8

Noise

Random color from=0 to=0 Noise Level=0 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0
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Figure 19: Example of Dataset 1 (For whole picture please see attachment)

HIDDEN LAYER 
TOPOLOGY

FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 39.8 42.4

1024 0.025 0.001 500 500 22.3 19.0

1024 0.1 0.01 500 500 18.8 20.0

500-500 0.1 0.01 500 500 14.5 16.4

500-500 0.025 0.001 500 500 20.3 19.8

1024-1024 0.1 0.01 500 500 16.5 17.6

Table 3: Results of experiment 1
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

500-500 0.1 0.01 500 100 22.3 21.6

500-500 0.1 0.01 250 100 20.0 20.0

500-500 0.1 0.01 125 100 20.8 19.2

500-500 0.1 0.01 60 100 23.0 18.4

125-125 0.1 0.01 500 100 22.0 25.8

250-250 0.1 0.01 500 100 20.3 24.2

125-125 0.1 0.01 250 100 22.5 24.8

250-250 0.1 0.01 250 100 21.3 20.6

125-125 0.1 0.01 125 100 25.5 27.2

250-250 0.1 0.01 125 100 20.5 21.6

125-125 0.1 0.01 60 100 27.8 26.4

250-250 0.1 0.01 60 100 20.7 25.8

Table 4: Influence of number of pre-training epoch on final test error (Experiment 1)

1024 0.1 0.01 500 100 22.0 21.2

500 0.1 0.01 500 100 21.0 21.4

250 0.1 0.01 500 100 24.3 26.2

125 0.1 0.01 500 100 25.8 24.4

Table 5: Influence of  the number of neurons on final error (Experiment 1)

500-500 0.25 0.01 60 500 15.3 21.8

500-500 0.1 0.01 60 500 17.5 22.0

500-500 0.05 0.01 60 500 17.0 17.8

500-500 0.025 0.01 60 500 17.8 19.4

500-500 0.01 0.01 60 500 21.8 26.2

500-500 0.005 0.01 60 500 33.3 38.6

500-500 0.5 0.01 100 100 18.8 15.0

500-500 0.25 0.01 100 100 18.8 22.2

500-500 0.1 0.01 100 100 20.5 23.6

500-500 0.05 0.01 100 100 26.8 23.8

500-500 0.025 0.01 100 100 38.8 32.2

Table 6: Influence of learning rate on final error (Experiment 1)
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Evaluation of results for Dataset 1

Number of hidden layers

When we compare single hidden layer topologies from Table 5 (error 23.85%) to their 

double hidden layer equivalents from Table 4 (error 22.7%) we can see that 2 hidden layers 

have average performance 1.15 % better. 

Number of neurons

When we look at Table 5 we can see that increase in the number of neuron helps decrease 

classification error. The similar trend occurs in Table 4 where are compared 3 different 

topologies. There is average error of 25.3% for topology 125-125, 21.9% for 250-250 and 

20,8% for 500-500.

Number of fine-tuning epochs

Based on Tables  3.  -  6.  is  obvious  that  more  epochs results  in  better  performance.  Is 

important to notice that tested number of epochs was not high, so there was not over-

fitting.

Number of pre-training epochs

Based on Table 5 there are these average test errors:

Number of epochs Average error in %

500 22.7

250 21.5

125 22.5

60 23.7

These numbers shows that number of pre-training epoch have not significant influence on 

performance. 
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Influence of learning rate

Table 6 examines influence of learning rate on overall performance. The average of test 

and validation error shows that the best value is between 0.1 – 0.5. But its important to 

notice that this parameter is related to number of epochs.

3.5.2 Experiment 2

Description of Dataset 2

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 8000

• Valid set = 504

• Test set = 1000

(In Figure 20 is example of this dataset samples.)

Difference between Dataset 1 and Dataset 2 is in number of samples. This difference is 

created by decreasing rotational step and size step in dataset generator.

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=2

Size

Start=-4 Step=0.06 End=-2.8

Noise

Random color from=0 to=0 Noise Level=0 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0
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Figure 20: Example of Dataset 2 (For whole picture please see attachment)

TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 15.2 14.4

1024 0.025 0.001 500 500 7.4 7.8

1024 0.1 0.01 500 500 6.8 5.5

500-500 0.1 0.01 500 500 6.6 8.1

500-500 0.025 0.001 500 500 5.4 6.1

1024-1024 0.1 0.01 500 500 7.4 4.7

Table 7: Results of experiment 2
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 9.2 11.5

250-250 0.1 0.01 500 100 7.0 11.2

125-125 0.1 0.01 250 100 9.0 11.7

250-250 0.1 0.01 250 100 9.4 9.5

125-125 0.1 0.01 125 100 11.6 9.5

250-250 0.1 0.01 125 100 9.4 8.7

125-125 0.1 0.01 60 100 10.4 11.8

250-250 0.1 0.01 60 100 6.4 10.0

500-500 0.1 0.01 500 100 8.8 7.3

500-500 0.1 0.01 250 100 7.8 7.4

500-500 0.1 0.01 125 100 7.4 8.7

500-500 0.1 0.01 60 100 6.8 8.2

Table 8: Influence of number of pre-training epoch on final test error (Experiment 2)

1024 0.1 0.01 500 100 6.6 7.5

500 0.1 0.01 500 100 8.6 8.8

250 0.1 0.01 500 100 11.0 12.5

125 0.1 0.01 500 100 13.0 12.9

Table 9: Influence of  the number of neurons on final error (Experiment 2)

500-500 0.25 0.01 60 500 6.2 5.2

500-500 0.1 0.01 60 500 5.8 7.2

500-500 0.05 0.01 60 500 7.6 6.2

500-500 0.025 0.01 60 500 8.2 8.1

500-500 0.01 0.01 60 500 8.4 8.9

500-500 0.005 0.01 60 500 10.6 10.9

Table 10: Influence of learning rate on final error (Experiment 2)

Evaluation of results for Dataset 2

Number of hidden layers

When we compare single hidden layer (125, 250, 500) topologies from Table 9 (error 

11.1%) to their double hidden layer equivalents (125-125, 250-250, 500-500) from Table 8 

(error 9,2%) we can see that doulble hidden layers have average performance 1.9 % better. 
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Number of neurons

When we look at Table 9 we can see that increasing the number of neuron helps decrease 

classification error.  The similar  trend occurs  in  Table  8 where we compare 3 different 

topologies. There is average error of 11.1% for topology 125-125, 9.9% for 250-250 and 

7.9% for 500-500.

Number of epochs

Based on previous Tables 7.-10. is obvious that more epochs results in better performance. 

Is important to notice that tested number of epochs was not high, so there was not over-

fitting. The best models have the high number of epochs (500).

Number of pre-training epochs

Based on Table 8 there are these average test errors:

Number of epochs Average error in %

500 9.2

250 9.1

125 9.2

60 8.9

These numbers show that number of pre-training epoch have not significant influence on 

performance. 

Influence of learning rate

There is strong trend (Table 10), which prefers higher learning rates.
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3.5.3 Experiment 3

Description of Dataset 3

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 8000

• Valid set = 504

• Test set = 1000

(In Figure 21 is example of this dataset samples.)

Difference between Dataset 2 and Dataset 3 is in adding random noise (10% of the image 

is noise). 

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=2

Size

Start=-4 Step=0.06 End=-2.8

Noise

Random color from=0 to=1 Noise Level=10 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0
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Figure 21: Example of Dataset 3 (For whole picture please see attachment)

TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 28.8 31.6

1024 0.025 0.001 500 500 18.2 20.0

1024 0.1 0.01 500 500 23.4 24.7

500-500 0.1 0.01 500 500 22.2 20.1

500-500 0.025 0.001 500 500 18.0 20.1

1024-1024 0.1 0.01 500 500 19.8 22.1

Table 11: Results of experiment 3
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 23.8 24.6

250-250 0.1 0.01 500 100 18.4 23.6

125-125 0.1 0.01 250 100 19.4 25.1

250-250 0.1 0.01 250 100 22.2 23.4

125-125 0.1 0.01 125 100 21.8 24.9

250-250 0.1 0.01 125 100 18.0 22.1

125-125 0.1 0.01 60 100 20.0 24.2

250-250 0.1 0.01 60 100 22.8 22.4

500-500 0.1 0.01 500 100 21.6 22.3

500-500 0.1 0.01 250 100 21.4 22.1

500-500 0.1 0.01 125 100 21.6 19.9

500-500 0.1 0.01 60 100 19.6 22.1

Table 12: Influence of number of pre-training epoch on final test error (Experiment 3)

1024 0.1 0.01 500 100 23.2 23.9

500 0.1 0.01 500 100 25.8 25.1

250 0.1 0.01 500 100 26.0 29.0

125 0.1 0.01 500 100 29.4 25.8

Table 13: Influence of  the number of neurons on final error (Experiment 3)

500-500 0.25 0.01 60 500 15.0 22.3

500-500 0.1 0.01 60 500 21.6 19.6

500-500 0.05 0.01 60 500 19.8 22.5

500-500 0.025 0.01 60 500 19.2 21.5

500-500 0.01 0.01 60 500 23.0 22.3

500-500 0.005 0.01 60 500 22.6 23.1

Table 14: Influence of learning rate on final test error (Experiment 3)

Evaluation of results for Dataset 3

Number of hidden layers

When we compare single hidden layer topologies from Table 13 (error 26.9%) to their 

double hidden layer equivalents from Table 12 (error 22.4%) we can see that double hidden 

layers have average performance 4,5 % better. 
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Number of neurons

When we look at Table 13 we can see that there is a trend. Increasing the number of neuron 

helps decrease classification error. The similar trend occurs in Table 12 where we compare 

3 different topologies. There is average error of 23% for topology 125-125, 21.6% for 250-

250 and 21,3% for 500-500.

Number of epochs

Also in this experiment is trend. More epochs results in better performance. The model 

with best performance had 500 epochs.

Number of pre-training epochs

Based on Table 5 there are these average test errors:

Number of epochs Average error in %

500 22.4

250 22.3

125 21.4

60 21.9

As well as in previous experiments these numbers show that number of pre-training epoch 

have not significant influence on performance. 

Influence of learning rate

There is no significant influence of learning rate (Table 14). One of possible cause may be 

noise in dataset.
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3.5.4 Experiment 4

Description of Dataset 4

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 17000

• Valid set = 2000

• Test set = 2120

Example of this dataset is in Figure 22.

Difference between Dataset 3 and Dataset 4 is in increasing number of samples in dataset. 

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=1

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=10 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0
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Figure 22: Example of Dataset 4 (For whole picture please see attachment)

TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 20.5 19.1

1024 0.025 0.001 500 500 14.1 15.6

1024 0.1 0.01 500 500 17.2 17.2

500-500 0.1 0.01 500 500 17.5 17.2

500-500 0.025 0.001 500 500 14.9 15.9

1024-1024 0.01 0.001 500 500 13.9 15.0

Table 15: Results of experiment 4
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 18.1 17.9

250-250 0.1 0.01 500 100 18.7 18.6

125-125 0.1 0.01 250 100 19.3 19.2

250-250 0.1 0.01 250 100 18.9 18.4

125-125 0.1 0.01 125 100 19.2 20.0

250-250 0.1 0.01 125 100 17.6 19.1

125-125 0.1 0.01 60 100 17.0 19.3

250-250 0.1 0.01 60 100 17.7 16.7

500-500 0.1 0.01 500 100 16.7 16.0

500-500 0.1 0.01 250 100 16.0 16.2

500-500 0.1 0.01 125 100 15.3 17.3

500-500 0.1 0.01 60 100 14.5 17.2

Table 16: Influence of number of pre-training epoch on final test error (Experiment 4)

1024 0.1 0.01 500 100 17.5 17.8

500 0.1 0.01 500 100 16.7 20.0

250 0.1 0.01 500 100 20.6 22.4

125 0.1 0.01 500 100 21.3 22.0

Table 17: Influence of  the number of neurons on final error (Experiment 4)

500-500 0.25 0.01 60 500 15.1 14.3

500-500 0.1 0.01 60 500 15.6 15.7

500-500 0.05 0.01 60 500 15.5 16.3

500-500 0.025 0.01 60 500 15.1 17.1

500-500 0.01 0.01 60 500 15.6 16.3

500-500 0.005 0.01 60 500 14.6 15.6

Table 18: Influence of learning rate on final error (Experiment 4)

Evaluation of results for Dataset 4

Number of hidden layers

When we compare single hidden layer topologies from Table 17 (error 20.5%) to their 

double hidden layer equivalents from Table 16 (error 17.7%) we can see that 2 hidden 

layers have average performance 2.8 % better. 
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Number of neurons

When we look at Table 17 we can see that increasing the number of neuron helps decrease 

classification error. The similar trend occurs in Table 16 where are compared 3 different 

topologies. There is average error of 18.8% for topology 125-125, 18.2% for 250-250 and 

16.2% for 500-500.

Number of epochs

The similar trend like in previous cases occurred. The top models are with the highest 

number of epochs.

Number of pre-training epochs

Based on Table 17 there are these average test errors:

Number of epochs Average error in %

500 17.7

250 18.0

125 18.1

60 17.0

These numbers shows that number of pre-training epoch have not significant influence on 

performance. (There is no trend)

Influence of learning rate

Table 18 examine influence of learning rate on overall performance. However in this case, 

there is  no significant  trend. On of  the possibility  may be noise  in  dataset  (similar  to 

previous experiment).
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3.5.5 Experiment 5

Description of Dataset 5

This experiment is slightly different from previous. The difference is that first four leaves 

from each class are used for training and validating. And the last one representant of each 

leave is used for creation of testing sub-dataset. 

• Training set = 17000

• Valid set = 2000

• Test set = 2120

A) TRAINING + VALIDATION DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=1

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=5 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0

B) TESTING DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=5

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=5 Apply only for 
background=false

Brightness

Random brightness from=0.7 to=1.0
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

1024 0.025 0.001 500 500 9,4 19,7

1024 0.1 0.01 500 500 8,8 21.0

500-500 0.1 0.01 500 500 8.0 21.0

500-500 0.025 0.001 500 500 9,1 19,6

1024-1024 0.01 0.001 500 500 7,1 19,2

Table 19: Results of experiment 5

Evaluation of results for Dataset 5

The network achieved more than 80% successfully classified cases.  This experiment is 

very similar to real world situations, because it used different leaves subclass for testing. 

Interesting comparison is between Validation and Test error. Validation contains samples 

from the same subclasses as train dataset. Test dataset contains different subclass. We can 

see that using leaf subclass from non training set decreased performance from 92.9% to 

80.8% (in the best case).

3.6 Investigation of how unsupervised pre-training 
influence performance
In this section is presented one experiment with Dataset 1. The goal of this experiments is 

comparison  of  DBN  to  Deep  network  with  random  weight  initialization  (without 

unsupervised pre-training). 

TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

500-500 0.5 0.01 100 100 18.8 15.0

500-500 0.25 0.01 100 100 18.8 22.2

500-500 0.1 0.01 100 100 20.5 23.6

500-500 0.05 0.01 100 100 26.8 23.8

500-500 0.025 0.01 100 100 38.8 32.2

500-500 0.01 0.01 100 100 40.8 44.2

500-500 0.005 0.01 100 100 43.0 52.0

500-500 0.0025 0.01 100 100 56.0 55.4

Table 20: Results with unsupervised pre-training
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TOPOLOGY FINETUNING 
LEARNIG 
RATE

PRETRAINING 
LEARNING 
RATE

PRETRAINING 
EPPOCHS

FINETUNING 
EPPOCHS

VALIDATION 
ERROR

TEST ERROR

500-500 0.5 0 0 100 16.8 18.0

500-500 0.25 0 0 100 18.8 21.6

500-500 0.1 0 0 100 23 25.8

500-500 0.05 0 0 100 27.3 27.0

500-500 0.025 0 0 100 34.0 34.9

500-500 0.01 0 0 100 36.8 43.8

500-500 0.005 0 0 100 49.8 51.2

500-500 0.0025 0 0 100 55.5 56.4

Table 21: Results without unsupervised pre-training

3.6.1 Evaluation of results

The goal of this experiment was to measure help of unsupervised pre-training. In fact this 

was comparison between DBN and MLP (multilayer deep network without unsupervised 

weights initialization). As you can see in Table 20 and 21 the increase in performance is  

not significant. Advantage of pre-training is higher when are used higher learning rates. 

Average validation and test error for top four results from Table 20 is 21.2% and for Table 

21 it is 22.3%. Increase in performance when unsupervised pre-training is used was 1.1% 

(in average).

Figure 23: Example of feature detectors which are formed for hidden  
neurons

60



This is visualization of weights for each hidden neuron (there is 32x32 pixel input image 

therefore there is 1024 weight values for each neuron). Weights were transformed to values 

between 0  and 1.  As you can  see  that  there  are  not  significant  features.  This  lack  of 

reasonable feature shapes is one of possibility why the unsupervised pretreating does not 

help to increase performance so much (in Dataset 1). 

3.7 Experiment on faces dataset

3.7.1 Description of experiment

Experiment was performed on faces dataset [18]. Whole dataset (2280 samples) is divided 

to train (800 samples), validation (112 samples) and test (1368 samples) sub-datasets. The 

goal of this experiment is found out how unsupervised pre-training influence performance. 

For this purpose is used next training setup:

• fine-tuning learning rate = 0.1

• pre-training learning rate = 0.01

• pre-train epochs = 100

• fine-tuning epochs = 100

Each test was run 4 times and in Figure 24 is presented average of these runs.
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3.7.2 Evaluation of results

Figure 24 represents comparison between random weight initialization (typically used in 

MLP) and unsupervised pre-training weight initialization created by stack of RBMs. From 

this  visualization  is  obvious  that  pre-training  helps  to  achieve  better  classification 

performance. The best achieved test error for random initialization was 16.4 % and for 

RBMs initialization was 9.6 %. This result is better than result presented in original paper 

[18]  where  the  best  error  rate  for  dataset  with  836  train  samples  was  11.17%.  They 

achieved this results by using HTM (hierarchic temporal memory) classifier.
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4. DISCUSSION
In this part is described what actually above result tables means. There are presented 7 

experiments, each with different setup (testing different variations and noise levels). The 

most  important  part  of  table  is  TEST ERROR.  It  represents  percentage  of  mistaken 

classification in TEST dataset. The whole dataset was divided into 3 parts – for training, 

validation and testing. It is because of measure correlation between error on in-sample and 

out-of  sample  data.  Experiment  number  1.  represents  dataset  with  2904  samples  and 

without noise. It scores test error 16.4%. In the experiment number 2. is increased number 

of samples (9504) by decreasing step of rotation (it generates more sample). In Dataset 2. 

is achieved best error score of 4.7%, which is good (also when we compare it to another 

works [6,7]). In experiment number 3. is added noise level 10%. The rest of setup is the 

same like in experiment number 2. The test error increased to 19.6%. After this experiment 

is clear that noise level had significant influence on whole performance. In experiment 

number 4. is increased number of samples to 21120 and noise level is 10%. The Test score 

is improved to 15%. Finally is provided experiment number 5. In this experiment are used 

2 datasets. One for training and validating (leaves number 2-5 from each category) and 

second  (leaves  number  5  from  each  category)  for  testing.  This  experimental  setup  is 

simulation of real world data (during testing). Noise level is decreased to 5% and size of all  

two  dataset  is  increased  to  26928  samples.  The  final  “real  world”  classification 

performance error on TEST dataset was 19,2%. One possible cause of this error may be the 

small resolution of input data and also small size of usable information in it (in some cases 

leaves are wide only 5 pixels). Maybe it would be interesting to test humans on this dataset 

and  then  compare  to  DBN.                                     

When we look on the tables  we can  find interesting correlation between TEST 

ERROR and parameters of network and dataset. First correlation is between the size of 

topology and final error. In general if there is more neurons the error is lower. There is the 

same correlation between number of hidden layers and final error. The most important 

correlation is between size of dataset and error. For bigger datasets there is smaller error 

rate.
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Difference in performance of unsupervised pre-training in faces and leaves dataset 

is significant. While in leaves experiments the pre-training did not help very much (1.1%) 

in Faces datasets it helps significantly (6.8%). This may be caused by huge variability and 

size of leaves dataset. It shows that advantage of using DBN is related to the parameters of  

training data.

5. CONCLUSION

The goal of this work was to show usability of deep belief network in object categorization 

problems.  This  goal  was  successfully  achieved.  There  are  provided sets  of  systematic 

experiments that show us a potential of this system. In some cases this potential is higher 

(faces  dataset)  in  another  cases  where  the  variability  is  higher  (and  there  are  not  so 

significant and clear features – leaves dataset) the potential is not so significant. Overall 

the network shows quite good classification skills and there is potential for real usage of 

such  classification  method  in  practice  (e.  g.  portable  cell  phone  application).  

However there are also many another methods like HTM [18] or recently presented 

Multi-column Deep  Neural  Networks  [22,  35].  Especially  this  recent  network  is very 

encouraging. Based on fresh results on image classification task like CIFAR-10 or MNIST 

Multi-column Deep Neural Networks achieved the best performance.                          

This field of research is very interesting for the application in robotics industries 

(e.g.  road sign recognition [35]) and there is also huge potential for cognitive science, 

because these methods are inspired by biology and functionality of neural system.
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Attachments of the thesis are saved on the attached DVD. 

Medium contains:

• source files 

• source codes

• Master's thesis in digital form (PDF)
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