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Abstract

Research in neuroscience over the past few decades has
shed new light on glial cells which were always consi-
dered as purely passive supportive cells. New data pro-
vides evidence that astrocytes, a group of glial cells,
possess important physiological functions that distingu-
ish them from passive cells. It is now known that astro-
cytes are actively involved in neuronal communication
regulation and synaptic transmission. Similar to neu-
rons, astrocytes are integrated into networks that enable
them to communicate with one another over long dis-
tances using Ca2+ signals. Since this is a relatively new
area of research in neuroscience, computational models
(mainly connectionist) are still missing. In this paper we
briefly introduce astrocytes, focus on existing connec-
tionist models and present technique that yields more
successful performance.

1 Introduction

According to current knowledge of neuroscience, two
types of brain cells are distinguished: neural cells and
glial cells. Population of neurons is characterized by the
ability to generate action potential whereas glia were
always considered as passive non-excitable cells. Neu-
rophysiological findings at the turn of the 90s began
to shift this perspective by providing evidence that glia
cannot be longer considered as passive cells since they
possess mechanisms for neural and synaptic regulation
and modulation.

It is well-known notion that glia outnumber neu-
rons by tenfold as taught by many neuroscience text-
books, but more recent evidence debunks this concept
and claims glia-to-neuron ratio is in reality close to one
(Hilgetag and Barbas, 2009). Four types of glial cells
are distinguished: oligodendrocytes, microglia, ependy-
mal cells and astrocytes. First three types are highly spe-
cialized and responsible for myelination, immunity and
production of cerebrospinal fluid. Astrocytes account
for most potent and functionally richest type that modu-
lates neuronal activity on multiple levels. Besides their
crucial role in neural development and production of ne-
urotrophic factors, they are essential in regulation of ex-
tracellular level of pH and K+, glutamate metabolism,
nurturing neurons and maintaining blood–brain barrier.

Important milestones in history of glial research
included discovery of negative resting membrane poten-
tial in astrocytes and membrane depolarization by neu-
ral activity (Orkand et al., 1966) and formation of glial
syncytium (Brightman and Reese, 1969). In terms of
current knowledge astrocytes are considered to be che-
mically excitable by specific neural molecules to which
they respond with increased intracellular Ca2+ oscilla-
tions and release of gliotransmitters that regulate and
modulate neuronal and synaptic activity.

Despite the fact that glial research is for the last
decades very popular in neuroscience, in the area of
computational modeling lack of interest still persists. In
this paper we focus on existing connectionist models of
multi–layer perceptron (MLP) with artificial astrocytes
and present technique that yields more successful per-
formance.

2 Previous work

In the area of computational neuroscience two mode-
ling paradigms (abstractions) are considered: biophysi-
cal and connectionist. While first paradigm focuses on
physicochemical properties of biological system using
mathematical formalizations, second one makes ab-
straction over low-level mechanisms and tries to com-
prehend the system from higher level.

Despite plethora of biophysical models of astro-
cytes and their interactions with neurons, connectionst
models are still missing. For an overview of biophysical
models I suggest Oschmann et al. (2017), Volman et al.
(2012), Wade et al. (2014).

Although not considered as a computational mo-
deling, some authors focus on modeling neural me-
chanisms using electronic circuits. Joshi et al. (2011),
Irizarry-Valle et al. (2013), Irizarry-Valle and Parker
(2015) present neuromorphic engineering and designed
CMOS circuits to model small neural networks exten-
ded with astrocytes that modulate excitatory postsynap-
tic potential.



2.1 Multi–Layer Perceptron with Chaos Glial Ne-
twork

Ikuta et al. (2010) proposed a concept of artificial astro-
cytes in artificial neural networks and have written mul-
tiple papers regarding this topic. Their proposed idea
was to extend MLP with astrocytes on a hidden layer
(Fig. 1) using formula 1 for computation of hidden ne-
uron’s output.

hi(t+ 1) = f(

n∑
j=0

wij(t)xj(t) + αΨi(t)) (1)

Activation of hidden layer is determined by linear com-
bination of weights and input from a previous layer
summed with an astrocytic output, Ψi(t), multiplied by
weight α (shared amongst all astrocytes). Output for a
single astrocyte is given by formulas 2 and 3.

Ψi(t) =

m∑
k=−m

β|k|ψi+k(t) (2)

ψi(t+ 1) =

{
2ψ(t)+1−A

1+A , (−1 ≤ ψ(t) ≤ A)
−2ψ(t)+1+A

1−A , (A < ψ(t) ≤ 1)

(3)
where activation of i-th astrocyte, Ψi(t), is a sum of m
neighboring astrocytes, ψi(t), with exponentially atten-
uating weight by factor 0 < β < 1. Biological moti-
vation using these formulas is that it is known astrocy-
tes generate spontaneous Ca2+ oscillations (formula 3)
that are propagated throughout glial syncytium (formula
2).

To assess performance of proposed model authors
chose well-known benchmark two-spiral problem de-
picted by Fig. 2. This problem cannot be easily solved

Fig. 1: Architecture of the proposed model. MLP with
artificial astrocytes on a hidden layer.

Fig. 2: Two-spiral problem: assigning every point (x, y)
to class {0, 1}.

by standard MLP due to large number of local minima.
Architecture of the proposed MLP consisted of two hid-
den layers with structure 2–20–40–1 with astrocytes ex-
tending the second layer exclusively using parameters
β = 0.8 and m = 5. The model was trained using stan-
dard gradient descent algorithm – backpropagation.

The authors compared performance of conven-
tional MLP, MLP with random noise and proposed
MLP (with chaotic noise) using mean squared error.
Proposed model yielded best results followed by MLP
with random noise and conventional MLP.

2.2 Multi–Layer Perceptron with Impulse Glial
Network

Ikuta et al. (2011) continued in the concept of artificial
astrocytes, but instead of implementing chaotic oscilla-
tions they introduced active astrocytes that listen to and
regulate neural activity. Formula 3 was substituted with
formula 4.

ψi(t+ 1) =

{
1, θn < hi(t) ∧ θg > ψi(t)

γψi(t), otherwise
(4)

with 3 new parameters introduced: θn is astrocyte’s ac-
tivation threshold, θg is astrocyte’s refractory period and
γ is attenuation factor. Astrocyte generates 1 only when
has recoved from refractory period and neuron’s output
overpasses manually chosen constant threshold.

Fig. 3: Two time series used for evaluating perfor-
mance of model. Task is to assign 4 adjacent values
(ψ(t), ψ(t+ 1), ψ(t+ 2), ψ(t+ 3)) to classes {0, 1}.



The problem used for evaluating performance of
this model was classification of 4 adjacent values into 2
time series (Fig. 3). The architecture of all 4 models was
4-10-1 and they were trained using backpropagation al-
gorithm. Using metric MSE for estimating classification
errors yielded in results displayed in Tab. 1.

Model avg. MSE
Conventional 0.0351

Random Noise 0.0111
Chaotic Noise 0.0074
Impulse Glia 0.0053

Tab. 1: Performance of 4 models in classification task
on time series. Conventional MLP yielded worst results
and proposed model with impulse glia yielded best re-
sults.

2.3 Astrocyte-driven synaptic plasticity

Concept of synaptic plasticity driven by artifical astro-
cytes was researched by Alvarellos-González et al.
(2012). They extended every neuron (including input
and output layers) with astrocyte controlling its synap-
tic plasticity by counting how many times neuron fired
for last k times:

rj(t) =

k−1∑
i=0

u(xj(t− i))

where xj(t) is an output of j-th neuron and u(xj(t)) is
defined as:

u(xj(t)) =

{
−1, xj(t) ≤ 0

1, xj(t) > 0

Synaptic weights are changed accordingly to rules:

wi(t+ ∆t) = wi(t) + ∆wi(t)

∆wi(t) = |wi(t)|z(t)

z(t) =

{
a, rj(t) = µ

b, rj(t) = −µ

Parameters a, b, and µ were heuristically chosen. Au-
thors proposed several rules of synaptic plasticity based
upon this idea, but we are not listing them all.

Authors evaluated performance of the model trai-
ned using proposed rules on 4 different problems and
confirmed that model with astrocytes (NGN) was able
to learn problems more accurately than identical mo-
del without astrocytes (NN), but it highly depended on
complexity of selected problem. In 3 cases (amongst 4)
NGN was superior to NN. It is questionable why authors
did not choose backpropagation algorithm for training
NN model, but decided for genetic algorithm which is
known to be less effective in training neural networks.

Since algorithm requires parameters a, b, and µ
that need to be chosen manually for every individual
problem, Mesejo et al. (2015) proposed technique ba-
sed on evolutionary algorithms and implemented proof
of concept that automatically searches for optimal va-
lues of parameters.

3 Optimizing astrocyte weight

In our research we were inspired by work Ikuta et al.
(2010) described in Section 2.2. We have chosen MLP
extended by impulse astrocytes at hidden layer. To as-
sess performance of our model we focused on two-spiral
problem (Fig. 2) using architecture 2–20–1. For compu-
tation of hidden layer’s output we used slightly modified
version of formula 1:

hi(t+ 1) = f(

n∑
j=0

wij(t)xj(t) + αiΨi(t))

Notice α was substituted by αi. For activation of astro-
cytes we used formulas 2 and 4. Parameter values were:
η = 0.01, m = 20, β = 0.5, θn = 0.6, θg = 10−4,
γ = 0.5. Since loss function is defined as:

E(w) =
1

2

∑
p

(d(p) − y(x(p)))2

parameter αi can be optimized:

∆αi = −η ∂E(w)

∂αi

∆αi = −η
(∑

j

∂E

∂yj

∂yj
∂netj

∂netj
∂hi

) ∂hi
∂neti

∂neti
∂αi

∆αi = −η
(∑

j

δj︷ ︸︸ ︷
(tj − yj)yj(1− yj)wji

)
hi(1−hi)Ψi

∆αi = −η

δi︷ ︸︸ ︷(∑
j

δjwji

)
hi(1− hi) Ψi

∆αi = −ηδiΨi

We implemented proof of concept algorithm to compu-
tationally evaluate performance with results illustrated
in Fig. 4.

4 Conclusion

Understanding the role of astrocytes and neuron–
astrocyte interactions are essential for understanding the
brain. Computational models in this context are ine-
vitable since they allow us to test correctness of our
knowledge, specified hypotheses and propose means for
prediction of certain behavior. In this work we focused



Fig. 4: Simulations of 4 models on two-spiral prob-
lem. Conventional model (blue) and model with gaus-
sian noise (orange) were not able to escape local mi-
nima, but models with artifical astrocytes (green and
red) were. Dynamic update of αi during training (red)
yielded lowest error (best performance).

on existing connectionist models that incorporates arti-
ficial astrocytes into MLP. We showed how astrocytic
noise works better than gaussian noise and how synap-
tic plasticity could be driven by astrocytes. We proposed
technique for optimizing astrocyte weight that yields
better results than the original model. Since all presen-
ted techniques have been shown to help avoiding be-
ing stuck in local minima, it is definitely possible to at-
tempt applying them to different models that have this
tendency. Therefore future research could focus on inte-
grating these techniques into recurrent, self–organizing
or spiking models.
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