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Abstrakt

L’udské myslenie a kogńıcia sú v úzkom vzt’ahu s našou schopnost’ou kate-
gorizovat’. Ked’že je fyziológia vizuálneho vńımania je univerzálna, môžeme
skúmat’ a porovnávat’ kategorizáciu a pomenovávanie farieb v l’ubovol’nom
jazyku, kultúre či umelom systéme. Analýzy klasterizácie dát zo Svetovej
farebnej štúdie (World Color Survey), ktorá obsahuje výsledky experimen-
tov zo 110 jazykov neindustrializovaných kultúr bez ṕısma potvrdili, že per-
ceptuálne koreláty základných farebných termı́nov l’ubovol’ného jazyka spadajú
do množiny univerzálnych základných farebných kategóríı. V práci sme poṕısali
náš model kategorizácie farieb založený na sémantike rozlǐsovaćıch kritéríı.
Zo simulácíı dvojakého typu, s učitel’om, na báze WCS dát, a bez učitel’a, na
báze jazykových hier, vyplynulo, že tento model je vhodný pre problematiku
pomenovávania farieb a farebných kategóríı a porovnatel’ný s podobnými,
známymi modelmi.

Kl’́učové slová: kategorizácia farieb, základné farebné termı́ny, World Color
Survey, rozlǐsovacie kritéria

Abstract

The human thought and cognition are in close relationship with our ability
to categorize. Since the physiology of color vision is universal, we can study
and compare color categorization and naming in various languages, cultures,
and artificial systems. Perceptual correlates of the basic color terms of any
language fall into universal set of color categories, as confirmed by clustering
analyzes of the data from the World Color Survey, consisting of color naming
experiments from 110 unwritten languages from non-industrialized cultures.
In this thesis we propose a model of color categorization based on the se-
mantics of distinguishing criteria and its evaluation in experiments with the
supervised learning of the data from WCS and unsupervised learning on the
basis of language games. Concluding the results from the simulation we con-
firm that the distinguishing criteria are suitable for the modeling of color
categorization and comparable with other, well established models.

Keywords: color categorization, basic color terms, World Color Survey,
distinguishing criteria
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Chapter 1

Introduction

The human thought and cognition are in close relationship with our ability
to categorize. Categorization plays a dominant role in perception, reasoning,
planning and action, speech, and many other cognitive abilities. Similar im-
portance is attributed to the language ability, which can be considered a tan-
gible feature discriminating the quality of human cognition from cognitions
of any other species. Therefore the study of basic categorization mechanisms
within language could be a way to understand the cognition and thought as
such. Within cognitive science, cognitive linguistic school [20] is concerned
with such notions.

The main topic of this thesis is color categorization and its computational
models. The importance of color categorization rests in its universality. The
visual perception can be considered the most important of our senses. The
process of color discrimination must be therefore present in our thought, and
consequently in language. Since the physiology of color perception is uni-
versal, the ability to discriminate colors is not culturally dependent. Thus
we can study color categorization and naming in any language, culture, or
a (biologically motivated) artificial system, search for similarities, general
mechanisms, and differences. The research on color categorization and its
modeling is closely connected to the emergence of modern paradigms ex-
plaining how categorization functions, namely the prototype theory.

In the following chapters of this thesis we provide an essential background
for understanding the phenomena involved in color categorization, we de-
scribe the central theory about basic color terms, and finally we present our
distinguishing criteria based model of color categorization. Firstly we intro-

7



8 CHAPTER 1. INTRODUCTION

duce the basics of human color perception, i.e. the main theories of color
vision, its physiology and psychology and a short overview on how the color
can represented in a color space. The second theoretical chapter is dedicated
to categorization, mainly to the prototype theory of categorization. It also
provides a definition of the basic color categories and relevant background
on color categorization as such.

In the fourth chapter we describe the main hypotheses regarding the basic
color terms, their universality and evolution and the World Color Survey
aimed to validate, invalidate or modify these hypotheses. The data from the
WCS consist of the results from color naming experiment from 110 unwritten
languages from non-industrialized cultures from all around the world and
are freely available on the Internet. We also include a short overview on
our version of the WCS experiment in the Slovak language we carried out
in spring 2008. Lastly, we provide an overview of selected studies regarding
the data from the WCS, aimed to verify the original hypotheses. We also
describe the first visualization of these data, which inspired us to create our
visualization methods. A section about these methods closes this chapter.

In the last chapter we describe our model of color categorization based on
Rosch’s prototype theory and the semantics of the distinguishing criteria. We
provide two-fold evaluation of the model in experiments with supervised and
unsupervised learning. In the first case we created simulated agents trained
on the data from the WCS. In the second case, we tested the distinguishing
criteria in multi-agent simulation of the perceptual color categorization and
emergence of the shared lexicon of color terms using the semantics of language
games [33]. The original studies with these simulations have shown that mild
constraints on the perception and cultural (verbal) interaction among the
agents result in categories that have a distribution similar to human color
categories. However, the aim of this thesis is not to prove or disprove the
original hypotheses of Berlin and Kay or any other hypotheses, but rather to
probe the learning capability of the distinguishing criteria on the real data
represented in a perceptually uniform space.



Chapter 2

Color perception and color
coding

This chapter provides an introduction to basic principles of human color
perception, basic theories of color vision, its physiology and psychology. In
short, the visual apparatus perceives color by means of absorption of light
by three different types of photoreceptor. The essential mechanism involved
in many aspects of color processing is comparative principle. It can be found
either on primitive level, where the response of each type of color-sensitive
receptor is formed in comparison with reactions of other types of receptors,
or on cognitive level, where the color of an object is distinguished based on
comparison with its surroundings. Another principle present on every level
of color perception is the principle of color opponency, generally known as
opponent process theory, based on antagonistic relationship between pairs of
primary colors, red-green, blue-yellow and black-white.

Color vision is the ability to detect and analyze changes in composition
of the wavelength of light [37]. The definition of color in general is an un-
decided problem. On one hand, it is a property or a byproduct of special
range of electromagnetic radiation. Color percepts then can be described
as psychophysical properties of perceived object or material. On the other
hand, color can be defined as a property of mind. It is possible to imagine
certain color with our eyes closed. Therefore to describe color in general
without binding on certain light and material conditions we describe it as a
perceptual entity with three components – hue, value and saturation, where
hue encompasses the quality of the percept. The other parameter, value
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10 CHAPTER 2. COLOR PERCEPTION AND COLOR CODING

(intensity, lightness or brightness) stands for the intensity of (white) light
apparently coming from the colored object. When the light is at its fullest
intensity, colors will become bright, at its least intensity, colors become dim.
At last saturation, chroma or colorfulness tells us about the purity of color
or more precisely about the amount of white light (or gray paint) mixed with
the hue.

The visible spectrum (or simply light) is the portion of the electromag-
netic spectrum that is visible to human eye. A typical human eye will respond
to wavelengths from about 380 to 750 nm [32]. A very common mistake is an
idea, that only the wavelength of light falling on perceived object determines
the color perceived. On the other hand, the visual perception is in principle
based on the comparison of attended objects with their background. Our
perceptual system is not able to measure specific wavelengths, only compare
them among objects perceived.

2.1 Theories of color vision

There are two generally accepted theories of color vision, both formulated in
19th century, which were considered rival to each other. This section is based
on [11] and [9].

The trichromatic theory (or Young–Helmholtz theory) suggests that there
are three types of color receptors (red, green, blue) sending the values of their
excitation the brain according to the color of the perceived light. Note that
it was formed before physiological evidence for this phenomenon was found
and described. The theory is based primarily on color mixing experiment and
suggests that a combination of three channels is sufficient for creating any
color. Although it truly corresponds with the three types of color sensitive
receptors, this concept fails to explain the uniqueness of four color primaries
(explained by the opponent process theory described below), and also why
dichromats (people missing one type of color cones) are able to see white
and yellow even though it is impossible to mix these colors with one channel
missing.

The the opponent process theory, important also for the further content
of this thesis, also distinguishes three perceptual channels, but unlike trichro-
matic theory it defines six primary colors (also called Hering primaries after
the author of this theory) into three antagonistic channels: red-green, blue-
yellow and black-white (rather dark-light). It means that at any time either
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red or green is perceived, but never greenish-red (the same with blue and
yellow). This principle easily explains the color-afterimage and other psy-
chological phenomena (described in chapter 2.3), but in its original form it
never challenged the trichromacy of initial stage of color processing expressed
by the first theory.

The experimental background for this theory was provided by Hurvich
and Jameson in 1957. Using hue cancellation method, they isolated psy-
chophysical color opponent channels responsible for the antagonistic mecha-
nisms in the perception of these unique colors. The figure below describes the
chromatic response cancellation curves for the three Herring’s color channels.
Note that there is no single wavelength at which a pure red can be perceived.
Hence the pure red is extra-spectral and can be perceived only when the
yellow component is canceled by the blue component of specific wavelength.

Some later studies considering color opponent processes summarized in
[16] suggest that at physiological level, the pairs of mutually inhibiting color
primaries are not exactly red-green and blue-yellow, but rather cherry-teal
and chartreuse-violet or some simple rotation of these axes (similar hues
with equal spacing in adequate color space). The uniqueness of original
colors proposed is explained as resulting from the irregularity of shape of
perceptual color space (described in section 2.4).

Figure 2.1 depicts opponent chromatic responses measured by Hurvich
and Jameson, adapted from [11]. Figure on the right illustrates color hues
which might be considered the classic opponent hues: red, green, blue and
yellow and the new hues proposed by Jameson and D’Andrade: cherry, teal,
violet, and chartreuse.

Concluding the proposals of these two basic theories of color vision we
can say that they are not opponent, but complementary. Firstly, there is
the trichromacy of receptors in retina; secondly there are opponent processes
in the neural pathways visual cortex. On the other hand, the opponent
process theory is valid also in three-type cones part, since yellow is sensed
both by red and green cones, but not by blue cones (which’s response is
mutually inhibited with the “yellow signal”). More details are provided in
the following section.
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(a) Chromatic response cancellation curves for the
three opponent channels

(b) Illustration of basic opponent hues

Figure 2.1: Opponent processes and hues
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2.2 Physiology of color vision

The mechanism underlying the visual perception is the absorption of photons,
the particles of light, carried out by special, light-sensitive receptive cells on
the retina of human eye. There are two types of photoreceptors, rods and
cones, named after their characteristic shape. Cones are those responsible for
vision at daylight, acuity of vision and for color discrimination. This section
is mainly based on [1] and [12].

Unlike many other mammals’, the human eye owns three types of cones
sensitive to different ranges of wavelength we call red (L), green (M) and
blue (S). The red or L-cones (long-wavelength sensitive cones) react to light
of wavelength between 500 nm and 700 nm with peak around 564–580 nm,
green cones are tuned a little “shorter”, to 450–630 nm with peak around
534–545 nm and blue cones to 400–500 nm culminating around 420–440 nm.
Important is that all cones detect wavelength of incoming light only in com-
parison with at least one other type of cones.

Red and green cones are together with the color discrimination responsible
for the fine discrimination between bright and dark. On the other hand the
short-wavelength sensitive blue cones provide the perception of color contrast
and are 10-times shorter in amount than the others. Due to a considerably
big interception between the ranges of longer wavelength sensitive cones,
the yellowish lights will stimulate them nearly equally, but blue cones will be
hardly influenced. In addition, these two types of cones can be also considered
red-green and green-red cones. The yellow color, perceived by these two types
can be intuitively divided into two parts in the visible spectrum, which we
can call the greenish and the reddish yellow. This relationship gives rise
to an idea, that even if there were three types of cones, there is a possible
explanation for four primaries, because yellow is perceived both by red and
green cones opposite to blue, which is only in range of blue cones. The
trivariance of color channels allows us to perceive also extra-spectral colors
like cyan or magenta.

Color opponent mechanisms are present on the neural stage of color pro-
cessing as well. After being perceived by photoreceptor in retina the visual
information is sent via optic nerve to the thalamus to synapse at the lateral
geniculate nucleus (LGN). In the LGN the red-green signal is processed by
the parvocellular chromatic channel and the blue-yellow by the koniocellu-
lar channel both functioning on opponent principle [6]. The LGN transmits
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its signals to the first visual area (V1) to process visual signals in cerebral
cortex. Opponent processes continue also in V1 where double opponent cells
are clustered within localized regions called blobs. Red-green cells compare
the relative amounts of red-green in one part of a scene with the amount of
red-green in an adjacent part of the scene, responding best to the local color
contrast (red next to green). From the V1 blobs, color information is sent
to cells in the second visual area, V2. Neurons in V2 then synapse it onto
the cells in area V4, which provides input to the inferior temporal lobe (”IT”
cortex), which integrates the color information with the information about
the shape and form.

2.3 Phenomenology of color perception

The process of perceiving and distinguishing different colors is, similarly to
visual perception mechanisms, based on the comparison of the object with its
background. This process is generally based on comparing wavelength and
intensity of perceived lights, but there are certain influential factors worth
mentioning. The following part will briefly summarize most important of
the mentioned properties and effects of cognitive psychological nature, which
they cause. All of these effects are apparent changes (or inconsistencies) in
the colors perceived1. This section is based on [9] and [13].

First of all, let us describe the physical properties influencing color per-
ception. An important factor influencing the perception in general is size of
the object perceived. In case of color, the smaller the object is, the stronger
is the convergence of its apparent color – from dark hues to black (e.g. small
blue object appearing as black) and from light ones (e.g. yellow) to white.
The lightness of a color depends on various physical characteristics, mostly
on the luminance of the material, the background and the properties of am-
bient light. Increase in the brightness of light causes an apparent shift of
all colors of the visible spectrum, those characterized with wavelength be-
low 500nm towards blue and over 500nm towards yellow (e.g. red seems
yellower or more orange-like). This is called the Bezold-Brücke shift. On

1We will use basic color terms of English language, as this study claims in the next
chapters, these terms can be universally translated to most of the western civilization
languages. Please note that the following pages are not about linguistic categories, but
rather about certain color percepts named with exact color terms for the simplicity of the
explanation.
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Figure 2.2: Illustration of simultaneous contrast (left) and assimilation effects
(right)

the other hand in conditions with low illumination the retina becomes more
sensitive to shorter wavelengths and less to longer wavelengths. This phe-
nomenon is named Purkinje effect or shift after Czech anatomist Jan Evan-
gelista Purkyně. For example a blue and a red flower, which appear of the
same brightness in daylight, will begin to appear unequal in this respect as
twilight deepens. The red color will appear darker more quickly than blue,
which might appear even brighter than before.

Probably the most influential element of color discrimination principle is
the background. Each and every color (similarly to shapes and orientation)
is perceived by process of comparison of the focused object with its sur-
roundings. In accordance with the Opponent process theory, the background
influences the perception mostly when it is in an opposite-color relationship
with the focused object’s color. The background can both induce its comple-
mentary hue into an object (e.g. if the background is green, the object will
appear redder) or reduce apparent saturation of similar hue (e.g. a very red
background will induce green into an object), a highly saturated background
will desaturate objects of the same hue and enhance saturation of objects
with complementary hue. This principle functions with brightness and is
generally called simultaneous contrast.

Assimilation effects, opposite to the first type, cause an apparent change
of the color of the background. These are the cases where the foreground
instead of producing contrast causes the background to seemingly spread
into it. This effect is complete at the point of spatial fusion when the stimuli
are no longer viewed as discrete, but fuse into a single stimulus. Spreading,
however, occurs at spatial frequencies below those at which fusion occurs.
Thus, the stimuli are still observed as distinct from the background, but
their colors begin to blend. In the example below white bars spread to make
the blue look lighter and the black bars spread to make the same blue appear
darker.

Another principle based on and accounting for the Opponent process the-
ory is the successive brightness contrast. It occurs when the viewer has been
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under prolonged exposure to light of a particular color. This can produce
something like a color afterimage effect resulting in inducement of comple-
mentary color. For example, viewing a red field would make a subsequently
viewed yellow or white object appear greenish. On the other hand there can
be a reduction of apparent saturation. For example, adaptation to a red
field would then make a pink object appear whiter. This property can also
induce or reduce brightness; for example, viewing a bright field would make
a subsequently viewed object appear dimmer2.

Next group of factors, which influence the human color vision are the
properties of perceptual system itself. Together with other perceptual con-
stancies as the constancy of shape, size or distance, color constancy is the
perception of an object or its quality as constant under changing conditions.
In this case it is the color of perceived object, which remains relatively con-
stant under varying illumination conditions that is caused by the independent
changes in responses of the three types of cone photoreceptors. This effect
is also called chromatic adaptation. Color constancy experiments show that
very large spectral changes in illumination cause only small changes in the
appearance of objects. There is common consensus that the magnitude of
color constancy corrections is very large, but also that the constancy is never
perfect [23].

2.4 Color spaces

As mentioned before, color can be cognitively defined as perceptual entity
with three qualities. A color space can consist of hue, value and saturation or
any other reasonable set of quantitative parameters, which will stand for the
axis in vector space. An important characteristic is the gamut – the certain
complete subset of colors with a color space. The most common examples
are color spaces based on popular working color models RGB or CMYK3,

2For instance “rapid light adaptation”, the sensation of coming from strong sunlight
to a dark room or other way round causes the colors perceived during first few seconds to
look lighter and less saturated as there was some kind of white or gray aperture in front
of one’s eyes.

3A color model unlike a color space has no associated mapping function to an absolute
color space, in which perceptual difference between colors is directly related to distances
between colors and where the interpretations of colors in the space are colorimetrically de-
fined without reference to external factors. In other words it misses a globally understood
system of color interpretation. For example there are several RGB-based color spaces like
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used in CRT displays in first case or printing devices in the latter. Following
lines will provide brief introduction to several color spaces designed to depict
human color vision. This section is based on [16] and [19].

2.4.1 CIE color spaces

The CIE 1931 XYZ color space was one of the first mathematically defined
color spaces, created by the International Commission on Illumination (CIE)
in 1931. It is a linear transformation of older CIE RGB space, derived from
a series of color perception experiments. It locates color within a tristimulus
coordinate system (XYZ are the coordinates) derived from cone responses of
retina. A great success is that it resembles perceptual appearance of colored
light and the effects of the color mixture of lights by simple addition of
vectors. On the other hand it does not correspond well to the perceptual color
differences, i.e. the distance (the difference-similarity) measure, between
different colors does not correspond directly to human perceptual judgment.

The next generation of color spaces created by CIE are those color-
opponent based, derived from CIE 1931 XYZ, from which the most popular
is the L*a*b* (or CIELAB) system. Strongly influenced by the Munsell color
system (see next section), the intention of CIELAB is to create a space which
can be computed via simple formulas from the XYZ space, but is more per-
ceptually uniform 4 than XYZ. Inclining to the opponent process theory and
more cognitively defined color spaces (Munsell, HSV or HSL5) the three co-
ordinates of CIELAB represent lightness of color (L* = 0 yields black and L*
= 100 indicates diffuse white), its position between red/magenta and green
(a*, negative values indicate green while positive values indicate magenta)
and its position between yellow and blue (b*, negative values indicate blue
and positive values indicate yellow).

Adobe RGB and sRGB, created from the model using real colorimetric parameters.
4A change of the same amount in a color value should produce a change of about the

same visual importance.
5HSV/L coordinates are hue, saturation, value/brightness or lightness/luminance, sim-

ilar color models based on RGB. In both cases the color hues are arranged on a circle
in a spectrum-like manner, while other parameters are in percents. Saturation decreases
towards the center of circle, which is essentially gray and lightness/brightness decreases
(or in the second case also increasing) to form a cylinder or a double-cone.
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Figure 2.3: Illustration of L*a*b* Color Space

2.4.2 Munsell color system

The goal of perceptual color spaces is to reflect the perception of similarities
between colors in the distance between each point of a color space. Munsell
color system is one of the best known of these perceptual color spaces. Its
coordinates are based on perceptual color properties – hue, value and chroma
(approximately corresponding with saturation). The basic idea is that ad-
jacent color samples in each dimension should have a constant perceptual
difference, so that the color chips are located at equal perceptual intervals
along each dimension. However, no method is given for comparing distances
along these dimensions measured in different units.

In their theoretical summary [16] Jameson and D’Andrade suggest that
scaling studies (scaling of color spaces to reach the hypothetical ideal color
space) found out an overall pattern which clearly conforms to the Munsell
type of organization. However these scaling studies do not describe an axis
on which green is opposite to red, but rather red opposite to blue-green
and green opposite to red-purple. The results also show the color perimeter
divided into five not four equal sections, corresponding to red, yellow, green,
blue, and purple. So pure red and pure green, assumed to be opposing colors,
are not found to lie at opposite sides of an achromatic point in empirical
scaling of perceptual space. This is another factor suggesting that a variant
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Figure 2.4: Illustration of L*a*b* Color Space

of opponent process theory, involving small changes of hues of the basic
primaries is needed. Figure 2.4 depicts the Munsell color system and was
taken from [25].
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Chapter 3

Categorization

This chapter is dedicated to categorization, which we consider essential for
the human cognition. The categorization as a mechanism is employed in
perception, reasoning, planning and action, speech, and any other cognitive
tasks. We will describe the classical view on categorization which dominated
in philosophy and related sciences for more than two thousand years and
is still very influential. However, with emergence of cognitive sciences, new
theories arose to overpower the old theories, not only on categorization, but
also on cognition as such. We will thoroughly describe the prototype theory
of Eleanor Rosch, that challenged the rigid classical perspective. Since this
view (proposed by Rosch and followed by Lakoff and many others) is the one
we consider to be the most coherent and explanatory, and is also connected
to the latter parts of this thesis, we will not include other influential theories
that were constituted later. The two generally accepted examples of such
theories are the exemplar view and the theory view. The exemplar view
claims that there is no single representation of an entire concept; members of
a category are formed by specific representations of its instances – exemplars.
The theory view (also called the “knowledge approach”) refers to concepts
as to mental theories about the world; membership in a category is decided
due to an individual’s knowledge [24]. Following text is based mainly on [29]
and [20].
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3.1 From classical view to Eleanor Rosch

The classical view on categorization was established by philosophers of an-
cient Greece. From that time up to early 18th century, categories were un-
derstood as some closed containers filled with things sharing the same (nec-
essary and sufficient) properties. Respectively these properties defined the
categories. Entities were either members of certain category or not (Boolean
membership). There are other ideas of the ancient philosophy closely related
to this notion, for example the idea that reason is a disembodied symbol ma-
nipulation, or that mind is separate from body, or that meaning is based on
truth and reference (i.e. each word corresponds to one thing in the world).

The first one to notice the flaws in the classical view was Ludwig Wittgen-
stein. In his later work he pointed out that there are categories that have no
clear-cut boundaries, constituted of members that do not necessarily share
the same properties, and that members of the categories might be central
and non-central. His most famous example was the word game. There are
various types of games for example, children games, table games, or sports
that share no properties at all, some are based simply on the chance, some
have rules, some do not, there are even games that does not have a win-
ner. The only thing they have in common is that they are grouped in the
same category. For this principle Wittgenstein found a very nice parallel –
the family resemblances. The members of a family resemble one another in
various ways, but usually there is not a single feature they all share. This
principle also accounts against the closed boundaries. There is always a pos-
sibility to gain a new family member (marriage, birth, etc.), without it, the
world would not function. Another fine example is the category number.
For a long time, since ancient Greeks, numbers have been only integers, but
then rational numbers came along with the need to represent fractions, then
real, complex, and transfinite numbers were discovered. This example also
shows the centrality and non-centrality of category members. Every precise
definition of number must include the integers, but not every definition must
include transfinite numbers.

Another important step towards a new definition was the theory of fuzzy
sets proposed by Zadeh. A fuzzy set is characteristic with its member func-
tion, which allows each member not just to belong or not belong to the
category (0 or 1), but to be a part of it to some extend (a number between 0
and 1). This concept provides categories with fuzzy boundaries and accounts
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for the centrality character of categories, a central member for example may
belong to the category at 100%, but non-central only at 20%.

The first one to propose a new general theory of categorization was
Eleanor Rosch (in early 1970’s). Her main proposal was that thought in
general is organized in terms of prototypes and basic level structures. To
demonstrate her statements she established new research paradigms in cog-
nitive psychology and proved them on experimental basis.

3.2 The prototype theory of categorization

This theory was also called “the theory of prototypes and basic-level cate-
gories”. Note that since Rosch is one of the first cognitive linguists she speaks
mostly about categorization in language, with direct consequences on cate-
gorization in general. We are not aware of any reasonable objections against
this generalization. Rosch [29] describes two principle of the formation of
categories1:

Cognitive economy: categories are built in a way that maximizes in-
formation gain, but also preserves an adequate level of simplicity. The goal
is to differentiate which information is important and which is not.

Perceived world structure: since the world is not unstructured to-
tal set of equiprobable co-occurring attributes (as expected in the classical
view), there are attributes occurring together often and those that are never
connected. The perception of such world is always driven towards a high
correlation, so people will not think about (consider) features, which are not
generally known to be interrelated or that have no logical connection.

The prototype theory, also called “the theory of prototypes and basic-
level categories”, proposes that categories and the process of categorization
have following characteristics:

1. Family resemblances (Wittgenstein): members of a category may be
related to one another without all members having any properties in
common (i.e. a category does not have to have defining features).

1Under the formation of categories she means their formation in the culture, not the
development of categories in children born into a culture. She also does not intent to
constitute a model of how categories are processed (how categorizations are made) in the
minds of adult speakers of a language.
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2. The basic level (Rosch): the categories are not merely organized
in a hierarchy from the most general to the most specific, but are also
organized so that categories that are cognitively basic are in the middle
of a general-to-specific hierarchy. These basic categories are simple and
short words, most commonly used labels and most neutral terms for
category members, first named and understood by children, and first
to enter the lexicon of a language. Considering for example a hierarchy
mammal – cat – Siamese. When talking about an animal sitting on
the window it would sound strange saying: “The mammal sat on the
window.”

3. Prototypicality (Rosch): there are members of a category that are
more “typical” than some others and there are methods for deciding
this typicality. The more prototypical of a category a member is, the
more attributes it has in common with other members of the category
and the fewer with members of contrasting categories.

A very common notion is that according the prototype theory the mem-
bership function is a comparison of the category prototype with the con-
sidered samples. Rosch herself is against any tendencies trying to present
prototypes as a processing model for categories, a theory of representation of
categories (prototypes as representations of categories in mind), or the the-
ory of learning categories. The prototypes or more precisely the judgments
of degree of prototypicality are in these terms more of a property, than the
base of categorization. However, some studies claim that in certain cases
categories are built around prototypes – focal colors (see section 3.3).

The comparison with the prototype is also a useful mechanism for artifi-
cial intelligence based categorization frameworks. The distinguishing criteria
we used for the color categorization model described in chapter 5 are work-
ing on the basis of such comparison: each distinguishing criterion stores a
prototype and reacts to an input with the activity proportional to an expo-
nentially decaying function of the squared distance between the input and the
stored prototype. However, the distance function takes into account statisti-
cal characteristics of the sample set, such as variances of attributes and their
mutual covariances (for details see further in the text or [36]). Unfortunately
there are shortcomings of this approach, e.g. that categories (or categoriza-
tion mechanisms) based on single prototypes are not able to encompass the
composite categories, i.e. those that have multiple different prototypes.
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3.3 Basic color categories

According to the color categorization definition in [37], there are two basic
processes constituting color categorization. The lexical color categorization,
characterized as the division of color sensations into classes corresponding to
the significata of the color words of a particular language, and the perceptual
color categorization, the division of the color sensations into classes by the
perceptual processes of an (any) organism. There are various studies aimed
to find a correlation between these two phenomena.

In 1969 Berlin and Kay [5] suggested that there exists a final set of basic
color terms which describe all percepts in any language. This thesis will
be discussed in more detail in the next chapter. Here we would like to
concentrate on the definition of the basic color terms. A basic color term
should satisfy following criteria:

1. it is monolexemic, i.e. its meaning is not predictable from the meanings
of its parts (e.g. blue vs. greenish blue)

2. generality criterion

• the color referred to is not contained within another color category
(e.g. scarlet is contained within red)

• it is not restricted to a narrow class of objects (e.g. blond is used
only with hair, complexion, and furniture)

3. it is psychologically salient, common and generally known (e.g. yellow
vs. saffron)

In other words, the basic color terms can be considered the smallest set
of simple words with which the speaker can name any color. Basic color
terms name basic color categories. This assumption is in accordance with
the basic-level property from the prototype theory of categorization. Berlin
and Kay claimed that each and every language has at least two maximum
eleven basic color terms. The base for their proposal was a survey in which
they studied not only simple color naming based categorization, but also
the best examples of categories. They realized that the best examples for
color terms used in each examined language cluster together, including the
best examples from English language, so they assumed that color categories
are built around this prototypes, and that additionally these prototypes are
universal for all languages.



26 CHAPTER 3. CATEGORIZATION



Chapter 4

The World Color Survey

In this chapter we introduce the main hypotheses about basic color terms
proposed originally in 1969, and the World Color Survey aimed to asses
these hypotheses against a broader empirical basis. Later on we describe
an experiment reproducing the WCS experiment in Slovak language with a
short overview on its conclusions with emphasis on shortcomings of technical
details of the original method we have encountered while performing the ex-
periment. Subsequently we provide an overview of selected studies regarding
WCS data aimed to verify the original hypotheses. In the end of the section
we introduce our original methods of visualization of the data from WCS,
which will be used in the next chapter.

4.1 The main hypotheses of Berlin and Kay

In Basic Color Terms: Their Universality and Evolution [5] from 1969 Berlin
and Kay proposed two general hypotheses regarding basic color terms and
how they emerge in a language:

1. There is a restricted universal inventory of basic color categories

2. These terms emerge in any language in a constrained order, that can
be interpreted as an evolutionary sequence.

The closed set of basic color categories consists of terms corresponding
approximately to English black, white, red, green, yellow, blue, purple, pink,

27
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brown, orange, and gray. The evolution of basic color terms starts with the
distinction between black and white or more precisely between dark and light
and it is in correspondence with the Opponent process theory of color vision
(described in 2.1). Later research of Eleanor Rosch showed that these first
two terms represent rather categories covering warm (e.g. yellow, orange
and red plus white) and cool colors (black, green, blue) called composite
categories, characteristic with multiple best examples (e.g. warm colors are
both red and yellow with different prototypes) [14].

Berlin and Kay proposed seven evolutionary stages characteristic by the
color categories present in a language of that stage. First stage was the black-
white or dark-light distinction, in the second stage, red emerged. Stage III
contained a term for either green or yellow, stage IV both green and yellow;
stage V added blue and stage VI brown. The last stage added the remaining
of the eleven basic categories (purple, pink, orange, and gray). To this stage
belonged also English and similar western languages.

Although the hypotheses of Berlin and Kay have been substantially con-
firmed by their research, it had certain drawbacks weakening their findings
[17]. First of the important methodological objections against their empirical
generalizations was, that the amount of twenty languages studied experimen-
tally is not sufficiently numerous to justify universal conclusions. Moreover
the number of speakers per language did not exceed three, which leaves us
with roughly 40-60 speakers interviewed. Secondly, the data were obtained
in Berkeley rather than in native communities, not all of the subjects were
skilled speakers of the languages studied, and all of them spoke English as
well as their native (inherited) language.

4.2 The course and methodology of the

WCS

The World Color Survey started in 1976. Its major purpose was to validate,
invalidate or modify the main findings of Berlin and Kay on a broader empir-
ical basis. Data on the basic color term systems of 110 unwritten languages
from all around the world were gathered with mean of 24 speakers per lan-
guage. Once data gathering was completed (circa in 1980), data processing,
quality control, and analysis were undertaken. The online data archive was
published in 2003 [8]. The following text is based on [17] and [7].
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Figure 4.1: The WCS stimulus board

4.2.1 Stimulus materials

Stimulus materials used in both the WCS and Berlin and Kay’s experiment
consisted of 330 color samples from Munsell color system. There were indi-
vidual chips in glass 35 mm slide and full stimulus board with all samples on
it. The stimulus board, in form of a grid (from now on Munsell color grid)
encompasses 320 samples, which represent forty equally spaced Munsell hues
from R2.5 in column 1 to RP10 in column 40, at eight levels of lightness
(Munsell value) in rows arranged from the lightest on top to the darkest
on bottom. The color in each cell corresponds to the maximum available
Munsell Chroma (saturation) for that hue-value combination. In addition a
left-most column displays ten levels of lightness of neutral shade (black, gray,
white). Figure 4.1 illustrates the stimulus board and was taken from [7] .

4.2.2 Experimental setup and methods

Unlike the original experiment of Berlin and Kay, the WCS method consisted
of only two tasks. In the original version of the experiment by Berlin and
Kay speakers were initially asked to elicit all the basic color names of their
language. In the WCS experiment the task of collecting the set of used terms
was carried out by the experimenter. The concept of basic color terms was
explained to cooperating speakers as “the smallest set of simple words with
which the speaker can name any color”. Instructed to respond with short,
simplest names, observers were shown the 330 samples, one by another in a
fixed random order. This was the naming task.

In the latter task, called foci task, subjects were to choose so called focal
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color chips – the samples which they considered to be the best examples of
color terms they used, separately for each term, on the full stimulus board
(described above). Considerable factor influencing results of this task was
that the speakers were allowed to choose as many focal samples as they
wanted. Considering that they had a possibility to select all samples they
previously labeled as forming one category (e.g. ten or twenty samples), the
misunderstanding of the task might cause a full failure in detecting the best
examples. Additionally there was no backward checking whether the samples
selected as best examples of a category were previously classified as members
of that particular category during the naming task.

4.3 Slovak color experiment

In spring 2008 we carried out an imitation of the World Color Survey exper-
iment. We gathered data from 25 speakers, 12 men and 13 women, whose
mother tongue was Slovak and who had no color vision deficiencies. Since
the English language is one of the most popular and nowadays obligatory in
compulsory education it would have been hard to get to monolingual speak-
ers. Therefore we did not count this aspect as significant. Probably all of
our subjects speak English, some of them German or French as well.

With slight modification of the method we gained data of two types,
first consisting only of 11 basic categories proposed by Berlin and Kay and
second including some other color terms considered by our subject as highly
significant. Results of this experiment on one hand confirm the original
hypothesis about eleven basic color terms, and on the other show that the
evolution of basic color terms may continue.

4.3.1 Experimental setup and methods

We used methodology from the WCS experiment with several modifications.
At first, the stimulus material, unlike the original study, consisted of color
samples1 printed on ordinary office paper with an all-purpose office laser
printer. Although we used creation of the samples the original L*a*b* color
values and a professional software, the quality must have been remarkably
different from the original material.

1Rectangles app. 4x3cm glued to app. 5x4cm white thick paper frame.
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The modification of the original method consisted of a two-answer ques-
tioning mechanism. Speakers were urged not only to use general terms, but
also, when they used a word outside Berlin and Kay’s 11 basic color terms
(e.g. turquoise), they had to name also a counterpart for it from this closed
set (e.g. turquoise-green or turquoise-blue). In this case we recorded both
the first answer and the second specifying answer, so the data from this
experiment finally consisted from two answer sets for each speaker.

Before we began the color naming task, we instructed the subjects to
use the shortest and most basic names according to the definition in 3.3.
However, unlike our expectations, the discussion about generality of almost
every newly added color name was necessary. Subjects frequently considered
the names of their favorite colors or terms they use often as generally known
and used. Fortunately, after further explanation of the task, most of them
agreed upon using more general terms.

An important factor influencing the results of this experiment is that
speakers were examined not one by one, but in small groups. They were
instructed that there are no “wrong answers” and that it is important, that
they would react naturally, but the most likely influenced each other in some
cases, especially when undecided about the color name of a particular sample.

4.3.2 Results and discussion

As one result of this experiment, we discovered, that besides the 11 basic
color categories there were several other color terms that appeared quite
often and were considered significant by the subjects. The most frequent
of these were: tyrkysová, kaki, béžová, bordová, and okrová, which roughly
correspond to English: turquoise, khaki, beige, burgundy (or maroon) and
ocher. We will call them outer color categories.

What our results certainly confirm is that Slovak language contains firmly
established 11 basic color terms as proposed by Berlin and Kay for English.
To this also adds a fact that in foci task speakers had some difficulties with
labeling the outer color categories, but not with selecting best examples for
the basic ones. Only one outer category, turquoise, was strong (i.e. frequent)
enough to win in a few color samples.

Figures 4.2 and 4.3 are outputs of the visualization method described in
section 4.5. In short, the map on top of the figure displays the results of
Slovak color naming and foci tasks in the basic (classic) mode. The small
number in the left corner is the identification number of the category, which
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was elicited by most of the speakers. The larger numbers indicate that the
color chip was selected as the best example of the category with the dis-
played serial number. The second map is so called fuzzy visualization, based
on proportional mixtures of colors elicited categories derived from the best
example colors, for more detail see 4.5. Figure 4.2 displays the results of
the experiment with 11 basic color categories and figure 4.3 the results with
outer categories.

The greatest drawback of this experiment is that it was not executed on
exactly the same stimulus material as the original WCS experiment. During
the foci task we encountered that the subjects complained that the color
samples missed particularly representative hues of some colors categories, for
example of red2. This might by caused by the print quality, or more precisely
the conversion from Lab color space to the printer’s color space, but it could
also be a property of the original color values.

We also noted some disadvantages of the method in general. These find-
ings can be useful for a general overview on the WCS experiment as such.
First of all, 330 is a considerably high number of samples. Most of the sub-
jects got bored and tired after only one third of the samples. A significant
portion of them were of very similar color hues. The ten degrees of lightness
for each hue and the proportionality according to the grid, not to perceptual
features of the colors, might cause some samples to look nearly the same.

As we mentioned before, we see a great disadvantage in the option of
choosing unlimited amount of focal colors. During the experiment we realized
that some speakers, when not forced, pick a large number of samples just to
“say something”. The other drawback of this part of the method was that,
when not corrected by the experimenter, subjects have chosen the samples
previously labeled with one term, to be the best examples of another term,
mostly in the cases of the outer categories. This fact accounts for the original
thesis about 11 basic color categories. The inability to react properly to the
outer samples and the misplacement of best examples of other categories into
regions of outer categories confirms that they should not be considered parts
of the basic color categories set.

The most important contribution of our experiment was that we learned
more about the methodology of the WCS experiment in practice. Apart from

2A large number of the subject considered an ideal red a color hue, which can be in
RGB color space coded as (255,0,0). In our printed version of WCS samples there was no
such color.
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Figure 4.2: Visualization of the Slovak color experiment without outer categories

the difficulties with the amount of samples, we found out that the speakers
must be aware of the task they do and be willing to use simple words with
which they can successfully communicate about colors with all speakers of
their language. Here we would like to emphasize that subject should be made
aware of the task during the whole course of the experiment and to be urged
to keep focused only on the task.

4.4 Analyses of the WCS data

There are several studies concerning the WCS data aimed to prove the orig-
inal hypothesis of Berlin and Kay. They are based either on analysis of
clustering of color terms, their distribution and salience, but also on arti-
ficial intelligence simulation or on the human color vision abstraction into
the perceptual color spaces. The oldest way proposed to analyze the WCS
languages was through a special conceptual framework, and on the basis of
preliminary data summary and visualization.

The main aim of these studies was to confirm that the basic color terms
from the WCS data resemble basic color terms of English using the results
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Figure 4.3: Visualization of the Slovak color experiment with outer categories

of the color naming experiments. From these data, items representing color
terms used by individual, but also a whole group, can be extracted in form of
points in color space. For each language a set of such points can be generated
and compared to sets of points representing vocabularies of other languages,
but also a universal set of color points, near which color points from all
languages will fall.

4.4.1 Preliminary processing: the first visualization

Shortly after the WCS data were gathered, data processing, quality control,
and analysis were undertaken for both data entry and data analysis. The
preliminary data summary, presented in [7] and [17] included among the
others the first visualization of the data, created using simple ASCII symbols.

First, the “naming arrays” displayed the responses from the experiment
from both naming and foci task, for each single speaker and for the whole
language. These were aggregated results of the naming task across all speak-
ers at various levels of inter-speaker agreement. The modal agreement array
(100%) displays for each stimulus chip a symbol corresponding to the term
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Figure 4.4: Aggregate naming arrays for 25 Wobé speakers

most often applied to that chip, regardless of how often that was. The 30%
Agreement array displays for each stimulus chip the symbol corresponding
to the term most often applied to that chip only if that term was used for
that chip by at least 30%, similarly for other levels of agreement (i.e. 70%,
40%, etc.).

The “term maps” are created for each term separately. In the map for a
given term, each chip receives a typographical symbol (including blank) of
visual ‘density’ showing the frequency with which speakers named a partic-
ular chip with displayed term. High-agreement symbols tend to occur in the
interior of categories and lower agreement symbols at the edges.

Figures 4.4 and 4.5 (taken from [7]) display aggregate naming arrays
and term maps for a three-term language Wobé, which will be used also for
illustration of our visualization techniques in 4.5. In figure 4.5 symbols “+”,
“#” and “o” represent color terms. Note that at the 40% level of agreement
all 330 chips were named, that is, at least ten speakers gave the modal
response for each of the 330 chips, we can consider Wobé a high consensus
language [7]. In figure 4.5 a perfect agreement of speakers is displayed by
“@” (then gradually decreasing in order: “#”,“+”,“-”, and “.”).

A positive feature of this type of processing is that the terms are imag-
inable on the WCS color grid, but only for those who already can imagine
the stimuli from the experiment. Additionally, there is no possibility to dis-
play more term maps in one image, or to display the other categories elicited
for a single sample than the winning one (the most frequently used). The
visualization method we propose in the next chapter can handle all of these
issues, because it uses colored maps instead of characters, and those are able
to display more information.
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Figure 4.5: Term maps for the three terms of Wobé
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4.4.2 Conceptual framework of evolutionary stages

The conceptual framework proposed by Kay and his colleagues [17] divides
the WCS languages into groups based on the number of color terms they
use. Note, that this significant number of terms is always derived from color
naming task winners, i.e. most frequent names collected from all fields.3

This concept suggests that an evolutionary development of basic color
terms should not be seen as a single process, but as two partially independent
processes: the division of composite categories into the six fundamentals
(black, white, red, green, yellow, and blue) and later the combination of
fundamental categories into derived categories (the other 5 basic color terms).
The first progress finally yielding six primaries is categorized into five stages,
corresponding with systems containing two to six composite or fundamental
categories. Beginning with two basic composite categories, there follow two
partially independent processes: dissolution of the white/warm channel and
dissolution of the black/cool channel.

Through the two-process mechanism Kay and colleagues explain the fact
that a large set of languages developed separate terms for white, red and
yellow (or similar distribution of colors covered by warm category), but did
not developed separated terms for green and blue, or even the whole cool
category. However, this phenomenon still accounts against the originally
proposed opponent process theory basis, stating that the next step of the
progression will be the opponent color (e.g., when a language already has
black, white, red and green, the next stage will be yellow and blue so no
primary will be left without its opposite).

In summary, the stage I. consists of two categories – warm and cool, in
stage II there happens the separation of warm channel to white and red-yellow
in all cases. Differentiation starts in stage III where either decomposition of
cool channel or of the red-yellow category occurs. The latter decomposition
is influenced by the previous distribution. There are three possible pairs of
colors remaining together in this stage, green-blue, black-blue and yellow-
green. In the last stage all six primaries are separate.

3Here we mean a set of terms, from which each term appeared at least once as a most
frequent answer in color naming task. Please note that this winner-take-all-like method,
despite its simplicity and power to generalize, has its real drawbacks, mostly in case of
colors, that are not typical members of a category. It is possible that from 25 speakers, in
13 cases the winner is some category a, and in 12 category b, so a is a winner, but a weak
one.



38 CHAPTER 4. THE WORLD COLOR SURVEY

4.4.3 Statistical evaluation of the WCS data

Reflecting the objections against previous intuitive analyses done by “a hand”
several statistical analyses were provided to proof the original hypotheses of
Berlin and Kay. In most important study [18] Kay and Regier analyzed
whether categories of WCS languages represented in L*a*b* color space4

were more clustered across languages than would be expected by chance.
To represent each color term in each language they first constructed a term
centroid5 for each term by each speaker and then made an average for the
whole language. Consequently they derived the degree of clustering of color
terms across languages using the measure of their dispersion. For each color
term its geometrically nearest term in each language was found and their
distance was added to the dispersion sum (see equation 5.4). Finally the
dispersion of color terms in WCS languages was compared with the dispersion
of randomized data set. Similarly they compared the dispersion of WCS data
with the date from the original study of Berlin and Kay, and the hypothetical
data. In both cases the dispersion was significantly smaller than within the
hypothetical data.

An important aspect of the debate on universality of color categories is the
question of the mechanism of category formation. The question is, whether
the categories are being formed around prototypes, which are universal, or
if they are only constituted by their boundaries and the process in which
they emerge is random. The latter view was posited by [28], where authors
describe their unsuccessful attempt to replicate Rosch’s results [14], in which
the prototypes of color categories appeared to by cognitively privileged (eas-
ier to remember, identify, etc.). As a reaction on this skepticism another
clustering analysis of WCS data [27] showed that the best examples of color
terms (collected as color samples in the second – foci task of the experiment)
tend to cluster together even more than centroids of categories and that on
the basis of these foci the boundaries of categories can be predicted.

In pursue of universal set of color categories in WCS data, Lindsey and
Brown [21] used k-means cluster and concordance analyses. The results
showed that when divided into 2 up to 10 clusters, the average color-naming
patterns of the clusters all gloss easily to single or composite English patterns,
and also that the structures of these k-means clusters unfold in a hierarchi-

4L*a*b* is perceptually uniform so it well resembles human color cognition.
5A centroid is a geometrical center of a shape produced by all color chips named with

the particular term
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cal way similarly to evolutionary scheme described above. Processing of the
WCS data also showed that 8 was the optimal number of WCS chromatic
categories: red, green, yellow-or-orange, blue, purple, brown, pink and grue
(green-blue)6, what is also roughly consistent with the framework proposed
above. In the second part the analysis of concordance in color naming within
WCS languages revealed statistically significantly high concordance across
languages in small regions in color space that agreed well with five of six
primary focal colors of English. Recently [22], Lindsey and Brown addressed
also the problematic of evolution of color terms describing a small amount (3-
6) of universal motifs of color category systems appearing in WCS languages.
Interesting point is that several motifs can be present in one language and
used differently by particular speakers.

4.4.4 Universality of color categories

There are several explanations for the universal tendencies in color naming
and categorization. One is that color categories are universal because they
are salient in the environment and our perceptual system is then predestined
to attend to them [38]. Similarly it can be an evolutionary tuning for the
properties of the daylight [31].

Interesting explanation was provided by Jameson and D’Andrade [16],
who propose that a possible explanation for color naming universalities is
that the developmental order of color names is due to the irregular shape of
the color space. They illustrated the irregularity of the perceptual color space
(described in 2.4.2) using the Munsell color system, depicted on figure 4.6,
as the best example. In this color space there are areas, where hue interacts
with saturation and lightness producing large bumps. These are located at
focal yellow and focal red. The entire blue-green area is depressed (of low
chroma), as is the area below focal yellow. These areas are more salient and
therefore form best examples of color categories. They also assume that a
property of names assigned to the color space at any stage is that they have
to be most informative about color.

In case of two color terms, the most informative categories will be dark/cool
versus light/warm. In correspondence with framework described in 4.4.2, the
region of color space that is most distant from the regions specified by these

6Unfortunately this term refers not only to a composite green and blue category, but
also stands for a color which is a mixture of green and blue. The latter case is severe, but
still present in some WCS languages.
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Figure 4.6: Munsell Color System

two terms is red. Further, after three terms specified it becomes more difficult
to determine which is the next most distant region, because the differences
in distances are smaller and depend in part on how the focal areas are deter-
mined. Expected is either yellow or blue to be the next, followed by green,
purple, pink, orange, brown, and gray. Figure 4.6 depicts a diagrammatic
representation of the Munsell color solid with one quarter removed. The
numbers displayed in boxes represent individual color samples – with various
hue, value and chroma. The circle on the bottom displays various hues, the
value (lightness) increases from bottom (black) to top white and the chroma
(saturation) increases from center to the side. Figure adapted from [15].

The last important factor regarding the universality is the social inter-
action. In their computational model of the formation of color categories,
Steels and Belpaeme [35] and Belpaeme and Bleys [3, 4] showed that in an
artificial system that uses perceptual color space, color categories qualita-
tively similar to those of WCS can emerge. This model, simulations with it
and their results will be described in more detail in section 5.4.
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4.5 World Color Survey Visualization

In this section we present visualization techniques we developed for better
understanding of the WCS data and the results of simulations in the next
chapter. Inspired by the old visualization based on typographical symbols
described in section 4.4.1 the ambition of our conception is to overcome the
limitations of the old one by employing more dimensions to display more
information and to facilitate the imagination of the original data stimulus
material. We project each from the WCS languages onto the Munsell color
grid in three various complementary ways called classic, reliability and fuzzy
visualization. We implemented our visualization methods in a separate soft-
ware utility for visualization of the World Color Survey data as a part of
master thesis Basic Color Categories [26], which is predecessor of this thesis.

Here we will at first define some specific terms that will be used in the
whole section, describe the three types of visualization, and the program for
generating these visualizations in form of JPEG images. We will present an
illustration of a confrontation study of selected outputs with the conceptual
framework from section 4.4.2 and finally discuss the possible usage of this
visualization, its advantages and drawbacks.

4.5.1 Terminology

First, it is important to note that we will interchange freely the terms color
term and color category, despite the fact that they do not mean the same
thing. Generally, the color term is the name of the color category. Unlike
color terms, color categories can be linked with many terms and consequently,
universal. We are aware of the distinction between them, but it makes in no
semantic difference in this case.

A color category will be most of the time described only by its serial
(identification) number, because the lexical name in the case of the WCS
languages plays no role for us. For simplicity we will shorten the serial
number of the category into category number or just category. Additionally
the word color chip refers to one color sample from the WCS experiment
placed in one field of the Munsell color grid.

A winning category for a certain color sample stands for the color term,
which was elicited for a certain color sample most of the times. Similarly
to winner-take-all algorithm in this case the winner may be one of several
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Figure 4.7: The visualization map for Wobé

frequently used terms with advance of small percentage, so it might not be
exactly a dominating color term of that color sample. Still, this method has
already been used in the first visualization of the WCS data described in 4.4.1
and has no equivalently simple and strong counterpart. A focal chip is the
color sample selected as the best example of a certain category. Respectively
a focal category for one chip stands for the serial number of the particular
category of which the chip was selected as focal.

By reliability we mean the percentage of speakers that contributed to the
winning category, i.e. how many speakers of all elicited the winning color
term for a certain chip. This can be also called inter-speaker agreement. Av-
erage reliability is the average of reliability values from all 330 color samples.
The Munsell color grid, as mention before, stands for the full stimulus board
described in 4.2.1.

4.5.2 Classic visualization

This type of visualization, depicted on figure 4.7, is the simplest one. It
projects the winning category numbers on the Munsell color grid with original
colors used in the color naming experiment. The black lines around color
chips represent the borderlines between categories. A small number in the
left-top corner of each field represents the winning category number. The
larger number in the right-bottom corner of some chips stands for the focal
category, i.e. labels the best example chip with the number of category for
which it was considered the best example. The size of the font of this number
represents the agreement of speakers. We include this focal category numbers
only in fields with at least 10% agreement of speakers.
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Figure 4.8: The reliability visualization for Wobé

4.5.3 Reliability visualization

In this type of visualization the color of the chips of color grid depends on
how many speakers contributed to the winning category of that chip. The
weaker agreement, the lower is the saturation of a chip. The new color of
each sample is counted as the proportional mixture of its original color and
gray color from the first column in the same row, to preserve the lightness
of the sample. For example when only 50% of speakers agreed upon calling
a sample s with the winning term t, the color of this chip will be half the
original color and half gray. One drawback of this visualization principle is
that there is no possibility to desaturate the shades of gray, so the leftmost
column does not show the reliability of its category.

Two examples, figures 4.8 and 4.9 display Wobé as a language with one the
highest average inter-speaker agreement from all WCS languages (89%) and
the language with the lowest average inter-speaker agreement, Tifal (42%).
Note that in this case we omitted the numbers of winning categories, just
for simplicity; we kept the focal choices and borderlines. In the case without
category numbers, but focal numbers present, we still include category num-
bers in separated chips, i.e. those which are not surrounded by any samples
of the same category.

4.5.4 Fuzzy visualization

The most interesting and innovative is the fuzzy visualization. In this case
the color chips of the grid no longer represent the original samples, but
visually encode the results of color naming task and in certain sense also the
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Figure 4.9: The reliability visualization for Tifal

foci task. Color for each chip is computed as a weighted mean of elicited
categories represented by the average focal color, i.e. the mean of colors of
all focal chips.

c =
N∑
i=1

rifi, (4.1)

where c is the resulting color7, N is the number of color terms in language,
ri represents the portion of speakers responding with the category i and fi
stands for the averaged focal color counted for the category i globally from
all samples labeled as best examples of it, in a similar proportional way.

For continuity we present the fuzzy visualization for Wobé (figure 4.10).
Note an interesting phenomenon – the focal colors are consistent, but con-
sist only of 3 primaries, even if the winning term area for these categories,
especially number 3 (dark/cool color) covers also blue, green and other hues.
This accounts for the stage theory of color term systems. The second illustra-
tion, figure 4.11, is Chavacano, a language from Philippines with relatively
high average inter-speaker agreement (73%) represents (according to Berlin
and Kay) a fully developed language with 11 winning categories. Note that
distribution of these categories is very similar to those from Slovak language
(see 4.3).

An interesting property of this visualization is that it displays distribution
of all color categories on the grid and with fuzzy borders, since chips, which
are on the edges of categories or with low reliability gain a more neutral

7This is the abstraction independent of color space in which the color is encoded. The
parameter c can either represent a triple of RGB or L*a*b values, or other coordinates.
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color8. On the other hand, the colors that are placed over the grid are
highly related to the foci task responses, so they are prone to the errors and
imperfections of the experimental data. If data contained no focal responses,
prototypes of color categories were counted from the most salient chips (with
high inter-speaker agreement).

It is important to note that the colors on the grid are not equivalent
neither to the real best examples of the categories from the foci task (since
we used an average from all foci chips for a category) nor to the real percepts
of the speakers interviewed. The strength of this visualization method is the
simplicity and intuitiveness of display. Even if the colors on the maps do not
resemble the real percepts, they show the real distribution and salience of
color terms and their best examples9.

A notable drawback of this visualization is that it does not respect the
nature of composite categories. For example the category grue will not appear
green or blue as the speakers would perceive or, more precisely, categorize
in finer distinction, since they have named multiple foci for any composite
categories. In a typical case the focal responses for grue are located in the
“middle” of blue and in the “middle” of green samples (approximately around
F16, G16 and F28, G28 on the grid). However, the visualization will display
grue as a proportional mixture of foci, so it will produce something like teal
or turquoise. On the other hand if the prototypical grue was really a green-
blue color it will account for the hypothesis about the different hues of Hering
primaries mentioned in 2.1. What the fuzzy visualization can show, is which
of these composite sub-categories of basic terms (not yet emerged into two
separate terms) is stronger. Here again, to emphasize the useful properties of
this visualization, we will bring to front the intuitiveness. The colored areas
of the map are intuitively comprehensible and comparable with each other
and also with the real percepts of the observer, so it indirectly suggests the
real number and quality of basic color categories in a language.

8More precisely a mixture of colors of categories on which borderline the chip is. For
example a chip between red and white will be light pink.

9Note that in hypothetical case, if a certain color category had only one focal chip and
the inter-speaker agreement was 100%, in the fuzzy visualization it would be displayed
with the same color value (the same color hue) as in the Munsell color grid.
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Figure 4.10: The fuzzy visualization for Wobé

Figure 4.11: The fuzzy visualization for Chavacano



Chapter 5

Distinguishing criteria based
model of color categorization

In this chapter we present a model of color categorization based on Rosch’s
prototype theory and on the semantics of distinguishing criteria. We tested
this model in two situations; first we created simulated speakers of WCS
languages as an example of supervised learning. In the next step we tested
the distinguishing criteria in unsupervised learning task using multi-agent
simulation mentioned in 4.4.4. The aim of this work is not to prove or
disprove the original hypothesis of Berlin and Kay, but rather to probe the
learning capability of the distinguishing criteria on the real data represented
in a perceptually uniform space.

5.1 Distinguishing criteria

Distinguishing criteria were conceptually proposed by Šefránek [30] and im-
plemented by Takáč [36]. Each distinguishing criterion (DC) functions as a
locally tuned detector reacting to some part of its input space, and represents
one category. It is able to distinguish whether or, more precisely, to what
degree is the presented input a member of a category it represents. A core
of each DC is its prototype – its best example, which is computed from the
inputs it receives during learning (so it learns only from positive examples).
The mechanism of evaluation of inputs after learning is called the activation
function of the criterion and it computes the degree of membership using the

47
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distance of the presented input and the stored prototype.
Distinguishing criteria have these important properties:

1. Learnability: they can be incrementally and continually constructed
from an incoming sequence of examples. Note that unlike classic arti-
ficial neural networks, the distinguishing criteria are able to function
even with a smallest amount of presented examples.

2. Identification: each criterion can express for each given input its
degree of membership in a category represented by given criterion. In
other words, the distinguishing criterion can express if the given input
is an instance of the concept, which it represents. The value of activity
of the DC for an input is expressed by a real number from [0, 1]. The
closer it is to 1, the more the input belongs to the category, if it is 1,
the input is identical with the prototype of the category.

3. Auto-associativity: even if the input is noisy or incomplete, the DC
returns the best example (prototype) of the category and completes the
missing aspects of the input when it is needed for further evaluation.

The second property of the distinguishing criteria exists due to their char-
acter of locally tuned detectors, which can be intuitively represented by con-
ceptual spaces [10]. A conceptual space is a something like a geometric space,
but with dimensions corresponding to the attributes of represented objects.
These attributes can be of various natures (metric, psychological, etc.) and
are organized in domains. A particular object is represented as a point (a
vector of coordinates) in a subspace of one or several domains. In our case
of color categories we will have no difficulties with the accordance of the
domains of compared objects, because inputs will be always represented as
points in L*a*b* color space, which is only three-dimensional and has Eu-
clidean metric.

It is important that the natural categories are represented by convex
regions in the space. If two points represent objects that are good examples
of a category, then any point between them must also be a good example of
that category. Thus the best examples should be situated in the geometric
centers of these regions. Figure 5.1 illustrates the receptive field (with the
threshold of 0.1) of a 2-dimensional locally tuned detector, and was taken
from [36].
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Figure 5.1: Illustration of a locally tuned detector

The implementation of the DC we use computes the prototype as an
average of all inputs. Each color category c is represented by a locally tuned
detector. The degree of membership of an input ~x presented to the DC in
form of one point in L*a*b* color space (a three-dimensional vector) will
be computed as an exponentially decaying function of the distance from the
prototype ~p:

r~p(~x) = exp (−k.d(~p, ~x)), (5.1)

where k is some positive constant, and d is the metric used.
We used the covariance based distinguishing criteria, which track down

the distribution of inputs in the covariance matrix sigma and compute the
activation for an input using the Mahalanobis distance:

d2
Σ−1(~p, ~x) = (~x− ~p)TΣ−1(~x− ~p), (5.2)

where ~p and ~x are column vectors and Σ−1 is the inverse of the covariance
matrix Σ of the sample set used for training. For more detailed description
see [36].

5.2 Prototype based model of color

categorization

Our model of color categorization draws on Rosch’s prototype theory. The
color categories are formed around their prototypes. They are embodied
through distinguishing criteria operating on three-dimensional L*a*b* color
space, which is known to well resemble human color perception system (see
2.4). In case of supervised learning with data from WCS, we introduce addi-
tional factor influencing learning and categorizing colors - the cultural factor.



50 CHAPTER 5. DC BASED MODEL OF COLOR CATEGORIZATION

Each distinguishing criterion representing one term in particular language is
coupled with reliability parameter, which then plays role in evaluation of the
activation function. In this chapter we provide two examples of usage of our
model in color categorization tasks, supervised and unsupervised, setting and
results of simulations and the discussion.

5.3 Supervised learning with the WCS data

We implemented the simulation in Java using the distinguishing criteria
framework developed by Takáč [36]. For our purposes we processed the data
from [8] to a suitable form. For each of the 110 WCS languages we created
a simulated idealized speaker, who learned to categorize and name colors
from all speakers of that language. We can imagine this process as if each
speaker from particular language came to our simulated speaker and pointed
to each of the 330 samples and named the color. The simulated speaker is
then “examined” from all or some of the color samples and his repertoire of
color categories compared to repertoire summarized from all the speakers.

In the process of learning our simulated speaker (agent) is firstly endowed
with “blank” distinguishing criteria for all terms named in one language.
During the training each DC receives color values of chips (color samples)
named with the represented term. So each DC learns only from positive
examples of the certain color category. The size of the whole dataset is
approximately 330 x 25 = 8250 categorical responses, which, from the per-
spective of our agent, have a form: #: {L, a, b}, where # represents the
serial number of the category assigned to a color sample by one speaker and
L, a, b are values of the color coordinates of that sample.

Since the nature of DC allows them to produce quite good judgments
only after few presentations from training set, and since the data in many
cases include noisy values 1, the agents also keeps track about the frequency
of use for each term. The higher this number is, the more significant is the
term for the language. We will label this “frequency” factor fC(s) (frequency

1Probably not all experiments from the WCS were successful, possibly due to poor
understanding of instructions. This phenomenon is supported by the fact, that in some
languages the number of terms named and terms that were agreed upon by majority of
speakers differ significantly. Largest difference is in language Mampruli, 79 named to 8
winning terms.
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of C for sample s2) and use it in evaluation of the winning categories for test
samples.

5.3.1 Methods of evaluation

We provide two main methods of evaluation inspired by the preliminary and
general methods of processing of the WCS data (see 4.4). In this section we
will use terminology from 4.5.

Winning categories

First we evaluated the winning categories. For each of the 330 samples we
computed the winning category from the existing data, it is the serial number
of the term, which was elicited for the particular sample by the largest number
of speakers, as in the winner-take-all mechanism.

Evaluating the responses of the agent we compared the activity of the
distinguishing criteria multiplied by the reliability factor fC(s). The response
of each color category (term) C to color sample s, which has color value ~x
then is:

C(~x) = r~p(~x).fC(s), (5.3)

As in the case of data evaluation, we computed the winning categories
from the simulated agent in a similar winner-take-all fashion. Finally we
compared the winners of the agent and of all speakers of the language, chip
by chip, and in case of match we added one, otherwise zero. The output
for each language was an average of these matches and non-matches for all
samples.

Vectors of activity

Reflecting the objection against generalization nature of winning categories
evaluation we introduced a more thorough way of comparison, namely using
vectors of activity. An activity vector can represent the distribution of an-
swers of subjects from the experiment as well the distribution of activations
of the trained distinguishing criteria.

For each of the 330 samples we first created a vector of numbers of speak-
ers that used each term from the language’s vocabulary, and another vector

2s is a number from [1, 330] and represents the serial number of sample presented
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of responses of color categories of the agent. We normed both vectors us-
ing the Euclidean norm3, and then compared them as two unit vectors in
n-dimensional hyper sphere (where n represents the number of elicited cat-
egories). In two-dimensional case it would be two unit vectors on the unit
circle.

For the comparison of the two vectors we used the scalar product (dot
product), which directly corresponds to the cosine of the angle between these
two vectors (since we have unit vectors, their size will not count). If the scalar
product is 1, they are identical; if it is -1, they are opposite to each other.
For the summary comparison with other languages we recorded the average
value of scalar products of normed activity vectors for all samples.

Dispersion

The last method for evaluation we took from [18]. Namely we counted the
dispersion, in pursue of evaluation of clusterization, among WCS data and
our simulated agents from all languages. If the representations of color terms
in WCS languages tend to cluster together, then the areas, to which these
representations from all languages fall can be considered the universal ba-
sic color categories (for detailed explanation see previous chapter, especially
section 4.4.3).

For each color term c from each language we computed its geometric
center as one point in CIEL*a*b* space. These centroids were first computed
from all responses of each speaker from a particular language. Then centroids
for all terms elicited in that language were computed from the centroids of
its speakers. We compared each color term centroid c in each language l
with all other categories in every other language l∗, and found the centroid
c∗ with the shortest Euclidean distance to c. We computed the dispersion D
as a sum of these shortest distances between color centroids (equation from
[18]):

D =
∑

l,l∗∈WCS

∑
c∈l

min
c∗∈l∗

distance(c, c∗) (5.4)

Subsequently we used the same mechanism for evaluating the dispersion of
color categories of all our simulated agents (each agent “speaking” a different

3Each component is divided by the size of the vector, which is the square root of the
sum of squares of each component
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Table 5.1: Evaluation of winning categories

k mean maximum minimum
– 89.854% 97.879% 54.545%
2 89.344% 97.576% 54.242%
3 89.518% 97.576% 54.545%
5 89.532% 97.273% 54.545%

WCS language). With use of established fact from [18], that data from
WCS cluster together do a degree greater than chance we expected that the
dispersion among the lower number of “individuals” (simulated agents) will
be smaller than for all subjects from the WCS.

5.3.2 Results and discussion

For sufficient extent of testing we used in both methods of evaluation in
addition to the whole dataset also the k-folded cross-validation with different
values of k, namely k = [2, 3, 5]. We divided the dataset by chips into k sets
and ran k simulations always using one set for testing and the others for
training. Since divided the datasets by particular chips, not by speakers,
the simulated agent was always trained on some samples and then presented
with new color hues during testing. When computing the overall results we
first evaluated simulations for each language alone and then computed means
throughout all languages for different values of k.

The results (averages from all WCS languages) are displayed in tables 5.1
and 5.2. High percents of agreement (around 90%) in winning categories and
cosines of the activity vectors very close 1 (around 0.96), point to the success
of the simulation. Especially the small difference in results from different val-
ues k in cross-validation show that the model is in this case stable, successful
and robust. Lastly, the dispersion was, as we expected, significantly smaller
than dispersion of the WCS data (around 2-3 times). Following figures de-
picts color centroids for WCS data (fig. 5.2) and simulation results (fig. 5.3)
plotted on the WCS grid (stretched to enable a 3D view). Our results proof
that the distinguishing criteria are able to successfully generalize the input
data.
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Table 5.2: Evaluation of activity vectors

k mean maximum minimum
– 0.96700 0.98965 0.78902
2 0.96389 0.98761 0.78451
3 0.96525 0.98877 0.78620
5 0.96522 0.98911 0.78517

Figure 5.2: A histogram of color centroids computed from WCS data

Figure 5.3: A histogram of color centroids computed from simulated agents



5.3. SUPERVISED LEARNING WITH THE WCS DATA 55

5.3.3 Results visually

To provide better overview on the results from the simulations we dedicated
this section to visual depiction of selected languages and their simulated
speakers. We used our visualization methods from 4.5, specifically the fuzzy
visualization, which displays not only borders around categories (evaluated
on the basis of winning categories) and the best examples, but also projects
the color naming results in form of weighted color mixtures. Since the results
were quite similar both in cases with and without cross-validation, we used
results from simulations where agents were trained and tested on the whole
data set.

The fuzzy visualizations from the data were created according to algo-
rithm described in 4.5. In the case of visualizing the simulation results the
prototypes were taken directly from the distinguishing criteria, unlike the
case of visualization created from the data (the upper map), where the best
examples were taken from the second task of the experiment (see 4.2.2). The
color of each chip is a sum of the color values of prototypes of all categories
(points in L*a*b* space), each multiplied by the normed value of activation
of the category for the given chip4. The black borders represent boundaries
between winning categories for the chips. The images contain two maps, the
upper one created from the data and the second one from the simulation
results. Note the little black numbers in the first image, which represent the
serial number of categories and the chips labeled with them the best examples
elicited by the subjects of the experiment (evaluated in winner-take-all-like
fashion).

The examples we selected are depicted on figures 5.4, 5.5, 5.6, and 5.7.
Figure 5.4 depicts our already well known example, Wobé. As we already
mentioned, Wobé is a high consensus language (high percentage of inter-
speaker agreement) with only three basic color terms and six elicited terms.
The simulation data from this language produce a slightly different image,
with green, orange and something grayish, in comparison to visualization of
the real data, where only red, white and black can be found. This color shift
emerges due to the learning mechanism of the distinguishing criteria. Since
the prototype is computed from all examples presented to a DC, the wide
category containing not only black and brown, but also bluish and greenish

4Similarly to fuzzy visualization from data in 4.5, the color of a given chip is a mixture
proportional to the activations of distinguishing criteria, if the activation is high, it will
contribute significantly to the resulting color.
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Figure 5.4: The fuzzy visualization of data and simulation results for Wobé

hues will gain a blend of these colors, which is not similar to best examples of
the category chosen by the subjects in the experiment. However, the 97.88%
match of the winning terms and cosine of activity vectors of 0.99 confirms,
that the categorization ability of the DC remains intact. In the next example,
figure 5.5 we present a low consensus language, Maring from Papua New
Guinea with inter-speaker agreement around 49%, 33 elicited and 7 winning
terms. Note an interesting phenomenon produced by the simulation: there
is a significantly lower amount of chips located inside some categories, but
belonging to other categories. From this point of view we can expect, that
our model does not only fit the original data, but also “denoises” them to
some extend.

The latter two examples are presented in relation to the hypotheses of
Berlin and Kay from previous chapter. The first one, Ticuna (Peru) on
figure 5.6 is a language, in which green and blue hues are named together
with one term. Since the prototypes are both from green and blue hues, this
term names a composite category (we call this color grue). In this case the
winning DC acquires a blend of green and blue as a prototype, but is not
able to model the composedness of the category. This language is also a case
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Figure 5.5: The fuzzy visualization of data and simulation results for Maring

in agreement with the evolutionary framework by Kay and colleagues [17]
(see 4.4.2). Nevertheless, there are cases that do not fall into any schemes
in this framework. One of such languages is Chayahuita (also from Peru) on
figure 5.7, which also has an overall term that covers what we call green and
blue, but has best examples only in blue. This is the case where label grue
does not fit for the category. Chayahuita violates the proposed framework
also in other aspects, for instance from the visualization we can clearly see
that the speakers of this language already distinguish pink from red, which
should not happen before the division of green and blue.

5.3.4 Slovak language simulation

The last experiment with supervised learning were the simulations with the
data from the Slovak experiment 4.3. Since we collected two sets of data,
with and without the six outer color categories5, we created two different
simulations.

5The colors which were successfully recognized among significant amount of speakers
other than 11 basic categories proposed by Berlin and Kay, more in 4.3
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Figure 5.6: The fuzzy visualization of data and simulation results for Ticuna

Figure 5.7: The fuzzy visualization of data and simulation results for Chayahuita
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The design was the same as in simulations with the WCS data, also intro-
ducing the reliability factor. The results were quite similar to the WCS re-
sults. The winning categories matched at 96.06% for data containing only 11
categories and at 90.00%, when the outer categories were included. Cosines
of activity vectors were more similar, 0.985 with 11 and 0.974 with all 14
categories. The relatively big difference in winning categories results can
be explained, but also explain the nature of the data. Since the outer cat-
egories were not used by all subjects in the experiment6, their presence in
the data introduces a noise similar to noise in the WCS data (the elicited
terms that were not winning for any samples). Since our model generates the
while repertoire of “blank” categories according to all elicited terms, we can
conclude that the inter-speaker agreement and the number of elicited terms
influence the performance of our model. The results of these simulations
are displayed on figure 5.8 (11 categories) and figure 5.9 (outer categories).
These figures were generated in the same way as figures in 5.3.3.

6Only one of the outer categories can be considered to be added to 11 basic color terms.
It is the turquoise located between green and blue. The other two gained in the winner-
take-all competition only one or zero chips. This turquoise dominance can be explained
as a culturally valid contribution to basic color terms, but also can be caused by the
properties of the printed samples, which have hues only similar, but not identical to those
from WCS survey
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Figure 5.8: Fuzzy visualization of results for Slovak (11 terms)

Figure 5.9: Fuzzy visualization of results for Slovak (all terms)
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5.4 Simulations with unsupervised learning

In this section we verify the abilities of our distinguishing criteria based
model in simulations with unsupervised learning, namely with the semantics
of language games developed by Steels [33] and implemented by Belpaeme [2],
resulting into influential research in field of color categorization [35]. As we
mentioned in 4.4.4 Belpaeme and Bleys [3, 4] showed, using the semantics of
language games, that a group of simulated agents able to discriminate colors
and communicate will develop a shared lexicon of color names representing
basic color categories qualitatively similar to basic color categories from the
WCS. We will first briefly describe the language games, then the specific
simulations and results and lastly our simulations with the games and their
results. We will compare the original mechanism for representing the color
categories, the adaptive networks with our model based on the distinguishing
criteria.

5.4.1 Language games

The language games used to model the emergence of color categories in simu-
lated agents were originally developed by Steels [33] and implemented in the
famous Talking head experiment and other examples (for conclusive overview
see [34]). In our case of color naming there are two games, the discrimination
game and the guessing game, of which only the latter is actually a true lan-
guage game. The purpose of the discrimination game is to gain the ability
to discriminate colors and form the repertoire of the internal representations
of different color categories sufficient enough to distinguish one color from
other, notably different colors7. The guessing game, which implies having
the ability to discriminate, is the mechanism responsible for consolidation of
color vocabulary among agents.

The discrimination game

The discrimination game is played by each agent alone. In the course of the
game an agent first views a small set of color values, which must be sufficiently
distant from each other in the color space used within the agent’s perceptual

7There must be some minimal distance between their point representations in percep-
tual color space, so they would present perceptually differentiable color hues
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system. This set is called the context and is randomly chosen from a larger
set of color values (training data). The agent randomly chooses one sample
from the context, the topic, and tries to discriminate it from the context.
First, the agent confronts the topic and the remainder of the context with
its internal repertoire of color categories labeled with serial numbers. The
winning category, chosen similarly to our simulation in a winner-take-all-like
mechanism is chosen for each sample.

The topic is successfully discriminated from the context only when the
serial number of its winning category is different than other categories iden-
tified for the remainder of the context. If the game fails, in most cases the
agent adds a new color category to its repertoire. In the course of the simula-
tion an agent starts as a tabula rasa, the only way it acquires new meanings
(categories) is through the discrimination game. This is why we call this
method of learning unsupervised. The discrimination game is schematically
depicted on figure 5.10.

Figure 5.10: Illustration of a successful discrimination game

The guessing game

This game is more complicated than the first one and involves two agents. It
implies that agents first play discrimination games until they are successful
enough in perceptual categorization to begin the interaction. In the begin-
ning of each guessing game the two players are randomly chosen from the
population and assigned roles of the speaker and the hearer. The first move
belongs to the agent in the role of speaker, which chooses the topic and tries
to discriminate it from the context. If the topic is identified successfully, the
speaker searches for a term with the strongest association to the winning cat-
egory and utters it. If there is none a random new term is generated, assigned
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to the category and uttered. The hearer receives the word and looks it up
in its vocabulary. If the term is present, the hearer assigns categories to all
samples in the context. If there is a sample, that can be uniquely identified
by the category represented by the processed word, the hearer “points” to
it. If the hearer points to the same category the speaker “has had in mind”,
the guessing game is successful and the speaker’s vocabulary reinforced.

The guessing game can fail in many aspects. Both the speaker and the
hearer can fail in the discrimination game. If this failure happens to the
speaker, the game is terminated immediately and only the speaker learns
the new category, but his vocabulary and the mapping to the categories
remain intact. Similarly, no learning of words occurs if the hearer fails to
discriminate. If the color sample chosen by the hearer is different from the
speaker’s topic, the hearer’s lexicon (the association between term and color
category) is shifted towards the speaker’s lexicon. The guessing game is
schematically depicted on figure 5.11.

Figure 5.11: Illustration of a successful guessing game

5.4.2 Color naming models based on language games

The structure of an agent in these models is very similar to our model.
Each agent is endowed with perception in CIEL*a*b* color space (which is
perceptually uniform), has an internal repertoire of color categories, which
is private to the agent, the lexicon of words and mapping between colors
and words, and the ability to play the discrimination and the guessing game.
The mapping between categories and words can be of many-to-many type to
allow synonymy and homonymy during the learning.

In [2] and [35] color categories are represented using the so called adaptive
networks. An adaptive network is a classic feed-forward neural network built
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from RBF (radial basis function) neurons. Interestingly, these neurons do not
adapt, they are only initialized to a particular prototype (color value). The
RBF neurons have a fixed width8 of the regional extent around the prototype
determined by a normalized Gaussian function (the activation function of the
network). The only parameters adapted during the learning are the weights
from the RBF neurons to the summing unit. The activation of one adaptive
network (equation 5.7) is computed as a sum of activations of the RBF units
(equation 5.5) multiplied by their weights (from [0, 1]).

zj(~x) = e
− 1

2

∑N
i=1

(
xi−mji
σi

)2
, (5.5)

where zj is the activation of RBF unit z for the input ~x and m is the prototype
of this unit and σ is the width of the Gaussian.

yk(~x) =
∑

wjzj(~x), (5.6)

where yk is the activation of the adaptive network k for the input ~x and zjs
are the activations of the RBF neurons in this adaptive network.

In the second version of these simulations, Belpaeme and Bleys [3, 4] use
much simpler representations. One color category is embodied by a single
point in color space (a prototype) and the activation computed from the
distance of the input from the prototype.

In the experiments with these culturally based models were executed with
different data sets. The first simulations with adaptive networks [2, 35] used
a dataset of color values from Munsell color system (which is proprietary),
and unfortunately was not freely available. On the other hand, data from
latter two studies [3, 4] are freely available online and were used also in our
simulations. They contain two different sets, with ten thousands color values
each, extracted from digital photographs of either urban scenes or nature.
Populations of agents typically contained 10 agents that played thousands of
games (according to the task and environment constrains). Regarding the
learning, the first design included both cultural and genetic evolution of color
categories. The latter cases were aimed on cultural evolution and comparison
with color categories in the real world. We describe the learning mechanism
in more detail in the next section.

In conclusion, Steels and Belpaeme [35] have shown that the coupling of
category formation with verbal communication leads to the coordination of

8This width, σ, is usually set to 10.
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perceptually grounded categories, even if there is no statistical structure in
the data (cf. section 4.4.4). In addition Belpaeme and Bleys [3] conclude that
the cultural acquisition of color categories together with mild constraints on
the perception and categorical representation result in categories that have
a distribution similar to human color categories.

5.4.3 Language games simulations with adaptive
networks and distinguishing criteria

In this section we present a comparison of the performance of the distinguish-
ing criteria with the adaptive networks (AN). To gain most conclusive results,
we first implemented the model from [2] and [35], and then adapted it for
the distinguishing criteria. First we implemented the discrimination game
with both representations and compared the results. In the next step we
implemented also the guessing game, unfortunately without notable success
(see below).

Implementing the model with distinguishing criteria we simply used the
same mechanism for discrimination game and replaced the adaptive networks
with the distinguishing criteria. However, we had to modify the learning
mechanism, to fit the properties of the distinguishing criteria. In the original
model, learning depends on the outcome of the game. When the discrimina-
tion game is successful, the weights of the AN that identified the topic are
updated according to the following equation:

∆wi = αzi(x), (5.7)

where ∆wi is the contribution to the weight, α is the learning rate (usually
set to 1.0), and zi(x) is the activation of the AN for the input x.

If the game fails, there are two cases of learning. If the cumulative dis-
criminative success of an agent is above a predefined threshold (usually 95%),
only a new locally reactive unit is added to the adaptive net representing the
best matching (winning) category for the topic. Otherwise the learning is
much more progressive: if the discriminative success is below the threshold,
a new AN is added to the agent’s repertoire with the color value of the topic
as the prototype.

The same principles apply for the DC. If the game fails, a new blank
DC is added and the topic is presented to it. In this moment the criterion’s
prototype is the color value of the topic. Unlike the AN, the DC consist
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of only one locally tuned detector, so the learning must be different in the
“above threshold scenario”. Since the occurrence of such cases is limited
to the end of the game or none (see results in the following paragraph),
we decided to apply the same mechanism for this settling phase as in case
success. If the game is successful, the winning DC is updated with the value
of the topic (for more details on learning mechanism of the DC see Appendix
C in [36]).

To stop an uncontrolled growth of the color category repertoire a deleting
mechanism must be implemented. In case of the AN, it is implemented as
a continual small decay of the weights. If all weights in an AN are smaller
than a predefined threshold, the AN is removed. To produce similar effect
with the DC we evaluated their usage, more precisely, the number of games
in which they were not used, and according to this value and an arbitrary
threshold we deleted the unused criteria.

For evaluation of the discrimination games we adopted measures from
[2, 35], specifically the average discrimination success of the population of
agents. The success of one agent is expressed as a moving average of results
of discrimination games it played, with size of the window typically of 20. In
other words, it is a percentage of successful cases to failures.

Simulations with discrimination games

We executed 100 simulations with sole discrimination games for both adap-
tive networks and distinguishing criteria implementations. In each simulation
a populations of 10 agents played 1000 games (as in [2]). In each game one of
the agents was chosen randomly and played the discrimination game alone.
We used the dataset with 10000 color values from nature photographs9. The
size of the context was set to 3. Figure 5.12 show the average discriminative
success for an example simulation with AN, in black, and one with DC, in
red. The horizontal axis displays simulation numbers and the vertical the
average discriminating success.

The average discrimination success was for the AN simulations 95,095%
and for the DC simulations 92,539%. These results are quite close to results
from the original studies. Taken into consideration the difference in sizes of
the datasets used in our and original study, the slightly worse results (not
reaching 100%) are acceptable. We conclude that the categorization ability

9In this aspect our simulations differ with the original study, where values from Munsell
color system were used.
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Figure 5.12: The discriminative success in simulations with AN (black) and DC
(red)

of the distinguishing criteria is comparable to the ability of the adaptive net-
works, and that they are suitable for tasks requiring unsupervised learning.

Simulations with guessing games

Regarding the guessing games, we implemented the model according to spec-
ification in [2] and ran simulations with 10 agents, 5000 games and the nature
data. Unfortunately even the AN simulation results were quite different from
the original results. They differed not only in the final amounts of internal
color categories in agents, in average amount of words in the shared lexicons,
and communicative success of the agents, but also in the course of the simu-
lations. Unlike we expected, the discriminative success did not rise gradually
with the course of the simulation, but culminated around 85%. It seems that
it was caused by some kind of overlearning.

These discrepancies might have occurred due to incompleteness of our
implementation. Since the guessing game is more complex than the discrim-
ination game, there might be some specific parameters not included in the
description of the model, for instance a stopping criterion for learning of
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color categories, or some new parameters in the guessing game, etc. The
performance of the distinguishing criteria was in this case similar to the per-
formance of the adaptive networks. However, the failure to replicate the
simulation correctly prevents us from drawing any significant conclusions
from this part of our research.

Results of discrimination games visually

In this section we present visual examples of the categories learned by the
agents in the discrimination game. The motivation is, similarly to section
5.3.3, to illustrate simulated perceptual categories of the agents and their
similarity to color categories (labeled by basic color terms) in languages of
the WCS. To gain visualization comparable to visualization of the WCS
data we first created two groups of artificial agents trained in discrimination
games, as described in the previous section. After training, we presented the
agents with color samples from the WCS and recorded the winning categories
for each sample. Then we created the fuzzy visualization of the results (see
4.5).

Figures 5.13 and 5.14 display selected agents of both the AN and the DC
type. Note that the color categories are slightly different from the human
color categories. Especially some of the basic opponent hues (red, green, blue,
yellow, black, and white, see 2.1) are missing, what is not in accordance with
the evolutionary framework described in 4.4.2. This is probably caused by the
composition of hues the agents encounter. The dominance of these primaries
in human color categorization might be as well caused by the environment
and properties of the daylight as we mentioned in 4.4.4.
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Figure 5.13: Example of two AN agents categorizing WCS samples

Figure 5.14: Example of two DC agents categorizing WCS samples
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Chapter 6

Conclusion

In the first part of this thesis we provided an essential theoretical back-
ground for understanding the phenomena involved in color categorization –
color perception and categorization in general. We presented a definition of
basic color terms, which are labels for the basic color categories. They con-
stitute a small set of simple words with which all speakers of a language can
consistently name any color. Consequently we described the main hypothe-
ses about them, which state that each language has at least 2 and at most
11 basic color terms and that the perceptual categories connected with these
terms are universal and correspond to 11 basic color terms of English (black,
white, red, green, yellow, blue, purple, pink, brown, orange, and gray). The
first six of these terms are so-called Hering primaries that are involved in op-
ponent processes underlying the color perception and are expected to emerge
first in any language.

Various clustering analyzes of the data from the World Color Survey con-
firmed that the perceptual correlates of the color terms from the WCS data
resemble basic color terms of English. Similarly, the results of our simple
color experiment confirmed that Slovak language contains firmly established
11 basic color categories that can be directly translated to English terms.
The most important contribution of our experiment was that we learned
more about the methodology of the WCS experiment in practice. The cru-
cial factor in this experiment is that the subjects have to be fully aware of the
task to use only basic terms throughout the whole experiment. The insuffi-
ciency of instructions might have been a cause of discrepancies in some of the
WCS data. Regarding our visualization methods we would like to emphasize
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the innovative fuzzy visualization, which uses proportional color mixtures to
display not only the winning color terms, but also the whole distribution of
the responses of subjects.

The core of this thesis is our model of color categorization based on
Rosch’s prototype theory and on the semantics of distinguishing criteria.
We tested this model in two steps. Firstly we experimented with the WCS
data. For each of the WCS languages we created an idealized simulated
speaker, who learned how to categorize and name colors from all responses
of all subjects from the experiment. We evaluated these simulations using the
pre-processed data from WCS. We compared the responses of the simulated
speakers and real speakers on the basis of winning categories and normed vec-
tors of distributions of categorical responses. For sufficient extent of testing
we used also the k-folded cross-validation. Results of the simulations con-
firm that that the distinguishing criteria are able to successfully generalize
the input data.

In the next step we tested the distinguishing criteria in unsupervised
learning task using multi-agent simulation of color categorization. We com-
pared the performance of the distinguishing criteria with the adaptive net-
works used in the original simulation with the result, that the categorization
ability of the distinguishing criteria is comparable to the ability of the adap-
tive networks, and that they are suitable for tasks requiring unsupervised
learning. In general, we can conclude that the distinguishing criteria are
suitable for the modeling of color categorization.
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[36] M. Takáč. Autonomous construction of ecologically and socially relevant
semantics. Cognitive Systems Research, 9(4):293–311, 2008.

[37] R.A. Wilson, F.C. Keil, and Massachusetts Institute of Technology. The
MIT encyclopedia of the cognitive sciences. MIT Press, 1999.



76 BIBLIOGRAPHY

[38] S.N. Yendrikhovskij. Computing color categories from statistics of natu-
ral images: Color Imaging Science. The Journal of imaging science and
technology, 45(5):409–417, 2001.


