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ABSTRACT
Artificial neural networks, in particular the deep end-to-end archi-
tectures trained by error backpropagation (BP), are currently the
topmost used learning systems. However, learning in such systems
is only loosely inspired by the actual neural mechanisms. Algo-
rithms based on local activation differences were designed as a
biologically plausible alternative to BP. We propose Universal Bidi-
rectional Activation-based Learning, a novel neural model which
enhances the contrastive Hebbian learning rule with special hyper-
parameters yielding a single learning rule that can performmultiple
ways of learning, similarly to what is assumed about learning in
the brain. Unlike others, our model consists of mutually dependent,
yet separate weight matrices for different directions of activation
propagation. We show that UBAL can learn different tasks (such
as pattern retrieval, denoising, or classification) with different se-
tups of the learning hyperparameters. We also demonstrate the
performance of our algorithm on a machine learning benchmark
(MNIST). The experimental results presented in this paper confirm
that UBAL is comparable with a basic version BP-trained multilayer
network and the related biologically-motivated models.
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1 INTRODUCTION
From its origin in 1980’s until present boom of the deep learning
architectures, the error backpropagation (BP) of Rumelhart et al.
[16] has been the most prominent supervised learning algorithm
for artificial neural networks (ANN). The cost paid for efficiency
of the BP is it’s biological implausibility [3]. Unlike the BP, learn-
ing in the brain works locally, based on the firing of the pre- and
postsynaptic neurons and the upstream or downstream weights
bare no knowledge of the other connections in the network. In
the end-to-end BP-trained architectures, the information from the
output is transferred backwards on the predefined “route” so each
weight has some information about all preceding connections. This
is called the weight transport problem [6]. Furthermore, activation
in biological neural networks never propagates fully bidirection-
ally, i.e. through exactly the same connection weights. A more
biologically plausible neural model should be based on both local
activation differences and distinct connectivity for forward and
backward activation propagation.

1.1 Error backpropagation alternatives
In 1996 O’Reilly proposed the Generalized Recirculation (GeneRec)
as a biologically plausible alternative to error back-propagation.
GeneRec has its roots in the alternative work of Hinton published
only shortly after the BP, namely the recirculation algorithm for
auto-encoders [8] and the Contrastive Hebbian learning used in re-
stricted Boltzmann machines [7]. The recirculation has been shown
to approximate the gradient descent in particular conditions [8]. It
is also possible to realize the error backpropagation via contrastive
Hebbian learning [18].
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In the standard BP algorithm, the network is firstly given an
input in the form of activation of neurons on the input layer which
propagates through the network and produces an estimate on the
output layer (forward pass). Subsequently, the error – the difference
between the desired and estimated values on the output layer – is
propagated through the weights of the network in the backward
direction (backward pass). In recirculation, CHL and GeneRec, in-
stead of propagating the error value, the desired value is “clamped”
on the output layer and the activation is propagated in the back-
ward direction. The weights are then updated locally, based on the
difference between the forward (minus phase) and the backward ac-
tivation pass (plus phase). The CHL learning rule can be expressed
as:

∆W pq = λ (p+q+ − p−q−) (1)
and the GeneRec learning rule as:

∆W pq = λ p−(q+ − q−), (2)

where p denotes the presynaptic and q the postsynaptic layer acti-
vation,W pq is the matrix of synaptic weights and λ is the learning
rate.

The topic of biologically plausible learning is gaining popularity
in the current works, especially in prospective connection to Deep
Learning. Bengio and colleagues [1] proposed a variational EM
algorithm which can be interpreted as the training of a denoising
autoencoder without the need of propagating error derivatives.
Scellier and Bengio [17] proposed the Equilibrium Propagation
(EP) algorithm, which works based on the differences between
activation phases, but additionally also implements the so-called
“weak clamping”. Lee and colleagues [10] proposed the difference
target propagation (DTP) to improve the original autoencoders and
reached the performance of BP in deep networks. The feedback
alignment (FA) model of Lillicrap [11] demonstrates that there
is no need for symmetric weight connections for propagation of
errors. It is a δ -rule similar to BP but, instead of theW ⊺, it uses
random feedback weights B to deliver teaching signals. Inspired
by the FA model and the predictive coding theory, Ororbia and
Mali [14] introduced Local Representation Alignment (LRA-E) that
outperforms its predecessors, and similar models, including the EP
and the standard BP.

2 OUR MODEL
In continuation of our previous work [4, 5, 12] we present UBAL, a
Universal Bidirectional Activation-based Learning algorithm, which
can be used for different kinds of tasks and and together with its
predecessors aims to contribute to search for more biologically
plausible alternatives in neural network learning.

2.1 Activation propagation in UBAL
Our UBAL model was mainly inspired by GeneRec [13], but also
by its predecessor, the recirculation [8]. UBAL and its predecessors
[4, 5] were firstly intended as a biologically plausible heteroasso-
ciative model to connect highlevel sparse neural representations
in a cognitive robotic system such as a robotic mirror neuron sys-
tem for a humanoid robot [15]. Unlike the GeneRec model, UBAL
forms completely bidirectional associations between the pairs of
data patterns.

Since UBAL is primarily designed for heteroassociative mapping,
i.e. the inputs on the visible layers are targets for each other, we
will call the visible layers of the network x and y, rather than the
input and the output layer. Due to this heteroassociative nature,
we distinguish the forward (F) direction of association (x–to–y),
and the backward (B) direction (y–to–x association). Unlike BP
or GeneRec, UBAL addresses the weight transport problem by
using separate weightmatrices for forward and backward activation
propagation. In the forward direction, we label the weightsW and
in the backward direction we label the weightsM . In each direction
we define the prediction phase (P), in which activation propagates
from one visible layer to another via the hidden layer (or layers).
Additionally, after each prediction phase, the activation on the
postsynaptic layer is also propagated back to the presynaptic layer.
We call this bounce-back activation the echo phase (E). This echo is
somewhat similar to the regression mechanism in the recirculation
algorithm [8].

The UBAL model as proposed here is generalized for variable
amount of layers. However, in the work presented here, we always
use a three-layer architecture as displayed in Fig. 1 which also il-
lustrates how activation flows in the network in different phases.
Table 1 displays the general activation propagation rule between
two connected layers p and q, where f is the activation function
and b and d are trainable biases with constant input 1.0. This prop-
agation rule is the same for all connected layers, so the p and the q
can be thought of as both x and h, as well as h and y.

Table 1: Activation propagation in UBAL.

Direction and phase Label Activation

1. Forward Prediction FP qFP = f (W pqpFP + bp )

2. Forward Echo FE pFE = f (MqpqFP + dq )

3. Backward Prediction BP pBP = f (MqpqBP + dq )

4. Backward Echo BE qBE = f (W pqpBP + bp )

Figure 1: Activation propagation in 3-layer UBAL.

2.2 The learning rule
The UBAL rule is local and fundamentally it works in the same
way as the CHL. The basis for learning is the difference between
the activation values in the two direction of association (F and B)
and the activation phases as defined in Table 1. The weight update
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is proportional to the input term multiplied by error term, which
usually stands for the difference between the propagated clamped
activation and the network’s estimate.

Table 2: Learning rule terms.

Term Symbol Value

Forward Target tFq βFqq
FP + (1 − βFq )q

BP

Forward Estimate eFq γ Fqq
FP + (1 − γ Fq )q

BE

Backward Target tBp βBpp
BP + (1 − βBp )p

FP

Backward Estimate eBp γBp p
BP + (1 − γBp )p

FE

Figure 2: Activation propagation and learning rule terms.

UBAL takes into account not only the prediction and the training
signal, but also the echo states that are internal to the network. In
Table 2 we introduce the intermediate learning rule terms t and e
and graphically depict them together with the activation states in
the network in Fig. 2. The so-called targets (t ) are proportional mix-
tures of activations in the prediction phases from the two directions
(F and B). Because our model is essentially heteroassociative, the
inputs in one direction are the targets for the other direction and
vice versa. What would in other models be called the prediction, we
will refer to as the estimate. The estimate terms (e) combine UBALs
predictions with the echoes in a proportional manner.

The weights between two layers in the forward direction in our
learning algorithm are updated according to

∆W pq = λ tBp (t
F
q − eFq ) (3)

and in backward direction according to:

∆Mqp = λ tFq (t
B
p − eBp ) (4)

2.3 Learning rule hyperparameters
The local behavior on the respective layers of the network can vary
based on the values of hyperparameters β and γ in the learning rule
terms (Table 2). The β hyperparameter regulates the proportion of
activation from the forward and the backward pass entering the
weight update formula as target activation.

In UBAL, the hidden layer by desing converges to the same
target activation pattern for both directions, creating a common
representation of the input-output pair, which basically applies also
to visible layers. Since for each layer l , tFl = tBl , we can derive that

βBl = (1− βFl ) for all l . This allows us to reduce the parameter space
and use βFs to express also βBs.

The second learning rule hyperparameter is γ . In the UBAL rule,
γ F and γ B determine how the estimate term is created by mixing
prediction and echo activations. More precisely, these parameters
regulate the strength of prediction in the given direction compared
to the echo from the other direction.

Unlike β , the γ parameters cannot be reduced to just one di-
rection. Rather than being related to a layer of neurons like β ,
γ influences the evolution of the weight matrix connecting the
two layers. In other words, γ Fq of weight matrixW pq determines
whetherW pq learns to predict the target values tFq = tBq from the
prediction pFP (yielding qFP), or rather echo the value from the
prediction in the backward direction qBP (yielding qBE from pBP).

When using extreme values (0, 1) of β and γ , the components
of our learning rule reduce to different forms of learning that re-
semble canonical algorithms. Thus, our model can be shown to
perform different kinds of learning (supervised, unsupervised, semi-
supervised). The different setups of β and γ parameters for qual-
itatively different tasks found via extensive experimentation are
shown in the next section.

3 EXPERIMENTS AND RESULTS
We evaluated UBAL on several canonical tasks and on a traditional
classification benchmark of handwritten digit recognition. We com-
pare our approach with related models and with standard error
backpropagation. In our experiments reported in this paper we
use a fully connected three layer network with standard sigmoidal
units.

3.1 Tested problems
The 4–2–4 encoder is a very simple task of encoding 4 simple
binary patterns through a narrow bottleneck of 2 hidden neurons,
originally proposed for testing auto-associative models [8]. The
inputs-outputs are: [0001, 0010, 0100, 1000].

XOR is a canonical classification task which is simple, yet lin-
early non-separable. For consistency, the inputs to the network are
[00, 01, 10, 11] mapped to just one binary output [0, 1]. In order
to compare UBAL with related models in 4–2–4 encoder and XOR
tasks, we will evaluate our model based on the network conver-
gence, i.e. the percentage of tested networks that found a stable
solution with 100% accuracy for a given number of consecutive
epochs.

Heteroassociation. To test whether our algorithm performs at
least the same or better than its predecessor BAL we experimented
with random binary pattern associations. In this task we use 200
pairs of randomly generated sparse binary patterns – binary vectors
with maximum of 10 positive bits per pattern. An illustration of
such data is depicted in Fig. 3. In this and the following task we
evaluate the model based on the average pattern retrieval success.
Since we are working with binary vectors where positive bits are
rather sparse we use the F1 score instead of standard accuracy.

Denoising. To explore denoising abilities of our algorithm we
adopted one subtask from [2] with binary (black and white) raster
images of letters with dimension 7×7 pixels. There are 8 capital



CIIS 2019, November 23–25, 2019, Bangkok, Thailand Kristína Malinovská, Ľudovít Malinovský, Pavel Krsek, Svatopluk Kraus, and Igor Farkaš

Figure 3: Examples of random sparse binary patterns.

letters from A to F corrupted by a random noise vector with Gauss-
ian distribution with mean 0.0 and variance 0.5. We trained all
networks with randomly generated distorted patterns (50 for each
letter). For assessing the network generalization ability we use a
separate testing set (10 instances per letter). Examples of noisy
letter pairs are depicted in Fig. 4.

Figure 4: Examples of noisy letters.

Handwritten digits. The famous MNIST dataset [9] has been
used to test the above-mentioned related models. The full MNIST
dataset consists of labeled black and white images of 10 handwritten
digits with resolution 28×28 pixels. The set is already split to 60,000
training and 10,000 testing samples. We use standard performance
measure – the classification error on the test set. Unlike most of
the other works, we do not preprocess the images or normalize the
input values.

3.2 Model hyperparameters
To gather the optimal values of learning rule hyperparameters β
and γ for the particular tasks we performed extensive grid search
experiments. We experimented with different means and variance
of initial weights as well as the learning rate λ and with the size of
the hidden layer. The resulting hyperparameter values are listed in
Table 3.

All synaptic weights in our experiments were initialized from
Gaussian distribution with varying mean ν and variance σ 2. We
explored these hyperparameters experimentally and found that
ideal values vary from task to task. To illustrate this, we display
the average training epochs needed until 100% convergence as a
function of ν and σ 2 for Enc. 4–2–4 (Fig. 5) and XOR with 6 hidden
neurons (Fig. 6). Although the space of best initial weights for these
two problems configurations overlaps, ideal values for these two
task differ (XOR: N(0.0, 2.5), Enc. 4–2–4: N(0.5, 0.5)).

We found that the size of the hidden layer has significant influ-
ence on the performance of UBAL. We illustrate this phenomenon
in Fig. 7 where the performance of UBAL in the handwritten digits
task (MNIST) after 100 training epochs (average over 10 nets) is
projected as the function of the hidden layer size. We used the
hyperparameter values from Table 3 and with each setup trained
10 randomly initialized networks for 100 epochs.
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Figure 5: Initial weights experiment with 4–2–4 encoder.
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Figure 6: Initial weights experiment with 6-neuron XOR.
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UBAL: a Universal Bidirectional Activation-based Learning Rule for Neural Networks CIIS 2019, November 23–25, 2019, Bangkok, Thailand

Table 3: Best hyperparameter values from experiments

Parameter/Task Enc. 4–2–4 XOR XOR minimal Heteroassociation Denosing MNIST

Architecture 4–2–4 2–6–1 2–2–1 100–100-100 49–30–49 784–1000–10
Learning rate λ 1.0 2.0 2.0 1.0 0.001 0.2
Weight initialization N(0.5, 0.5) N(0.0, 2.5) N(0.0, 2.5) N(0.0, 1.0) N(0.0, 0.3) N(0.0, 0.5)
βF 1.0 - 0.5 - 0.0 0.0 - 1.0 - 0.0 0.25 - 0.9 - 0.0 0.2 - 0.8 - 0.0 1.0 - 0.5 - 0.0 1.0 - 1.0 - 0.9
γ F 0.5 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.5 0.5 - 0.0 0.0 - 0.0
γB 0.0 - 0.5 0.0 - 0.0 0.0 - 0.0 0.0 - 0.5 0.0 - 0.5 0.1 - 0.0
βB 0.0 - 0.5 - 1.0 1.0 - 0.0 - 1.0 0.75 - 0.1 - 1.0 0.8 - 0.2 - 1.0 0.0 - 0.5 - 1.0 0.0 - 0.0 - 0.1

3.3 Training progress and generalization
To illustrate how the network learns to generalize in the course of
training, we display training and testing errors as a function of the
training epoch (averaged over 10 randomly initialized networks
with best parameters from Table 3). We display the classification
error in the handwritten digits task in Fig. 8 for training, validation
and testing datasets in 100 epochs. For validation, we took 10% of
the original training set. We display also the performance on the
dedicated MNIST testing set. Note, that UBAL may not suffer from
overtraining, with growing success on the training set, the valida-
tion error does not show a tendency to drop. More experimentation
is needed to better understand this interesting property.
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Figure 8: Training progress with MNIST.

3.4 Comparison with related models
Comparison for 4–2–4 encoder task is in Table 4 and for XOR task
in Table 5, where success rate refers to the percentage of networks
that successfully converged to a solution (out of 50 runs).

For a proper comparison with the results from the GeneRec
model we used the minimal architecture for XOR with just 2 hidden
neurons, whose convergence is not ensured even for standard error
backpropagation method. In our experiments, we observe that this
also applies to our UBAL model, and that UBAL’s convergence

Table 4: Comparison with other models in Enc. 4–2–4

Algorithm λ Success rate

Backprop [13] 2.4 100%
GeneRec [13] 0.6 90%
CHL [13] 1.2 56%
BAL [5] 0.9 65%
BAL2 [4] 0.0002/500 93.1%
UBAL 1.0 100%

Table 5: Comparison with other models in XOR 2-2-1

Algorithm λ Success rate

Backprop [13] 1.95 74%
GeneRec [13] 0.2 18%
CHL [13] 1.8 52%

BAL [5]/BAL2 [4] any 0%
UBAL 2.0 64%

rate is slightly lower than BP, but higher then CHL and GeneRec.
Compared to the minimal model, the performance rapidly increases
with 3 hidden neurons and 100% of networks converge with 6 or
more hidden neurons.

In the random sparse binary pattern heteroassociation task we
can compare UBAL only with [5]. From our experimentation we
conclude that the new UBAL performs much better than the old
BAL model. In the denoising task, adopted from [2], we do not
have sufficient data (and space in this paper) to make a proper
comparison with the BHM+SOFM model. Our best models reach
the F1 score of approximately 99.6% on the test set.

For the handwritten digit recognition task, we took some base-
lines from the original article by Lecunn [9], from previous work
on BAL2 model [4], and from some of the related models with a
single hidden layer. For comparison of UBAL with the related fully
connected models in Table 6 we used a standard architecture with
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Table 6: Comparison with other models for MNIST.

Algorithm Architecture Classification error

Linear classifier [9] 784-10 12.0%
Backprop [9] 784-1000-10 4.5%
GeneRec [4] 784-300-50-10 56.8%
BAL [4] 784-300-10 90.2%
BAL2 [4] 784-300-10 11.5%
UBAL 784-1000-10 6.0%
EP [17] 784-500-10 3.0%
FA [11] 784-1000-10 2.1%

1000 hidden neurons and the softmax activation function on the
visible layer y.

3.5 Discussion and future work
Our results indicate that the performance of our model is slightly
worse than that of a simple BP-trained multilayer network, but
better than preceding biologically motivated models. In the case
of the handwritten digits problem, it is important to note that we
present results from quite a plain model and apply no image pre-
processing or normalization. We believe that better performance
can still be achieved after more extensive experimentation with
model parameters. In the future, we plan to experiment with deep
and convolutional architectures which could significantly improve
the performance in visual classification tasks and allow to explore
how the model would be able to perform image classification, seg-
mentation, mapping, and denoising tasks more effectively.

Since the UBAL learning rule is local, each pair of connected
layers can have a particular parameter setup tuned up for different
type of learning – supervised, unsupervised, or a combination of
these paradigms. We find the possibility of having one network
employ multiple learning paradigms as one of the most challenging
and interesting research prospects of UBAL. Such a network would
be, for instance, able to denoise a pattern, restore it, retrieve missing
information via associated patterns and subsequently classify the
input correctly. The form of our rule also allows us to build more
than just two-ended input-output architectures and generally build
various complex architectures.

4 CONCLUSION
We presented UBAL, a novel learning algorithm for artificial neu-
ral networks as a more biologically plausible alternative to error
backpropagation. Our model is essentially a bidirectional heteroas-
sociative network where patterns presented to both visible layers
simultaneously serve as targets to each other. Along with learning
from the teaching signal the network also learns from bounced-back
predictions (echoes). In each direction of activation propagation
there is a separate weight matrix, therefore UBAL does not suffer
from the weight transport problem. The UBAL learning rule is local,
so only presynaptic and postsynaptic activations in different activa-
tion phases contribute to updating the weights. Based on learning

rule hyperparameters our model can learn various qualitatively
different tasks, including encoding, denoising, and classification.
Our experimental results confirm that UBAL successfully solves
the given problems and that its performance is comparable with
the related models.
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