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Housekeeping

e Numerous new members!
e Does the mailing list actually work?

e New website!
e Most of the materials there
e One GitHub repo
e News as PRs?
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Big Schedule Review

Introduction to Keras

(Artificial) Neural Networks and their training

Convolutional Neural Netowrks

Recurrent Neural Networks

Neural Networks in Computer Vision

Neural Networks in Natural Language Processing
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News

e Character Sequence Models for ColorfulWords
(http://colorlab.us)
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http://colorlab.us
https://github.com/worldofpiggy/deeplearning-ahem-detector
https://github.com/worldofpiggy/deeplearning-ahem-detector
https://arxiv.org/abs/1610.09204
http://openreview.net/forum?id=BkjLkSqxg

News

e Character Sequence Models for ColorfulWords
(http://colorlab.us)

e Deep Learning 'ahem’ detector (https://github.com/
worldofpiggy/deeplearning-ahem-detector)
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News

Character Sequence Models for ColorfulWords
(http://colorlab.us)

Deep Learning 'ahem’ detector (https://github.com/
worldofpiggy/deeplearning-ahem-detector)

Judging a Book By its Cover
(https://arxiv.org/abs/1610.09204)

LipNet: Sentence-Level Lipreading
(http://openreview.net/forum?id=BkjLkSqxg)
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News

e Character Sequence Models for ColorfulWords
(http://colorlab.us)

e Deep Learning 'ahem’ detector (https://github.com/
worldofpiggy/deeplearning-ahem-detector)

e Judging a Book By its Cover
(https://arxiv.org/abs/1610.09204)

o LipNet: Sentence-Level Lipreading
(http://openreview.net/forum?id=BkjLkSqxg)
*93% accuracy at reading sentences of the form "set|lay|place
<colour> inlon|with <letter> <number> soon|again".
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Gradient Descent Algos

Overview

Gradient Descent Variants

Memntum

Nesterov Accelerated Gradient
Adagrad

RMSProp

Notes, Tips & Tricks
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Gradient Descent Algos

Gradient Descent Variants

Core idea of gradient descent

Minimize J(0) parametrized by @ € RY by updating 6 in the
opposite direction of the gradient VyJ(0).
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Admin Gradient Descent Algos ConvNets

Batch Gradient Descent
aka Vanilla Gradient Descent

Orv1 =0 —1n- Vo, J(Gt)

Might be very slow
No-go for big datasets
Impossible to update "online" (new examples on-the-fly)

Guaranteed to converge to the global minimum for convex
error surfaces and to a local minimum for non-convex surfaces

for 1 in range(nb_epochs
params_grad = evaluate gradient(loss_function, data, params
params = params - learning_rate * params_grad
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Admin Gradient Descent Algos ConvNets

Stochastic Gradient Descent

Ori1 = 0r — - Vo, J(0; x11; y D)

e Usually faster convergence

e Where batch gradient descent does redundant computation,
SGD updates frequently and creates fluctiations.

e When slowly decreasing the learning rate, SGD shows the
same convergence behaviour as batch gradient descent

for 1 in range(nb_epochs
np.random.shuffle(data
for example in data
params_grad = evaluate gradient(loss_function, example, params

params = params - learning_rate * params_grad
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Admin Gradient Descent Algos ConvNets

Mini-batch Gradient Descent
0=60—n-VyJ(; x(iHi+n). y(i:i+n))

e Best of both worlds

e Reduced variance of parameter updates — more stable
convergence

e Batch size usually n = [50, 250]

e SGD and Mini-batch Gradient Descent are used interchangebly

for 1 in range(nb_epochs
np.random.shuffle(data
for batch in get_batches(data, batch_size-50
params_grad - evaluate gradient(loss_function, batch, params
params = params - learning_rate * params_grad
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Gradient Descent Algos

Gradient Descent — Challenges

e Choosing a proper learning rate is difficult (too small, too
large, too steady...)

e Learning rate schedules help, but still need to be pre-defined in
advance

e Same learning rate for all parameter updates (larger updates
to more infrequent features might be more desirable)

e Ending up trapped in suboptimal local optima
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Gradient Descent Algos

Stochastic Gradient Descent

dm=—
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Gradient Descent Algos

Momentum

ve = Yve—1 +1VeJ(0)

9t+1 =0t — v

Helps navigate SGD when one dimension curves more steeply
than than the other (common around local optima)

Basically fights against oscillations

e Momentum term + is usually set to 0.9

"Pushing a ball down a hill" metaphor
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Admin Gradient Descent Algos ConvNets

Nesterov Accelerated Gradient
Let's not blindly trust gravity

Ve = Vi1 + V(0 — yvi-1)

Orr1 =0t — vz

e Give the moving ball some notion of where it is going

e 0 — yv;_1 approximates (gives a rough idea of) the next
position of the parameters

e "Update with anticipation" prevents the ball from going too
fast

e Significantly improved performance of RNNs on numerous
tasks

e |s able to adapt updates to the slope — we'd like to also adapt
updates to "parameter importance"

DLSG #3 - Gradient Descent Algos + Intro to ConvNets



Gradient Descent Algos

Nesterov Momentum

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step
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Gradient Descent Algos

Adagrad
gei = VoJ(0))
Orr1,i = 0i — 1 8e)i
Ot 1, =0 — S — “ Bt
\/ Gtii + €
e G, € R9*9 _ diagonal metrix where Gt ji is the sum of the

squares of the gradients w.r.t ; up to time t.

e helps to avoid division-by-zero issues (usually on the order of
le —8)

Main benefit: no need for tuning the learning rate

Main weakness: accumulation of squared gradients in the
denominator

e Learning rate will shrink (sometimes way too much)
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Admin Gradient Descent Algos

RMSProp

RMSProp Upd ate [Tieleman and Hinton, 2012]

| cache += dx**2
learning rate * dx (np.sqrt(cache) + le-7)

Icache decay rate * cache (1 - decay rate) dx 2.
X learning rate dx (np.sqgrt(cache) + le-7)
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Gradient Descent Algos

RMSProp

Introduced in a slide in

Geoff Hinton’s Coursera

« rprop is equivalent to using the gradient but also dividing by the size of the
gradient. class, lecture 6

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

+ rmsprop: Keep a moving average of the squared gradient for each weiglfz\t
e - — E, )
MeanSquare(w, t) =0.9 MeanSquare(w, 1-1)+0.1 ( Aw(t)

Dividing the gradient by / MeanSquare(w, 1) makes the learning work much

better (Tijmen Tieleman, unpublished).

rmsprop: A mini-batch version of rprop

Cited by several papers as: [52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,
2012.
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Gradient Descent Algos

Adam

my = Bimi_1 + (1 — B1)8t
ve = Bove1 + (1 — Bo)g?

Both m; and v; are initialized as Os, so they need to be
bias-corrected.

iy = —
t= T 57
1-p;
~ Vi
vy = —
1- 44
n N
Ors1 =0 — —— i
t+1 t \/O»t—f—e t
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Admin Gradient Descent Algos

Adam

[Kingma and Ba, 2014]

Adam update

xrange(1, big number):

momentum
betal*m (1-betal)*dx

v = beta2*v (1-beta2)* (dx**2) . .
bias correction

mb m/(1-betal**t) (only relevant in first few
vb = v/(1-beta2**t) iterations when t is small)

X A learning rate * mb (np.sart(vb) + le-7)
RMSProp-like

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.
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Gradient Descent Algos

Visual Demo
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Gradient Descent Algos

So what should one use?

¢ RMSProp and Adam are very similar

e Bias-correction in Adam has been shown to outpreform
RMSProp slightly towards the end

e Adam is usually a good default choice for CNNs, RMSProp
might be worth considering for big RNNs
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Gradient Descent Algos

Other improvements to consider

e Shuffling and Curriculum Learning (pretty big result with
LSTMs)

e Early stopping & Ensemble averaging
e Gradient noise
gti = &,i + N(0, U%)
2 _ n
Tt Aty
Makes networks more robust to poor initialization — authors

'suspect’ the added noise gives model more chances to escape
and find local minima.
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ConvNets

CA:f. maps 16@10x10
INPUT C1: faatura maps S84
32x32 6@2 8§2: f. maps
6@14x14

|
| Fullcom‘em.lun ‘ Gaussian connections
Subsampling Full connection

Convolutions Subsampling Convolutions

Figure: LeNet [LeCun et al., 1998]
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Hubel & Wiesel

1959 - Receptive fields of single neurones in the cat’s striate cortex
1962 - Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex

Blotrical signal V1 physiology: orientation selectivity
rain

Recording electrode —|

Visual area

e of brain

Neural response (spikes/sec)

p R R R
Stimulus orientation (deg)
Q Stimulus

Hubel & Wiesel, 1968
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A bit of history

Topographical mapping in the cortex: nearby cells in cortex
represented nearby regions in the visual field
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Admin Gradient Descent Algos ConvNets

A bit of history

Hierarchical organization

Hubel & Weisel featural hierarchy
topographical mapping

complex cells

simplecells
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A bit of history

Neurocognitron [Fukushima 1980]: “sandwich™” architecture
(SCSCSC...) simple cells: modifiable parameters complex cells:
perform pooling

Figure: Neurocognitron [Fukushima 1980]
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LeNet

Gradient-based learning applied to document recognition

C1: feature maps
B@28x28

INPUT
3232 521, maps
6@14x14

|
‘ Full cmAemnn ‘ ‘Gaussian connections
Convalutions Subsampling Convolutions ~ Subsampling Full connection

Figure: LeNet [LeCun, Bottou, Bengio, Haffner 1998]
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks

\

foap \dense

1% Max
pocling pooling

Figure: AlexNet [Krizhevsky, Sutskever, Hinton, 2012]
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ResNet

Depth Revolution
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Figure: ResNet [Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun,
2015]
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ConvNets today

Classification Retrieval

mushroom
fungus

gill
dead-man's-fingers

Figure: [Krizhevsky 2012]
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ConvNets today

Detection

Figure: [Faster R-CNN: Ren, He, Girshick, Sun 2015] Detection
Segmentation & [Farabet et al., 2012]
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ConvNets today

NVIDIA Tegra X1

Figure: Self driving cars
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ConvNets

ConvNets today
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[Goodfellow 2014]

[Simonyan et al. 2014]
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ConvNets today

[Mnih 2013]
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ConvNets

ConvNets today
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[Ciresan et al. 2013]
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ConvNets

ConvNets today

Connected components
CN affini

[Turaga et al., 2010]
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ConvNets today

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010
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ConvNets today

Image
Captioning

A person riding a
motorcycle on a dirt road.

A group of young people
playing a game of frisbee.

A refrigerator filled with lots of

food and drinks.

A herd of elephants walking
across a dry grass field.

Aclose up of a cat laying A red motorcycle parked on the Ayellow school bus parked in  [Viinyals et al., 2015]
‘on a couch. side of the road. a parking lot.
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ConvNets

ConvNets today

reddit.com/r/deepdream
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Figure: Deep Neural Networks Rival the Representation of Primate IT
Cortex for Core Visual Object Recognition [Cadieu et al., 2014]
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Convolution

So what is that "convolution"
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Convolution

So what is that "convolution"

2D Convolution

Ny 1[1[1[o]o
N 1/1l1]0] [a
TN ofof1f1]z
\-\ o[o[1]1]0
o[1]1]o]0
kernel -101
filter = |0 1 0
1101
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Convolution

n
g XjWi
i=1
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Convolution

n
ZX,'W; =X-W
i=1
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Convolution

(f x g)[n] = Z f(m)g(n— m)

m=—0o0
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Convolution layer

32x32x3 image

7

32 height

32 width
3 depth
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Convolution layer

32x32x3 image

/ 5x5x3 filter

32 7
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

ol
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Convolution layer

Filters always extend the full

. depth of the input volume
32x32x3 image /
5x5x3 filter
32 &/
I' Convolve the filter with the image

i.e. “slide over the image spatially,
computing dot products”

32
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Convolution layer

32x32x3 image

5x5x3 filter w
32

"~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wlz +b
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Convolution layer

activation map

32x32x3 image

/ .
5x5x3 filter
32
28
convolve (slide) over all
spatial locations
32 28
3 1
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Convolution layer

consider a second, green filter

32x32x3 image activation maps

/
5x5x3 filter
28
convolve (slide) over all
spatial locations
28
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Admin Gradient Descent Algos ConvNets

Convolution layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

32
28

Convolution Layer
32 28

3 6

We stack these up to get a “new image” of size 28x28x6!
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Convolution layer

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONV, CONV, CONYV,
RelLU RelLU RelLU
eg.6 eg.10
5x5x3 5x5x6
32 fiters 28 filters 24
3 6 10
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Convolution layer

Preview [From recent Yann
LeCun slides]

Low-Level| |Mid-Level| |High-Level Trainable
— — s
Feature Feature Feature Classifier
1N

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Convolution layer

CINEESONZITN NESHEDRSENISREREERG
one filter => .
one activation map example 5x5 filters

(32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

flaylegleyl = X X flam) glx—n.y—m,]

elementwise multiplication and sum of
a filter and the signal (image)
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Convolutional Neural Network

RELU RELU RELU RELU RELU RELU

CNV lcolvl colelcclel COFVlCOlNVl

fruck
airplane
ship

horse
|
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cs231n.stanford.edu/slides/winter1516_lecture6.pdf

cs231n.stanford.edu/slides/winter1516_lecture7.pdf
cs231n.github.io/

IRC server freenode - channel #naiveneuron
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