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The concept of computation remains a frequently discussed topic in cogni-
tive science, but there is no consensus about its meaning and the role in this 
field. I discuss this concept in wider sense, also including nonclassical computa-
tion, in the light of Marr’s three levels of analysis and their relevance for main 
modeling frameworks pursued in cognitive science – symbolic, connectionist, 
dynamic and probabilistic. I point to differences between these approaches and 
argue, providing empirical and theoretical arguments, that connectionism, out 
of the existing approaches, holds the promise of providing the most plausible 
and detailed accounts of human cognition. Connectionism also benefits from 
the emerging field of cognitive developmental robotics that aims at designing 
autonomous cognitive robots using the synthetic bottom-up approach. I con-
clude with emphasizing the key role of computational modeling that will help 
advance the field of computational cognitive science as an indispensable core 
component.

Key words: computation, cognition, modeling frameworks, levels of analy-
sis, connectionism, learning, representation, developmental cognitive robotics

1. Introduction

The birth of cognitive science, triggered by the Cognitive revolution in the 
1950s, was an outcome of parallel endeavors to study the human mind and 
mental processes (Gardner, 1987). Since then, each of the relevant research 
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areas known as mother disciplines has proposed answers and has formu-
lated new questions related to various aspects of the mind and cognition. 
Ancient philosophers were the first ones to put these topics on their agenda, 
and (much) later the natural sciences came to help using experimental 
methods. Cognitive psychologists formulate theories and research hypoth-
eses and test them using the behavioral experiments. Language faculty, as a 
gate to the mind of a human subject who can report about his/her internal 
mental states or processes, is undoubtedly crucial for studying cognition. 
Psycholinguists focus on the language-related behavioral experiments, 
whereas neurolinguists are interested in relations between the brain lesions 
and the linguistic behavior, attempting to reveal the neural correlates of lan-
guage. The invention of the modern digital computer brought a new dimen-
sion to the study of the mind and cognition in terms of the computational 
modeling. Cognitive anthropology also has its place in studying the human 
behavior in the social context. Last but not least, since 1990s, the experi-
ments can be efficiently enriched by the modern brain imaging methods 
(such as fMRI) that enable to shed light on the brain correlates in 3D at a 
higher spatial resolution.

Since various mother disciplines use different methods and tools in 
research, the question pops out whether cognitive science is a single disci-
pline with a single object of the study (cognition, mind–brain), or whether 
there are multiple disciplines. The Google search for “cognitive science” 
reveals around 6 million hits, whereas “cognitive sciences” return roughly 
1,7 million hits (in November 2012). So it seems that cognitive science is 
perceived, at least when judged from the perspective of the usage of both 
terms, more often as a single research discipline. I consider this evidence 
as additional support for my view, assuming that the statistics covers the 
opinions of people involved in cognitive science(s). Therefore, I think this 
statistics has some explanatory value. 

I think it is good that cognitive science is more often perceived as a 
single discipline because the study of such a complex multifaceted entity 
as the mind does require heterogeneous, interdisciplinary research strands, 
and it should be a continuing challenge for involved research approaches 
to inform and inspire each other. Spreading the view of cognitive science 
as a single discipline could facilitate the researchers’ intentionality not 
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only to make progress in their particular area of expertise but also to try 
to go beyond, at least by absorbing what’s new and relevant for their own 
research in cognitive science and by identifying the links, analogies or simi-
larities.

In this paper, rather than trying to provide a unifying view at cognitive 
science from various angles, I will focus on one of these angles. I will dis-
cuss the (still often debated) role of the computational approaches in cogni-
tive science and will emphasize their inevitability for advancing the field.1 
Specifically, I will advocate the role of neural computation, or connection-
ism, that I see the most plausible candidate for approaching the mind–brain. 
I will conclude with highlighting the emerging field of cognitive develop-
mental robotics that allows testing theoretical ideas in real settings.

2. Historical Context of Computation

The birth of a concept of digital computation and of the modern digital 
computer in 1950s was clearly an important step that triggered the progress 
of several disciplines, including the artificial intelligence (AI) and cognitive 
science. However, the world of computation came into being long before 
the Turing machine (Turing, 1936). Sloman (2002) introduced the historical 
context by offering his view, that the digital computer was a result of a con-
vergence of two strands of development with a long history: development 
of machines for automating various physical processes (e.g. clocks, weav-
ing machines, sorting machines, etc.) and machines for performing abstract 
operations on abstract entities (e.g. doing numerical calculations, various 
operations on symbols). The universality of a digital computer makes it a 
powerful programmable device, that has been since its invention widely 
used as a tool in numerous applications. 

On a theoretical side, Sloman also discusses the role of the Turing 
machine and its usefulness in the context of abstract mathematical opera-
tions. The Turing machine, currently being revived at the centenary of its 

1 I basically agree with McClelland’s (2009) view related to surveyed computational 
approaches but here I make a special emphasis on connectionism by listing several 
arguments in its favor, along with remaining challenges.
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inventor (e.g. Cooper, 2012; French, 2012), is argued to be irrelevant for 
AI and cognitive science, because it does not help in solving practical AI 
tasks, nor in understanding how the brains could work (Sloman, 2002). The 
distinction between a powerful concept of the Turing machine (operating 
in unlimited time using an unbounded tape) and a computational device 
with limited resources attempting to account for human cognition is remi-
niscent, I think, of the distinction between competence and performance in 
the theory of human language (Chomsky, 1965). Of course, abstractions are 
not only useful but often inevitable in research and it is indeed fascinating 
that our brains (with limited resources) are able to work with and to reason 
about highly abstract concepts in infinite spaces and structures.2 But any 
computational account of human cognition should consider an entity with 
limited resources, so in this regard it is reasonable to consider the (finite) 
physical digital computer as a potential candidate for explaining human 
cognition (if one is a proponent of the symbolism as discussed further).

It is interesting that although the two abovementioned strands were very 
different in their objectives, they had some features in common (Sloman, 
2002). For instance, each strand involved both discrete and continuous 
machines. Machines could work either with continuous variables (e.g. speed 
governors) or discrete variables (e.g. sorting machines), and a calculator 
could either rely on continuous slider-ules or discrete devices (e.g. ratch-
ets). The other commonality was related to the degree and nature of human 
involvement in the interaction with the machine (e.g. where the human is 
involved in taking decisions and feeding control information, or merely 
provides the energy, once the machine is set up for the task). 

So the technology provided us with a variety of machines before the uni-
versal digital computer with its vast application potential took over. While 
nobody doubts that the modern digital computer is also a machine, there 
are still disagreements about what distinguishes the digital computer from 
earlier machines, whether classical machines compute in the same way as 
the digital computer, or what is the class of systems that compute. Finite 

2 Understanding this ability (in skilled individuals) also belongs to the ultimate 
goals of cognitive science, but before achieving that we must first understand more 
“rudimentary” cognitive abilities, like perception, motor skills, or language.
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state automata, Turing machines, calculators and digital computers are 
commonly assumed to compute. But how about other entities? The answer 
depends on assumptions. These range from very strict (e.g. Pylyshyn, 1984), 
that disqualify even finite state automata, to very soft assumptions (e.g. 
Scheutz, 1999), according to which also hurricanes or digestive systems 
compute. Piccinini (2007) holds the intermediate view that “only the right 
things compute, the others don’t.” I think that in principle, all physical sys-
tems whose variables can be measured, can be viewed as computational 
systems. The distinguishing feature for truly computational systems may be 
that they must be artifacts (physical or virtual), constructed in order to per-
form computations whose results are interpretable by humans.

The related issue concerns the type of computation. The classical (narrow) 
view of computation is associated with discrete computations in discrete 
time. In the paper, I adhere to the view that computation should be consid-
ered in wider sense to also embrace nonclassical computation, such as ana-
log computation, quantum computation or probabilistic computation. 

3. The brain as a Computational device

The modern digital computer seems to be the only entity whose computa-
tional nature is not questioned by anyone. In the context of cognition that 
aims to explain how the mind–brain and its underlying cognitive processes 
work, the following question has been formulated: Is the brain, as the 
assumed physical host, a computational device? If it is, then the level at 
which these computations take place, should be identified. But unlike the 
digital computer whose level of computations is well-defined (logic gates), 
in the case of the brains no such level is evident. As argued by Churchland 
and Sejnowski (1992), the brains were not constructed to compute but 
rather evolved to allow the organisms to survive in a dynamic environment. 
If we want to look at the brain as a computing entity, we must ask: What is 
the most plausible level at which the brain computations could be defined 
and formalized? Thank to the known brain anatomy, the first hypothesis 
that comes to mind is the level of neurons. But it could be argued that it 
is only a rough approximation because subcellular effects are known to 
influence neuron firing, and neuron functioning is also affected by various 



406   Igor Farkaš

(slower) hormonal and neuromodulating systems (Kaczmarek & Levitan, 
1987). In addition, due to the functional redundancy and permanent loss 
of neural cells, the contribution of each cell probably does not matter, so 
maybe a higher level of brain organization (e.g. the neural assemblies) 
would be more appropriate. For instance, the large-scale brain networks 
are a frequent approach to computationally study the brain functions at the 
system level (e.g. Sporns, 2011). From the perspective of information flow, 
the brain functions within a plethora of feedback loops operating at vari-
ous spatiotemporal scales in continuous time (Bell, 1999), which makes the 
effort to capture these processes computationally much harder. Similarly to 
many other natural complex systems, the brain and its function(s) have a 
highly nonlinear dynamic character.

Fortunately, it is possible to simulate continuous dynamics with very high 
precision using discrete systems such as digital computers. Since the real 
world is noisy and so are the biological neurons, infinite precision is not 
realistic but useful, as will be argued later in the context of the recurrent 
neural networks. However, the principles of neural coding used by the brain 
have not yet been reliably identified (Rieke et al., 1999), because different 
rate coding and spike coding theories both provide plausible accounts of 
various investigated phenomena. Despite that uncertainty, in order to be 
able to proceed in cognitive science, we must view the brain as a computa-
tional device, without worrying much about philosophical questions associ-
ated with this assumption. Indeed, the devoted research field of computa-
tional neuroscience flourishes, at witnessed by numerous conferences and 
the growing number of published journal papers.

4. Importance of Computational Modeling

Computational modeling is viewed by many as the central pillar in modern 
cognitive science (McClelland, 2009; Chalmers, 2011). However, its role 
still seems controversial since there is no consensus in the literature about 
the meaning of key concepts such as computation or information process-
ing (Piccicini & Scarantino, 2011). 

For instance, Chalmers (2011) defends his view of the so-called minimal 
computationalism as based on the proposed two theses: computational suf-
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ficiency, stating that the right kind of computational structure suffices for 
the possession of a mind and for the possession of a wide variety of mental 
properties; and computational explanation, stating that computation pro-
vides a general framework for the explanation of cognitive processes and 
of behavior. The argument for computational sufficiency can arguably be 
questioned (Ritchie, 2011) since it is unclear what mentality entails. Are 
computational correlates sufficient for explaining consciousness? Is mental-
ity an inherent feature of a complex biological matter? The answers depend 
on definitions of concepts. I am not going to deal with highly debatable 
issues related to the nature of mentality or conscious states. Instead, my 
goal is to look at the computational approach as the description, discuss its 
features in some more detail, and emphasize its inevitability for building 
cognitive systems.

Whatever modeling approach is to be taken, it cannot go without formal-
ization. Computational models are crucial mainly for three reasons: First, 
they allow to formally describe cognitive processes that gives them rigor 
and explicitness that are in principle not achievable by verbal theorizing 
(mainly due to the ambiguity of language). This can help understand mech-
anisms underlying cognition. Second, the computational models provide 
testable hypotheses and inspire further empirical research. Third, they are 
used in building autonomous intelligent robots, that will interact with the 
humans, which is a progressive research strand. I see the last reason as hav-
ing not only the added, but crucial value, being extremely desirable in the 
computational cognitive science. I will not speculate about the ontological 
and social status of robots in the future, but from the cognitive science per-
spective, the inclusion of these intelligent agents in our environment may 
trigger new research questions, and may lead to redefinition of some key 
concepts and/or to adding new ones.

In his recent overview of computational modeling in cognitive science, 
McClelland (2009) asserts that “the essential purpose of cognitive modeling 
is to allow investigation of the implications of ideas, beyond the limits of 
human thinking.” This is true I think, because the human cognition is very 
complex, the human ability to study it (i.e. ourselves) rather limited, so we 
need external tools that will help us understand this complexity. On the 
other hand, a word of caution is due here, regarding the explanatory power 
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of the models. McClelland admits that “even if a modeler can show that 
a model fits all available data perfectly, the work still cannot tell us that it 
correctly captures the processes underlying human performance in the tasks 
that it addresses.” Put in other words, the computational models provide 
only candidate explanations. The well-known quote of Box and Norman 
(1987, p. 424) suggests that “all models are wrong, but some are useful” 
may reflect reality, but again, I argue that good models are not only useful 
but crucial. The role of models touches upon the philosophical questions of 
ontology and our epistemological tools to learn about the nature of cogni-
tion. In terms of the rigor of qualitative and quantitative description, there is 
no better alternative to the mathematical description of the models and their 
application.

5. Brief review of Modeling Frameworks in Cognitive Science

As already mentioned in Section 2, the term computation became biased 
since the birth of cognitive science, to refer to digital computations, imple-
mented in a digital computer. When people talk about computing, they 
usually mean discrete mental operations, needed for tasks like adding of 
multiplying numbers. At this point, I will make a brief survey of the main 
modeling frameworks as they were formed and have been used in cognitive 
science, and I will briefly compare them.

Prior to doing so, I find it useful to introduce here the levels of analysis, 
as proposed by the influential theory of Marr (1982) who postulated three 
levels of analysis – computational, algorithmic and implementational, by 
forging the analogy with the digital computer. Computational level defines 
computations that should be performed (a mathematical function, or a task 
specification), without saying how to do them. Algorithmic level specifies 
the used representations and algorithms for performing the desired com-
putation. Implementational level specifies the processes of information 
processing that are tied to the specific hardware used for running the algo-
rithm. In Marr’s view, the levels are basically independent of one another, 
and a lower level typically provides multiple realizability of the specifica-
tion at a higher level.
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5.1. Symbolism
It is no surprise that the invention of the concept of digital computation 
inspired the symbolic paradigm in cognitive science. Symbolic paradigm 
conceptualizes the mind as a (digital) computational device, separable from 
the environment, that manipulates internal symbols according to logical 
rules, in the same way as a computer.3 Being inspired by earlier works (Tur-
ing, 1950; Newell & Simon, 1976; Fodor & Pylyshyn, 1988), Harnad (1990) 
reconstructed an accurate definition of a symbol system, where the crucial 
role is played by the syntax, and where the semantics can be added to it 
from outside. 

The symbolic view is still considered by many (e.g. Fodor, 2000; Pinker 
2009) as the right level of abstraction, because it provides elegant and 
powerful formalisms for representing knowledge, it captures important 
human intuitions (biases) about the symbolic character of cognition, and it 
could be implemented in AI. Symbolism views cognition as manipulation 
of amodal (i.e. independent of modalities) symbols in an algorithmic way 
which renders the cognition as the classical computation that can be imple-
mented also in standard computers. The prominent Computational Theory 
of Mind, introduced by Putnam (1961) and developed mainly by philoso-
phers (Fodor, 2000), evokes the view of the mind as a universal computing 
device (information processing system). The crucial feature of symbolism is 
that the mind is driven by programs, which are realized by algorithms. How 
these algorithms are realized in the brain, is in the symbolic view merely a 
matter of implementation. The irrelevance of the implementation has also 
been enforced by Marr’s theory. The computer is truly a dual entity with 
an independent hardware and software, where computer algorithms can 
easily be turned into implementations by the completely automatic proc-
ess of compilation (translation to a hardware-dependent machine code). 
In contrast, in the brain (see also Section 3) the (neural) implementation 
is certainly not derived automatically from some higher-level description 

3 This paradigm is in the literature also referred to as cognitivism, but I will avoid 
that term because it evokes (I think undesirable) implication that this paradigm is 
closest to the nature of cognitive processes.
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(O’Reilly & Munakata, 2000, p. 5). It turns out that implementational level 
plays an important role and should be appropriately linked to the higher 
level description, in order to facilitate the interpretation of the function.

5.2. Connectionism
Connectionism challenges a basic assumption of much of AI that mental 
processes are best viewed as algorithmic symbol manipulations. It repre-
sents a spectrum of methods that arose within AI and were biologically 
inspired. The key concepts that we do not need to explain here include: 
a high number of simple processing elements (neurons), with trainable 
connections (synapses) between them, parallel processing of information 
and distributiveness of knowledge in the system. The communication is 
numeric, rather than symbolic, which leads to subsymbolic representations.4 
A neural network can process continuous variables in the form of vectors, 
subjected to nonlinear transformations (between layers of units). This leads 
to the lack of transparency of its function (“black box”), which requires 
some effort to debug information, using the techniques of clustering and 
visualization (O’Brien & Opie, 2006).

The connectionist approach, as opposed to symbolism, includes also the 
implementational level of analysis. Some philosophers suggest that the 
explained phenomena be separated from mechanisms of their origin (Abra-
hamsen & Bechtel, 2006), but in connectionist models these two aspects 
are connected, so there exists dependence between implemented mecha-
nisms (given by neural interactions) and cognitive phenomena (O’Reilly & 
Munakata, 2000). In other words, the specification of the neural network 
can be provided at the computational level (in terms of a function) but the 
elementary functions (related to neurons) already provide room for direct 
implementation (of neuron’s input-to-output functions) in neural hardware, 
that bears some similarity to biological networks.

The crucial property of neural networks is that the designer’s approach 

4 It should be noted that localist models of neural networks (as opposed to models 
with distributed representations) resemble more symbolic systems, in the sense that 
what each neuron represents does not matter (the form and content are separated), 
they could be swapped without affecting the function (Page, 2000).
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is restricted because it is possible to take advantage of learning paradigms 
and the different levels of detail in feedback from the environment (Haykin, 
2008). Neural networks are also commonly assumed to compute. How they 
compute, will be described in Section 6.

5.3. dynamical Systems
The operation in a continuous space and time is typical for dynamical 
systems framework, which, unlike symbolism and connectionism, puts 
emphasis on the situated and embodied nature of human behavior (Schoener, 
2008). Cognitive processes are viewed as mental activity unfolding in real 
time, which can be described, at the computational level, by the system of 
coupled nonlinear differential equations. The real time processing within 
the brain, and the coupling between the brain, body and environment, 
with continuous interactions and mutual reciprocal causation, renders the 
view on the mind as a permanent dynamic process taking place in a high-
dimensional spate space, being complementary in all aspects to the discrete 
sequential symbolic process. The dynamical systems framework forms a 
pillar of enactive approach to cognition (Maturana & Varela, 1992) that is 
built on concepts like experience, autonomy, emergence and sense-making.

The radical thesis of the dynamical systems framework disregards rep-
resentations as unnecessary (Thelen & Smith, 1994), but softer versions of 
this framework (e.g. Kelso, 1995) are compatible with the representational-
computational view of the mind–brain. The dynamical systems framework 
has found empirical support in numerous experiments (Spivey, 2007) and 
has been used to account for certain types of human behavior (Tschacher 
& Dauwalder, 2003). It uses two types of mutually connected variables: 
the collective variables that express the relations between the interacting 
components of the system and explain the behavior, and the control vari-
ables, whose quantitative changes can lead to qualitative changes in system 
behavior (phase transitions). Whereas dynamical systems definitely brought 
new ideas into the understanding of cognition (mainly in terms of agent’s 
interaction with the physical world), it is these control parameters, whose 
change, with the goal to account for certain aspects of cognitive develop-
ment, often comes from outside the model (the problem of learning). Find-
ing the ways to allow the changes in these variables to arise as a result of 
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experience and behavior would clearly enhance the dynamical systems 
framework (McClelland, 2009). 

5.4. Probabilistic Framework
The probabilistic approach has become popular in cognitive science espe-
cially in the last decade (Perfors, Tenenbaum, Griffiths & Xu, 2011). This 
principled (Bayesian) approach that exploits a broad spectrum of repre-
sentations (trees, vectors, logical rules, etc.), combines them with statistical 
learning and making inferences under uncertainty, provides explanations 
at the computational level (in Marr’s sense). Implementational level is con-
sidered less important, leaving the room open for links to potential neural 
mechanisms. Rather than going bottom-up, starting with mechanisms (the 
case of connectionism), probabilistic approach goes top-down, starting from 
the function that we want to explain, looking for an optimal representation 
for explaining the data. It also incorporates the nature–nurture aspect in 
terms of inductive biases (prior distribution over the set of hypotheses) that 
enter into computations of the posterior distribution.

The probabilistic approach has proven successful in explaining the wide 
range of human behaviors (see Griffiths et al., 2010, and references therein).   
The explanation at the computational level is not seen merely as a compu-
tational abstraction of underlying mechanisms, but is claimed to have an 
independent validity as an account.

This approach stems from the belief that it is possible to understand the 
human cognition as an optimal response (leading to rational behavior) to 
the constraints placed on the cognizing agent by a situation or  a  set of situ-
ations. McClelland (2009) raises two arguments. Namely, that rationality 
depends on agent’s cost function and is context-dependent, each of which 
renders the behavior suboptimal from observer’s perspective (but not the 
agent itself). Another difficulty with Bayesian approaches is computational 
intractability for larger problems, and the lack of online or incremental 
learning versions. On the other hand, I think, the increased interest in this 
approach predicts its importance in the future, and it will be interesting to 
find the potential links between the probabilistic computational level and 
the neural implementational level in understanding human knowledge. 
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5.5. Comparison of approaches
Probabilistic approach shares several features both with symbolism and 
with connectionism. Like symbolism, it is a top-down approach, using a 
very powerful and expressive framework in terms of symbolic data rep-
resentations. With connectionism, it shares continuous representations, the 
strong emphasis on learning, and some other commonalities. For instance, 
some forms of connectionist learning have natural Bayesian interpretations 
(e.g. Mackay, 1996), and the subclass of generative connectionist models 
uses the probabilistic framework, while preserving its connectionist style 
(e.g. deep architectures; Bengio, 2009). Recurrent neural networks can basi-
cally be viewed as dynamical systems. They have a continuous state space 
(typically on the hidden layer), where the unit activations unfold in time 
(activation dynamics), combined with parameter change (learning dynam-
ics), that can give rise to interesting emergent phenomena in the organiza-
tion of the state space.

Connectionism is claimed to make strong assumptions about the nature 
of human mental representations and inductive biases based on a certain 
view of neural mechanisms and development, such as graded distributed 
representations, lacking explicit structure, being shaped almost exclusively 
by experience (Griffiths et al., 2010). That is basically true, although con-
nectionist models also use localist (symbolic) representations (Page, 2000). 
Nevertheless, connectionist commitments to certain types of representation 
and learning mechanisms should be viewed as principled, intentional and 
biologically inspired. Of course, this assumption imposes potential difficulty 
for connectionist models to account also for higher aspects of cognition, 
that are typically dealt with by symbolic or probabilistic models.

As argued by the proponents of probabilistic approach, the representa-
tional variety is useful because it allows to identify the types of representa-
tion that best account for certain cognitive behavior. This seems justified at 
the computational and algorithmic levels, where the type of ideal represen-
tation could depend on the task as suggested by numerous examples cited 
in Griffiths et al. (2010). From the evolutionary perspective, however, one 
could ask, whether it is plausible to look for qualitatively different, task-
dependent accounts, or whether evolutionarily older principles were used 
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in the service of higher functions. In this context, Clark (2001) introduces 
the concept of cognitive incrementalism and considers it a remaining big 
issue in cognitive science. Considerable empirical evidence, covered by 
the umbrella of grounded (=embodied+embedded) cognition, suggests that 
higher cognition is embodied in the lower-level sensorimotor processes 
(Barsalou, 2008). Connectionism seeks to provide a uniform account, con-
strained by the implementational level, whereas probabilistic approach 
speaks in favor of plurality, predicting that ultimately, for all computational 
accounts, the corresponding neural mechanisms may be found. Symbolic 
account also takes a uniform approach, focusing on higher functions of 
the mind, and not caring much about lower aspects of cognition (i.e. those 
related to sensorimotor behavior). Dynamical systems framework also oper-
ates at the computational level, but its concepts are useful also for connec-
tionism (in particular, recurrent neural nets) as argued below. 

6. Computation and Neural Networks

The above mentioned frameworks are all meant to perform some kind of 
computations in the common sense, but a closer look reveals that they do 
not involve the same types of computation. Actually, all four frameworks 
refer to the computational level of analysis, but only connectionism makes 
commitments to the implementation. Algorithmic level is relevant mostly 
for symbolism and connectionism. Yet, these two frameworks, and I agree, 
are qualitatively different accounts (the view of eliminative connectionism), 
and neural networks provide a better, more accurate account of the human 
cognition than symbolic models (see also Feldman & Ballard, 1982; Greco, 
1998; Churchland & Sejnowski, 1992; Bechtel & Abrahamsen, 2002).5 
Before continuing with argumentation, it is useful to realize what kind of 
computation is performed by neural networks.

6.1. Computation in Neural Networks
As recently reviewed by Piccinini (2008), connectionism does not embrace 

5 Connectionist models are also frequently listed among the greatest modeling 
hits as judged by (around 70, personal comm.) cognitive modelers (Cottrell, 2012). 
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a homogeneous group of methods, because it covers both the models with 
discrete and continuous variables that operate in discrete or continuous 
time. The first neural networks composed of logical neurons (McCulloch 
& Pitts, 1943) resembling the logic gates operated in discrete time, used 
discrete activation values, were not able to learn, so they can be viewed as 
equivalent to the symbolic system. The function of such a network can be 
described by a program that realizes it.

Perceptrons (Rosenblatt, 1962) already introduced continuous activation 
functions, but remained functioning in discrete time. Importantly, these 
models can be trained, so there exist learning rules implementing arbitrarily 
small changes of model parameters. The learning rule is a key element in 
an adaptive system, because it allows for elementary changes in knowledge 
representation, and this can only be well dealt with in the domain of (real 
valued) numeric representations. In this case, we deal with analog, non-
classical computation, which implies that the model realizes the required 
function (i.e. it assigns desired output to a given input) without having to 
execute a program.6 

The third category of neural networks are those that operate in continuous 
space and time. These are typically represented by spiking neural network 
models (Maass & Bishop, 1999), that have become more popular during the 
last two decades and formed the new field of computational neuroscience. 
In this case we cannot talk about computations, because these require dis-
crete time. A simulation of these models with infinite precision can only be 
achieved using analog computers, but fortunately the digital computers will 
often do the job sufficiently well. 

Computational neuroscience as a research discipline differs from a more 
psychologically oriented connectionism by focusing on a more detailed 
computational description (being also constrained by implementational 
level). It emphasizes the features of functional and biologically realistic 

6 Let us consider the often cited example of multiplying two numbers. A neural 
network can be trained to learn to multiply two (also larger) integers, without 
having to run a program (as opposed to symbolic systems, and children that learned 
the procedure at school). In a neural network, the result comes out in a single step 
(nonlinear transformation).
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neurons (and neural systems) and their physiology and dynamics. How-
ever, these models cover multiple spatial-temporal scales, ranging from 
membrane currents, protein and chemical coupling to network oscillations, 
columnar and topographic architecture and learning and memory. Compu-
tational neuroscience attempts to model not only purely neural phenomena 
but also tries to relate these to mental processes. Therefore, computational 
neuroscience should be considered as one of the perspectives of computa-
tional cognitive science, even though it has not been commonly identified 
as one of the modeling frameworks. 

6.2. Computational and Explanatory Power of Neural Networks
Some theoretically interesting ideas arose from earlier papers focusing 

on the computational properties of neural networks. The universal approxi-
mation theorem provides a proof that a feedforward neural network with 
one hidden layer can approximate an arbitrary continuous function with 
arbitrary precision (Hornik, Stinchcombe & White, 1989). Similarly, the 
often cited equivalence proof states that a recurrent neural network with 
sigmoidal units (of which the Elman network is the best known example; 
Elman, 1990) is computationally equivalent to the universal Turing machine 
(Siegelmann & Sontag, 1991). These rigorous results are of high theoretical 
importance, but not so much of practical importance in computational mod-
eling, because they say nothing about how to construct a network (i.e. to 
set its weights) that would perform desired computations. This is important 
because the explanation of phenomena in cognitive science includes not 
only the processing and representation of information but also the acquisi-
tion of knowledge, and this requires learning.

Nevertheless, there is another important theoretical argument that is rel-
evant in the context of recurrent neural networks, as opposed to (symbolic) 
Turing machines. Using sequences of symbols (with one-hot encoding) 
for training recurrent nets (dynamic systems) allows one to investigate the 
underlying dynamics in the parameter space. In line with earlier results 
by Siegelmann (1999), Tabor (2009) provides the analysis of the so-called 
affine dynamical automata (a simplified linearized version of an artificial 
recurrent neural net) showing that they can exhibit a range of symbol 
processing behaviors some of which are not achievable by a symbolic sys-
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tem (Turing machine). This makes the connectionist account more general, 
incompatible with the symbolic account.7 As Tabor (2009) explains, the 
super-Turing capability of neural nets allows a more complex dynamics that 
provides explanations of various cognitive phenomena, e.g. in the field of 
language modeling (Christiansen & Chater, 2001). The real-valued metric 
relations in network parameter space leads to computation with infinite pre-
cision, which, as Tabor argues, “allows us to discover principles of linguis-
tic and logical organization like compositionality which would be out of 
reach if only finite state computation were employed.” This contradicts the 
claim of some symbolists (e.g. Fodor, 2000) that connectionist and symbolic 
accounts are equivalent because they can be transformed to each other. As 
shown, this transformation is possible only in some cases (when the gener-
ating partition of the state space exists).

6.3. Challenges for Neural Networks
Neural networks have undoubtedly proven successful in modeling various 
lower-level cognitive tasks, but they have been criticized for being funda-
mentally inappropriate for modeling higher cognition (Fodor & Pylyshyn, 
1988). The area of ‘‘combinatorial symbol combination’’ has been claimed 
to be the core computational feature of symbolic theories, and plausibly 
a foundational element in empirically defensible properties of the human 
mind: productivity (allowing to generate unlimited number messages with 
limited vocabulary), systematicity (understanding ‘‘X loves Y’’ implies 
understanding ‘‘Y loves X’’), and compositionality (parts are combined to 
larger chunks, contributing to the overall meaning). However, even in this 
combinatorial domain, connectionist models have demonstrated consider-
able empirical success. Productivity requires recursiveness and this has been 
studied extensively with recurrent neural network using the classes of artifi-
cial languages in Chomsky’s hierarchy (Christiansen & Chater, 1999). Com-
positionality has been investigated as well. For instance, Greco and Caneva 

7 Mathematically speaking, the explanation is based on structural correspondence  
between continuous dynamics (the state space of a neural network) and symbolic 
dynamics (Turing machine), given by non/existence of the so-called generating 
partition of the state space (beim Graben, 2004).
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(2010) point to advantages of compositional grounded representations for 
motor patterns using behavioral experiments,  supported  by connectionist 
simulations. An interesting phenomenon revealed about neural networks is 
the so-called functional compositionality, as a qualitatively different alter-
native to concatenative compositionality, typical for symbolic models (van 
Gelder, 1990). Systematic behavior in neural networks has been studied in 
relation with both the syntax (e.g. Farkaš & Crocker, 2008) and the seman-
tics (Frank, Haselager & van Rooij, 2009). All these models provided quali-
tatively different explanations for the studied phenomena, without being 
mere implementations of symbolic systems.

Another important issue that remains a challenge for neural networks 
is the binding problem.8 In his very recent review, Feldman (2012) points 
out that the well-known (neural) binding problem comprises at least four 
distinct problems with different computational and neural requirements. 
These are: general (sensorimotor) coordination, visual feature-binding (in 
perception), variable binding (in language), and the unity of perception 
(subjective experience). As Feldman puts it, there has been significant con-
tinuing progress, partially masked by confusing the different versions of the 
binding problem. More concretely, coordination and visual feature-binding 
demonstrated the most significant progress, variable binding remains a chal-
lenge and the question of subjective unity of perception remains intractable. 
Interestingly, some of the proposed neural accounts borrow the ideas from 
the computational neuroscience (temporal synchrony).

Catastrophic interference9 is another common argument against connec-
tionism. How to acquire new knowledge without erasing old one? Interfer-
ence is assumed to be a negative consequence of using distributed repre-
sentations that support generalization and robustness in neural networks. 
Several solutions to this problem have been proposed (French, 1999), of 
which two seem to be the most convincing. One is based on interleaving the 
newly acquired knowledge with old knowledge during learning. The other 

8 Thanks to one of the reviewers for pointing to this issue.
9 It is also related to the stability-plasticity dilemma, i.e. how could the system 

learn fast without becoming unstable (children are known to be able to learn certain 
things based on very few exemplars).
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enforces the formation of less distributed representations towards sparse 
coding, hence alleviating interference among different representations.

In the context of modeling language acquisition and processing, symbolic 
and connectionist accounts are usually viewed as qualitatively different 
alternatives. Interestingly, some connectionist models attempt to reconcile 
them, for instance, a recent model of sentence generation, that draws on 
sensorimotor information processing, incorporates certain Chomskyan ideas 
about innate syntactic knowledge and parameter setting (Takáč, Beňušková 
& Knott, 2012).

6.4. More and Shared and distinguishing Features among Paradigms
Symbolism shares with connectionism the concept of representations, 

albeit with different properties (e.g. symbolic versus subsymbolic). On the 
contrary, the radical thesis of the dynamic paradigm denies representations, 
because there is no room for them in the continuously changing coupling 
system. This view can be acceptable in the context of agent’s sensorimo-
tor interactions with the environment but hardly in the wider context of 
cognitive processes, most of which do require internal states (mental rep-
resentations), either cued (triggered by an external stimulus) or detached 
(Gärdenfors, 1996). Hence, the representational-computational approach is 
compatible with a softer version of the dynamical paradigm.

Connectionist, dynamical and probabilistic approaches may become in the 
future more integrated within the computational cognitive science (McClel-
land, 2009). Symbolic paradigm stands in a striking contrast with these par-
adigms and will probably preserve its role of a “coarse-grained,“ but under-
standable description of cognitive phenomena. For instance, the explanation 
of the past tense formation of English verbs (“ed” rule and  exceptions) is a 
clear symbolic explanation that can be enriched by a process of acquisition 
as observed in developing children (Pinker & Ullman, 2002).

Regardless of the future of cognitive science, the continuing effort to use 
the symbolic approach will remain very useful, especially when it comes 
to designing software systems that will serve humans, such as knowledge-
based (expert) systems for various domains, or the semantic web (Davies, 
2006). Their potential is far from having been fully exploited.

To summarize, we should understand the concept of computation in 
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wider sense, to accommodate also nonclassical computation. Practically, all 
computational models can be well approximated by discrete computations, 
implemented in standard computers, but this is only a technical issue, not 
crucial for cognitive science as such. In other words, the fact that a digital 
computer can implement a neural network does not imply anything about 
the nature of human cognition. Various modeling paradigms appear to be 
useful for cognitive science in general. With respect to the three levels of 
analysis and all reviewed frameworks, the algorithmic level seems impor-
tant only for connectionism and symbolism due to specified representations. 
In connectionism, the representations are also constrained by the implemen-
tational level. In symbolism, an important role is played also by involved 
algorithms (programs).

7. Importance of learning

In trying to model the complex behavior, it is crucial to find the proper bal-
ance along the nature–nurture dimension. Actually, in an effort to use the 
models in autonomous embodied agents, there must be a strong focus on 
learning. The traditional symbolic approaches are powerful in using the 
representational framework but the incorporation of learning mechanisms 
is in principle difficult. Machine learning as a research field that has been 
developing independently from cognitive science, has much to offer. It cov-
ers a variety of techniques some of which are biologically inspired, the oth-
ers are not. Machine learning covers both subsymbolic methods (e.g. neural 
networks) as well as symbolic methods (e.g. graphical or probabilistic mod-
els). It appears that all three categories of learning algorithms (supervised, 
unsupervised and reinforcement learning) are important, are biologically 
relevant, and together form a powerful framework (Doya, 1999; O’Reilly & 
Munakata, 2000).

The importance of learning is also one of the hallmarks of the related 
research field, labeled computational intelligence (CI; e.g. Engelbrecht, 
2007), that focuses more on the so-called soft computing (i.e. various types 
of heuristics used in bio-inspired models), rather than hard computing that 
is traditionally anchored in logic-based core of AI.10 Computational intelli-

10 It should be noted that there is no complete agreement regarding the differences 
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gence covers primarily three core areas: neural networks, fuzzy systems and 
evolutionary methods. It is a bottom-up approach that focuses on numeri-
cal (rather than symbolic) data, it emphasizes pattern recognition, learning 
(adaptation), autonomy of agents, and several other features (Craenen & 
Eiben, 2003). On the other hand, despite common foci, computational intel-
ligence is currently quite heterogeneous. Duch (2007) proposes his vision of 
computational intelligence, as it should proceed towards exploring a variety 
of learning methods, efficiently combining them into committees of models, 
with incorporation of meta-learning, towards an integrative theory of adapt-
ability.

8. Design of Artificial Cognitive Systems

The necessity to apply learning mechanisms is reflected in the design of 
artificial cognitive systems, embodied in physical hardware. The field of 
robotics has progressed nicely during the last half century, delivering robots 
of all kinds, ranging from artificial insects up to complex humanoids. Given 
the knowledge of inverse kinematics and well designed control, these 
robots can execute motions with very high speed and precision, making the 
designer’s approach very successful. 

To meet the requirements posed by the bottom-up approach, the cogni-
tive developmental robotics (Asada et al., 2009) emerged as a natural way 
of applying the constructivist principles to building autonomous artifi-
cial agents (robots) with higher degrees of autonomy (Pfeifer & Scheier, 
2000). This research area benefits from increased attention, driven by the 
vision that the modeling of cognitive processes cannot be achieved without 
embodied agents, embedded in the environment the agent is interacting 
with (Pfeifer, Lungarella & Iida, 2007). The design of learning mechanisms 
is often inspired by cognitive neuroscience and developmental cognitive 
psychology, that abound with empirical data. Recent achievements are rela-
tively modest, focusing on small scale problems with fewer degrees of free-

in the scope between AI, CI and the role of machine learning in them (Craenen 
& Eiben, 2003). Some proponents of the modern AI include CI tools under the 
umbrella of AI (Russell & Norvig, 2009).
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dom, but I believe this trend will continue towards more complex scenarios. 
Cognitive robotics imposes constraints on learning mechanisms and repre-
sentations, and it is quite difficult to achieve higher degrees of autonomy. 
The role of the designer is typically reduced to setting up the architecture, i.e. 
the modules and their connectivity, and the overall functional description. 
The suitable parameters are found by learning.

A number of cognitive architectures have been proposed in the last two 
decades, and of these, three major categories can be identified: symbolic 
architectures, subsymbolic (emergent) architectures, and hybrid approaches 
as the mixture of the two (Vernon, Metta & Sandini, 2007, and Weng, 2012, 
provide recent reviews). The popularity of the hybrid approach results from 
the difficulty of the purely bottom up approach and will probably remain 
the main constructivist approach in the nearest future. Within emergent 
approaches, artificial neural networks play a crucial role.11

Empirical literature will remain an important source of constraints that 
could/should be considered in the design of artificial systems. For instance, 
the traditional sense–think–act cycle may be replaced with the view con-
sistent with the common coding theory of perception and action, according 
to which these two modules are intertwined, deeply interacting, rather than 
being separate (Prinz, 1984). Similarly, the traditional distinction between 
cognitive processes (including the abstract ones) and sensorimotor processes 
is being replaced by the grounded cognition perspective, according to which 
cognitive processes are inseparable from sensorimotor processes, with 
respect to the underlying neural substrate (Barsalou, 2008). The discovery 
of the mirror neuron system in some higher species and in humans can be 
considered a big step forward, offering various interesting implications for 
modeling social cognition (Gallese et al., 2011). 

  
9. Computational Modeling: Memento and Manifesto 

The importance of models for cognitive science has been recognized not 

11 Using neural nets in robotics provides an added value for the connectionist 
paradigm towards the enactive approach (Varela, Thompson & Rosch, 1991), that 
lends itself to acquiring autonomous emergent behavior.
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only by modelers but also by experts from “outside.” As recently mentioned 
by the cognitive psychologist D. Gentner (2010), since its birth in 1950s, 
cognitive science has gone through the development that reveals certain 
trend. The proportion of papers starts to be imbalanced because cognitive 
psychology is becoming a dominant discipline. Gentner (2010) comes with 
a memento that nowadays cognitive psychology accounts for more than 
50% of scientific production in cognitive science (with its growth having 
started roughly in 1978, with a proportion of 26%), whereas the other two 
disciplines – artificial intelligence and linguistics – each account only for 
20%. As Gentner puts it, “if present trends continue, then by 2038, psy-
chology will have completed its conquest in cognitive science” (p. 330). 
However, this would be considered a Pyrrhic victory by most researchers 
(including cognitive psychologists) who are aware of the importance of 
interdisciplinarity of this field. Therefore, this memento should stimulate 
modelers in cognitive science. We have a lot of empirical data, thank to 
behavioral experiments and data imaging, but we need more computational 
models.

It is good to have computational models, but another issue is to ask how 
useful they are and whom they serve. Addyman and French (2012) recently 
came with a manifesto for change in computational modeling in cognitive 
science. As they argue, unlike the computer and software technologies that 
have advanced significantly during the last decades, modeling methodol-
ogy in cognitive science has remained rather old-fashioned, nontranspar-
ent, preventing wider exchange of information within the community, not 
only to other modelers, but also outside the core modeling community. The 
programmers typically write their code using one of the preferred avail-
able programming languages (of various kinds), but rarely provide a well- 
documented source code on their website hence prompting other research-
ers to use it. This reluctant approach can probably be explained, I think, 
by the absence of motivation to do so, because this would require an extra 
energy (the academia forces the modelers to publish papers which does not 
imply the need to care about the visibility and understandability of their 
code). This is then only a matter of person’s own initiative and motiva-
tion to try to become more visible. Of course, nice exceptions do exist, and 
Myung and Pitt (2010) recently founded cognitive modeling repository on 
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the web which provides room for sharing computational models using vari-
ous frameworks. 

Consistently with the above manifesto, the important fact is that most 
people involved in cognitive science are non modelers. Addyman and 
French (2012) propose that a presentation of any model should consider 
three categories of users: (1) casual users – who want to observe the model 
running essentially as a demo, (2) motivated users – who want to run their 
own data on the model and/or explore the parameters of the model; (3) 
modelers – i.e. skilled programmers who want access to the code, in order 
to potentially modify the structure of the model itself and test it.

Maybe the way to enforce the availability of the modeling software could 
be to require the well documented code as a part of the paper submission, 
is the same way as asking the experimenters for supplementary material 
in experimental papers, which helps the readers to grasp the details of the 
described method and to potentially replicate the experiment. It is a com-
mon practice to repeat experiments, it could also be the case with mod-
els. Unlike the experiments with human subjects, the replication of the 
(deterministic) simulations should be exactly possible, being an advantage, 
because there should be no hidden factors involved. Time will tell whether 
this manifesto will evoke sufficient response.

10. Conclusion

I have advocated the view that computational approaches in cognitive sci-
ence are not only important but crucial. More modelers are welcome to  the 
field to balance the participation of various approaches to study the mind 
and cognition. I have dealt with the concept of computation that should 
be understood in wider sense, relaxed of discrete computations, operating 
on symbols. I reviewed four computational frameworks in cognitive sci-
ence, and have presented the view on connectionism as the most promising 
approach in the field. Cognitive developmental robotics will presumably 
represent a suitable platform for designing, implementing and testing intel-
ligent physical artifacts, with increasingly higher levels of autonomy.
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