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Abstract

The performance of many machine learning models is
highly dependent on the setup of their hyperparameters.
The search for the best-performing hyperparameter con-
figuration can be performed using various uninformed
or informed search methods. In the present study, our
aim is to showcase an analytical method that reveals the
individual effects of given hyperparameters on the per-
formance of a model and to use this information to guide
the search for an optimal hyperparameter configuration.
We implement the proposed method by meta-modeling
the model’s performance as a function of the hyperpa-
rameter configuration using a multilayer perceptron net-
work and subsequently analyzing the meta-model using
feature-attribution methods. To demonstrate the feasi-
bility of our method, we apply it to the hyperparameter
space analysis of the bio-inspired UBAL model, where
the setup of its unique hyperparameters is absolutely
crucial for its performance in a given task.

1 Introduction and related work

In the area of supervised machine learning (ML), the
primary objective of all methods is to estimate some
mapping f : X → Y from a dataset of observations
D =

[(
x(1),y(1)

)
, . . . ,

(
x(n),y(n)

)]
, with x(i) ∈ X

and y(i) ∈ Y , using the inductive learning process. An
ML method can be formally defined as an inducer func-
tion (Bischl et al., 2023) I : (D, ζ) 7→ f̂θ, taking train-
ing dataset D, configured by a set of hyperparameters
(HP) ζ, and producing an estimator f̂θ ∈ H, with θ
denoting its parametrization and H a hypothesis space.
Thus, ζ determines which subspace of H is explored
and significantly affects the performance of the pro-
duced estimator f̂θ. The optimal configuration for solv-
ing a task specified by a dataset is not usually trivial to
infer and must be found empirically. This problem is
referred to as an HP optimization (HPO) problem.

The HPO methods generally consist of sampling
some set of HP configurations and empirically evalu-
ating them based on the performance of the respective
generated models. This is the case with early meth-
ods such as a grid or random search (Bergstra and Ben-
gio, 2012). For an overview of more sophisticated HPO
methods, refer to the recent work of Bischl et al. (2023).

However, in this research, we do not aim to develop
an HPO method per se; instead, we propose a means
to analyze an HP space in terms of the importance of
individual HPs. Since individual HPs are usually not
equally important for finding the best estimator, iden-
tifying their individual importance can help guide the
HPO and reduce the search space.

This problem was researched by Hutter et al.
(2014), who proposed the identification of HP impor-
tance by meta-modeling the performance of a model us-
ing random forests trained on observations from a prior
Bayesian optimization (Hutter et al., 2011) of the model
and analyzing the predictions of the meta-model using
functional ANOVA. Similarly, Sun et al. (2019) assess
the HP importance of ML models by analyzing observa-
tions from a Bayesian optimization using their proposed
N-RReliefF algorithm.

In the present paper, we introduce a method for
assessing the importance of individual HPs by meta-
modeling the performance of an ML model as a function
of its HP configuration using a multilayer perceptron
(MLP) and analyzing it using the SHAP method (Lund-
berg and Lee, 2017), a feature attribution method (Sec-
tion 3). We conduct a case study applying this method
to our biologically motivated UBAL model and analyz-
ing its HP space (Section 4).

2 UBAL model

UBAL, or Universal Bidirectional Activation-based
Learning model (Malinovská et al., 2019), is a bi-
ologically motivated alternative to classical error-
backpropagation learning, which is known to be bi-
ologically implausible (O’Reilly et al., 2012). It is
mainly inspired by the recirculation algorithm and by
Generalized Recirculation, which is an adaptation of
Contrastive Hebbian Learning (CHL) (O’Reilly et al.,
2012). UBAL is a heteroencoder model that maintains
separate weight matrices W and M for two different
directions of activation propagation between inputs and
outputs, as is the case in the brain. It also involves a
unique echo mechanism that bounces back internal ac-
tivations within the model, enabling unsupervised and
self-supervised learning. Since UBAL is essentially a
heteroassociator with self-loops, it is able to master var-
ious tasks, such as association (memory), denoising,



Fig. 1: Left: activation propagation and learning rule terms for connected layers p and q in UBAL. The activation
variables in the net are created in 4 different activation phases: forward prediction (FP), forward echo (FE), backward
prediction (BP), and backward echo (BE). Right: MNIST digits generated by UBAL.

and classification, unlike other neural network mod-
els, which require specifically designed learning rules
to perform different tasks.

Learning in the UBAL model takes a form similar
to GeneRec and CHL, with a Hebbian component (the
product of pre-synaptic and post-synaptic activations)
and an anti-Hebbian component as a difference between
the network’s estimate and the introduced target-related
activations. In UBAL, however, these terms are formed
by its internal variables as well as external inputs prop-
agated through the network. In short, the β and γ HPs
control the proportion of supervised and self-supervised
components in the model’s learning. Fig. 1 (left) illus-
trates these HPs and their influence on the model in two
connected layers p and q.

UBAL has been shown to perform well compared to
related models in the classical handwritten digit classifi-
cation benchmark (MNIST) (LeCun et al., 1998), with-
out using any regularization techniques (Malinovská
et al., 2019). One of the most intriguing properties of
the model is that it demonstrates generative properties
as an emergent phenomenon (Malinovská and Farkaš,
2021). As a heteroencoder, apart from classifying the
digits, UBAL also makes projections of those digits in
its input layer, without this being a training objective.
This could be understood as the network imagination of
the learned classes, as shown in Fig. 1 (right). Our pre-
liminary results suggest that these images vary among
network initializations and differ from the computed av-
erages of all images in the dataset.

3 Our method

Given a dataset characterizing an ML task and an ML
method providing estimators for this task, to analyze
the HP space, we first obtain observations of the per-
formance of every trained estimator configured from a
sampled set of HP configurations, similarly to all the
previous methods listed in Section 1. The sampling can
be done by any HP search method. After training an
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Fig. 2: General architecture of the meta-model imple-
mented as an MLP. nh and dh denote the number of
hidden common layers and their dimensionality, respec-
tively.

estimator, its prediction is evaluated using a chosen per-
formance metric, ρ. Subsequently, we construct a meta-
model M : ζi 7→ r modeling the performance based
on HP configuration with r denoting the performance
according to a performance metric ρ. The meta-model
M is implemented as an MLP regressor (Fig. 2) and is
trained on the observations collected in the first stage.

The trained meta-model is analyzed using the
SHAP method (Lundberg and Lee, 2017). As a feature
attribution method, SHAP identifies the effect (impor-
tance) of individual input features on the prediction of
output features. Consequently, the SHAP analysis of the
meta-model reveals the importance of an individual HP
ζi (input feature) for the prediction of a performance
metric ρ (output feature). If an HP ζi is of high im-
portance for a performance metric ρ, its manipulation
observed in the data and learned by M will cause a sig-
nificant change in the value of ρ. This indicates that ζi
contributes substantially to the prediction of ρ, and this



Fig. 3: Comparison of the SHAP values of the individual HPs as functions of their respective values inferred from the
meta-models of the Etest and Ebackproj ensembles.

contribution is quantified by the SHAP method as a high
SHAP value of the ζi feature.

The presented method is analogous to the one pro-
posed in our previous work (Cibula et al., 2024), in
which we modeled causal relationships in a robotic en-
vironment from raw observations (analogous to model-
ing the behavior of an ML model) and extracted them
via SHAP analysis.

4 Hyperparameters of UBAL

To verify the feasibility of the proposed method, we ap-
plied it to the analysis of the HP space of the UBAL
model (Malinovská et al., 2019) for the MNIST task
(LeCun et al., 1998). The base model consisted of one
hidden layer with 1200 neurons and all layers being
σ-activated. All weight matrices were initialized from
N (0.0, 0.5). The learning rate of the model was set to
λ = 0.1, and each model was trained for 30 epochs. We
have considered the values of the HPs of βF for each
layer of the network, and γF and γB for each weight
matrix W and M . Since βB HPs are equal to 1 − βF ,
we do not have to explore those, rendering 7 different
special HPs to optimize. Other HPs of the model have
been set based on previous rich and long-term experi-
mentation with the UBAL model. It is important to note
that β and γ are unique HPs of the UBAL model, and
their setup is crucial for the model being able to perform
a task. Their particular setups allow UBAL to master
qualitatively different tasks, such as classification ver-
sus auto-association.

To collect a sufficient number of observations of
the performance of HP configurations, we explored the
HP space using a random search (Bergstra and Ben-
gio, 2012). We evaluate the trained model instances
in terms of testing and back-projection accuracy. The
back-projection accuracy refers to the accuracy of the
model for its own projected images, given the digit code
(one-hot encoding). This performance measure indi-
cates how well the model generates images, at least
from its own point of view.

The data collected was used to train two ensembles
of meta-models: Etest for modeling the testing accuracy
and Ebackproj for back-projection accuracy. Each meta-
model in both ensembles was analyzed by the Deep
SHAP method (Lundberg and Lee, 2017). SHAP na-
tively quantifies the importance of HPs as a function of
their values (Fig. 3).

In Fig. 3, it can be observed that βF
2 is the HP

with the most impact, as for βF
2 ≲ 0.4 it significantly

positively contributes to the prediction of both testing
and back-projection accuracies. On the other hand,
βF
2 ≳ 0.4 negatively affects the prediction of the back-

projection accuracy. The influence of βF
2 ≳ 0.4 on the

testing accuracy prediction slightly diverges in a pos-
itive trend from the trend of Ebackproj. This indicates
that while the configurations of βF

2 ≳ 0.4 diminish the
back-projection accuracy, they positively contribute to
the testing accuracy. A similar deduction could be made
for other HPs as well.

These findings suggest how the subsequent HPO of
the model, with respect to testing accuracy, for instance,



could be constrained to reduce its complexity. HPs βF
1 ,

γB
1 , and γB

2 could be excluded from the HPO as their
importance is low throughout their range. For the rest
of HPs, the HPO could be limited only to the ranges
yielding positive contributions (e.g., βF

2 , βF
3 ≲ 0.4,

γF
1 , γF

2 ≳ 0.6). Such a constrained HPO would further
explore the subspaces with strongly interacting effects,
and it would either yield an optimal HP configuration
or the observations obtained during it could be analyzed
using the method once again to explain the interacting
effects further.

Although our method identifies the importance of
individual HPs and is able to reveal partial dynamics
of their effects on the defined performance metrics, it
fails to fully decompose the interacting effects of mul-
tiple HPs. This limitation manifests itself as a rela-
tively large variance in SHAP values of some HP (e.g.,
for βF

2 ≲ 0.4). As the effects of some other HPs
causally collide with a particular HP ζi, their manipula-
tion results in different performance measurements for
the same ζi values.

5 Conclusion

We introduce a method for analyzing the HP space of
any supervised HP-configurable estimator by model-
ing its performance as a function of its HP configura-
tion. We study this meta-model using feature attribution
methods to extract functional relationships between in-
dividual HPs (input) and the performance (output). As
demonstrated in the case study of the UBAL model, the
method is able to infer the absolute importance of indi-
vidual HPs with respect to the modeled metric, as well
as their importance relative to their values. However, the
presented method has some limitations; in particular, it
does not completely decompose the interacting effects
of multiple HPs. For future work, the performance and
data efficiency of this method should also be explored
when applied to a wider set of models.

Acknowledgement
Supported by the project VEGA 1/0373/23. Research
results were partially obtained using the computational
resources procured in the national EU-funded project
311070AKF2 National Competence Centre for High
Performance Computing. We also thank the Slovak So-
ciety for Cognitive Science (SSKV)1 for their support.

References

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13(10):281–305.

1https://cogsci.fmph.uniba.sk/sskv/

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter,
J., Coors, S., Thomas, J., Ullmann, T., Becker,
M., Boulesteix, A., Deng, D., and Lindauer, M.
(2023). Hyperparameter optimization: Founda-
tions, algorithms, best practices, and open chal-
lenges. WIREs Data Mining and Knowledge Discov-
ery, 13(2):e1484.

Cibula, M., Kerzel, M., and Farkaš, I. (2024). Learning
low-level causal relations using a simulated robotic
arm. In Artificial Neural Networks and Machine
Learning – ICANN 2024, pages 285–298, Cham.
Springer Nature Switzerland.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011).
Sequential model-based optimization for general al-
gorithm configuration. In Learning and Intelligent
Optimization, pages 507–523, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2014).
An efficient approach for assessing hyperparameter
importance. In Proceedings of the 31st International
Conference on Machine Learning, volume 32, pages
754–762. PMLR.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Lundberg, S. M. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. In Proceed-
ings of the 31st International Conference on Neu-
ral Information Processing Systems, volume 30 of
NIPS’17, pages 4768–4777.

Malinovská, K. and Farkaš, I. (2021). Generative prop-
erties of Universal Bidirectional Activation-based
Learning. In Artificial Neural Networks and Machine
Learning – ICANN 2021, pages 80–83. Springer Na-
ture Switzerland AG.

Malinovská, K., Malinovský, L’., Krsek, P., Kraus, S.,
and Farkaš, I. (2019). UBAL: A universal bidirec-
tional activation-based learning rule for neural net-
works. In Proceedings of the 2019 2nd International
Conference on Computational Intelligence and Intel-
ligent Systems, CIIS 2019, pages 57–62. ACM.

O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E.,
and Contributors (2012). Computational Cognitive
Neuroscience. PediaPress.

Sun, Y., Gong, H., Li, Y., and Zhang, D. (2019). Hyper-
parameter importance analysis based on N-RReliefF
algorithm. International Journal of Computers Com-
munications & Control, 14(4):557–573.


	Introduction and related work
	UBAL model
	Our method
	Hyperparameters of UBAL
	Conclusion

