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Abstract 

Understanding natural language relies on the cognitive 

system’s sensitivity to shifting contextual demands. 

We introduce a new behavioral method, inspired by 

classic cognitive conflict paradigms, that 

systematically manipulates contextual demands and 

the semantic association of context-congruent and 

incongruent word stimuli. In line with the role of 

spontaneous processes in triggering conceptual 

conflict, we show that strong semantic links facilitate 

responses in congruent trials but consistently slow 

them in incongruent ones. Factor decomposition of 

reaction times further reveals that identifying 

congruent and incongruent stimuli engages distinct 

cognitive capacities. 

1 Introduction 

 Understanding how our minds adapt to the 

everchanging contextual demands drives 

contemporary cognitive and language research 

(Jefferies et al., 2020; Ralph et al., 2017). A commonly 

experienced phenomenon accompanying shifts in 

contextual demands is interference from habitual yet 

contextually inappropriate information that intrudes 

the current stream of thought (Kühn et al., 2013; 

Ulrich et al., 2015). A typical scenario highlighting the 

emergence of conceptual interference may involve 

sudden changes in contextual nuances of natural 

language (e.g., when interpreting figurative speech or 

ambiguous sentences). For example, the meaning of 

the word "chair" may dramatically change depending 

on whether we discuss 1) position within a hierarchy 

(i.e., chair as a position within an organization), 2) 

furniture for our new kitchen, or 3) dentist visit (i.e., 

chair as a molar in the Slovak language). Susceptibility 

to interference from contextually irrelevant 

information (e.g., thinking of a chair as office furniture 

when discussing position within an organization) 

varies naturally in the neurotypical population yet 

becomes more apparent in thought and language 

deficits (most notably in aphasias and schizophrenia, 

Kreher et al., 2007; Lundin et al., 2020; Noonan et al., 

2010). The prominent hypothesis regarding these 

conditions concerns dysregulated controlled 

mechanisms that fail to detect shifts in contextual 

demands to signal inhibition of habitual spread of 

semantic activation onto irrelevant conceptual 

elements (e.g., Almeida & Radanovic, 2021). 

However, despite recent advances, this hypothesis 

lacks evidence from methods that can directly 

manipulate contextual demands and intensity of 

semantic interference (or conflict). 

 In this study, we introduce a novel Context-

matching task (CMT), building on traditional 

cognitive conflict paradigms where controlled and 

automatic processes compete for response execution 

(Miller & Schwarz, 2021; Ulrich et al., 2015). The 

CMT involves systematic manipulation of contextual 

demands (by including trials where decisions about the 

relatedness of stimulus and target words are or are not 

constrained by a context word) and contextual 

congruency (by including trials where target matches 

or mismatches the stimulus in a given context). A 

critical component of the CMT lies in the manipulation 

of semantic links between the stimulus and target 

words, which should putatively affect the intensity of 

semantic interference experienced in contextually 

incongruent trials where the target relates to the 

stimulus but not in a specified context (e.g., in a trial 

such as doctor[stimulus] + dress[context] = 

drug[target], the target links strongly with the stimulus 

but not with the context - a matching target would 

relate to both words, e.g., "coat"). Accordingly, CMT 

presents conflicting distractors of high, moderate, and 

low intensity to assess not only whether an 

interference is present but to what degree (i.e., are 

decisions in incongruent trials impaired only in the 

presence of strong competitors or also in the presence 

of weak or semantically unrelated competitors?). 



Here, we present preliminary results on the pivotal 

features of the CMT, testing whether 1) the strength of 

the semantic link between stimulus and target affects 

decisions about contextually congruent and 

incongruent trials differently (i.e., bottom-up 

processing facilitates decisions on congruent but 

impairs decisions on incongruent trials), 2) whether 

the extent of impairment in contextually incongruent 

trials scales down with the strength of the semantic 

link between the stimulus and target (i.e., habitual 

activation spreads less onto weakly related and 

unrelated competitors), and 3) whether the cognitive 

costs associated with the resolution of irrelevant 

competitors involve distinct capacities than those 

engaged in contextually constrained or weakly cued 

semantic search. 

2 Method 

2.1 Participants 

In total, 100 healthy, young individuals (59 

females; mean age 22.7 ± 1.9 years) participated in the 

study. The sample comprised 82 right-handers, 10 left-

handers, and eight mixed-handers, as indicated by the 

Edinburgh short-form handedness inventory (Veale, 

2014). At the beginning of the test session, participants 

reported low levels of stress and fatigue (medians = 

“rather low”) and high levels of concentration, 

motivation, and confidence (medians = “rather high”). 

All participants gave written consent and received 

financial rewards after completing the procedure. 

2.2 Materials and procedure 

The CMT included 75 items, each appearing in 

eight distinct conditions resulting from the 

manipulation of three factors: 1) the presence of 

context (i.e., the stimulus could appear with or without 

a context word), 2) context congruency (i.e., target 

word could be either congruent or incongruent with 

the context), and 3) strength of semantic link with the 

stimulus (i.e., there could be either strong, weak or no 

semantic link between the stimulus and target word – 

as operationalized by the logDice metric derived from 

the word-word collocation database of the Slovak 

National Corpus). Fig. 1 depicts example trials for 

each condition. Therefore, each item (i.e., stimulus) 

included eight target words, five appearing under 

context and three under no-context conditions, 

resulting in 600 trials.  Across the conditions, we 

matched the target words in word length (M = 5.1, SD 

= 1.1), frequency (log: M = 4.5, SD = 0.6), and 

psycholinguistic properties of word concreteness (1 = 

abstract; 7 = concrete: M = 5.5, SD = 1.5), imageability 

(1 = hardly imageable; 7 = easily imageable: M = 5.6, 

SD = 1.3), emotional valence (1 = negative; 9 = 

positive: M = 5.3, SD = 1.1), and arousal (1 = calm; 9 

= arousing: M = 4.6, SD = 1.0) (Scott et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Example trials of the CMT. On context trials, 

the stimulus (s) appeared with the context. On no-

context trials only the stimulus appeared on the screen. 

After 1 second a target (t) appeared requiring the 

participant to respond whether it relates to the stimulus 

or not. Green and red color designate matching and 

mismatching targets, respectively. Color intensity 

designates strength of semantic link between the 

stimulus and target word (strong > weak > unlinked). 

Adjacent bar-plots show average logDice metric ± SE 

for strongly linked, weakly linked, and unlinked 

targets (75 targets for each condition). *** p < .001 

The CMT was administered in individual 

laboratory sessions alongside other executive control 

tasks estimating working memory capacity, response 



inhibition, controlled associative memory retrieval 

and thought control. The task was programmed and 

controlled via the PsychoPy software (version 

2024.2.1, Peirce et al., 2019). Participants completed 

CMT in three blocks (each including 25 items – 200 

trials) administered in a counterbalanced manner. The 

conditions were inter-mixed within the task, and trials 

were presented in random order. Each trial began with 

a presentation of a stimulus word (with or without a 

context word). After one second, a target word 

appeared below the stimulus (and context). 

Participants were instructed to decide as fast as 

possible whether the target word semantically matches 

the stimulus (pressing the left arrow key) or not 

(pressing the right arrow key). On trials without a 

context word, the target could match the stimulus if 

any meaningful semantic link existed between the two. 

On trials with context, the target could match the 

stimulus only if satisfying the contextual demands 

(i.e., relates not only to the stimulus but also to the 

context word, see Fig. 1). The responses were 

measured for reaction time (RT) and accuracy. 

2.3 Data processing and variables 

Data were processed and analyzed in R (R Core 

Team, 2023). First, we checked the proportion of 

correct hits for each trial to identify poor items (to 

control for inflated error statistics). We adopted a strict 

rule to retain only items of which target words reached 

at least 70% overall accuracy (i.e., if the accuracy for 

one of the target words fell below this level, we 

removed all target words belonging to the stimulus in 

respective conditions to ensure that conditions remain 

homogenous in terms of stimulus and context words). 

Following this rule, we removed 23 items (41600 

responses entered further processing). The conditions 

remained equal in target word length, frequency, and 

psycholinguistic properties (pHolm > .144). Next, we 

treated RT data for erroneous responses (8.36% across 

all conditions) and outlier values (1.5 × IQR above the 

upper quartile in respective conditions, 7.04%) before 

applying 10% two-sided winsorization (by condition).  

Finally, we averaged the RT data by condition for 

each participant. Then, we contrasted these averaged 

RTs to estimate individual costs (∆RT) associated with 

the resolution of high conceptual interference (RT to 

strongly linked-incongruent – RT to strongly linked-

congruent), moderate conceptual interference (RT to 

weakly linked-incongruent – RT to strongly linked-

congruent), and low conceptual interference (RT to 

unlinked-incongruent – RT to strongly linked-

congruent). Additional contrasts included 1) costs 

associated with retrieving weak semantic links (RT to 

weakly linked – RT to strongly linked matching target 

words in no-context trials, e.g., Badre & Wagner, 

2006) and 2) costs associated with constraining the 

semantic search by low contextual demands (RT to 

strongly linked-congruent – RT to strongly linked 

target words in no-context trials) and high contextual 

demands (RT to weakly linked-congruent – RT to 

strongly linked target words in no-context trials). 

2.4 Analyses 

In the first set of analyses, we evaluated the effect 

of context congruency (congruent, incongruent) and 

semantic link (strong, weak) on RTs and errors using 

generalized linear mixed models (GLMM, gamma and 

binomial family of models with log and logit link 

functions, respectively, e.g., Lo & Andrews, 2015). 

Congruency and semantic link factors entered the 

models as fixed factors in interaction. Crucially, we 

specified maximal random effects structure, including 

random intercepts and slopes of all fixed effects and 

their interaction for participants and items (Barr et al., 

2013). In practical terms, this approach allowed us to 

assess whether the context congruency and semantic 

link effects (plus their interaction) generalize over 

their variability within the current sample (i.e., the 

effects are not driven by ‘few’ individuals) and item 

set (i.e., the effects do not result from ‘few’ items for 

which they apply). We used the likelihood ratio test to 

assess the significance of fixed effects. In pairwise 

comparisons, we adjusted the p-values for four tests by 

Holm’s method (strongly linked-congruent vs weakly 

linked-congruent, strongly linked-incongruent vs 

weakly linked-incongruent, strongly linked-

incongruent vs strongly linked-congruent, and weakly 

linked-incongruent vs strongly linked-congruent). The 

RT GLMM included 17811 responses and error 

GLMM 20800 responses. Finally, we ran two 

additional GLMMs, one contrasting RTs in three 

context incongruent conditions against the RTs in 

strong congruent condition (i.e., formal assessment of 

demands on conflict resolution as a function of 

semantic link, strong > weak > unlinked) and second 

modelling RTs for matching target words as a function 



context (present, absent) and semantic link (strong, 

weak). Both models estimated maximal random 

effects structure. 

In the second set of analyses, we conducted an 

exploratory factor analysis (EFA) on RT contrasts 

reflecting 1) costs from resolving high, moderate, and 

low conceptual conflict and 2) costs from retrieving 

weak semantic links and constraining semantic search 

by high and low contextual demands (i.e., six 

indicators). KMO and Bartlett’s test of sphericity 

determined data sampling adequacy and suitability for 

EFA. To estimate the factor structure, we performed 

parallel analysis using the ‘minres’ method (Harman 

& Jones, 1966; Zegers & ten Berge, 1983) and retained 

only factors surpassing the 95th percentile of 

eigenvalues from 1000 simulated correlation matrices. 

Factors were rotated by the ‘oblimin’ method. Model 

fit was assesed by χ2 test, TLI, RMSEA, and SRMR. 

3 Results 

3.1 Reaction time and error statistics 

In line with our expectations, congruency 

(congruent, incongruent) and semantic link (strong, 

weak) factors yielded a robust interaction on RT, χ2(1) 

= 38.24, p < .001 (Fig. 2A left). This interaction 

showed that strong compared to the weak semantic 

link between the stimulus and target word slowed RTs 

in context-incongruent trials (∆RT = +0.15s, SE = 0.05, 

Z = 2.98, pHolm = .003), but facilitated RTs in context-

congruent trials (∆RT = -0.44s, SE = 0.06, Z = -7.97, 

pHolm < .001). RTs on strong and weak incongruent 

trials were significantly longer than RTs on strong 

congruent trials (∆RT = +0.50s and +0.35s, 

respectively, Z > 6.09, pHolm < .001). Similarly, 

congruency and semantic link factors showed a 

reliable interaction on response errors, χ2(1) = 281.09, 

p < .001 (Fig. 2A right). Likewise, the interaction 

indicated that strong compared to the weak semantic 

link between the stimulus and target word led to a 

slightly higher error rates in context-incogruent trials 

(∆Error-rate = +2.5%, SE = 0.8, Z = 3.11, pHolm = .004), 

but to lower error rates in context-congruent trials 

(∆Error-rate = -6.5%, SE = 1.1, Z = -7.52, pHolm < .001). 

Only error-rates in strong but not weak (pHolm = .199) 

incongruent trials were significantly higher than error 

rates in strong congruent trials (∆Error-rate = +3.5%, 

SE = 0.9, Z = 4.31, pHolm < .001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: A) RT (left) and errors (right) in CMT as a 

function of context congruency and semantic link 

factors. B) Left: RT on strongly linked (S), weakly 

linked (W) and semantically unlinked (U) trials in 

context congruent (CON) and incongruent (INCON) 

conditions. Right: RT to strongly and weakly linked 

targets in context and no-context trials. C) Scree plot 

of observed and simulated Eigenvalues from EFA on 

RT costs data. Red circle indicates factor capturing 

costs from resolving high, moderate, and low 

conceptual conflict, and green circle indicates factor 

capturing costs from retrieving weak semantic links 

and constraining search by low and high contextual 

demands. Error-bars show ± SE of the estimates. *** 

p < .001 ** p < .01 
ns non-significant (Holm 

corrected). 

 



The GLMM comparing RTs on incongruent trials 

against the RTs on strong congruent trials replicated 

the main effect of condition, χ2(3) = 56.34, p < .001, 

and additionally showed that RTs on semantically 

unlinked context-incongruent trials did not differ from 

RTs on strong context-congruent trials (Z = 0.44, pHolm 

= .663), but differed significantly from RTs on strong 

and weak context-incongruent trials (Z > 7.30, pHolm < 

.001, i.e., interference resolution costs decreased from 

strong to weak to no semantic link between the 

stimulus and target word, see Fig. 2B left).  

Finally, the GLMM modelling RT as a function of 

context presence (yes, no) and semantic link (strong, 

weak) factors did not yield a significant interaction, 

χ2(1) = 2.61, p = .106. However, the main effects of 

context and semantic link were both significant, χ2(1) 

> 13.09, p < .001 (Fig. 2B right). Pairwise contrasts 

revealed that weak as compared to the strong semantic 

link substantially slowed RTs on context (∆RT = 

+0.45s, SE = 0.06) as well as no-context trials (∆RT = 

+0.52s, SE = 0.06), Z > 7.07, pHolm < .001. RTs on 

strong and weak context trials were significantly 

longer than RTs on strong no-context trials (∆RT = 

+0.21s and +0.66s, respectively, Z > 3.92, pHolm < 

.001). 

3.2 Exploratory factor analysis 

RT costs data were found adequate for EFA (KMO 

= 0.70, Bartlett’s test: χ2 = 15.00, p < .001). Parallel 

analysis suggested two factors for extraction (see Fig. 

2C). Extracted factor structure showed an acceptable 

fit to the data, χ2(4) = 6.87, p = .143, TLI = .97, 

RMSEA = .08, SRMR = .015. The first factor 

explained 39.2% of the variance and saturated costs 

from resolving high (factor loading λ = .93), moderate 

(λ = .91), and low (λ = .79) conceptual conflict. The 

second factor explained 34.1% of the variance and 

saturated costs from retrieving weak semantic links (λ 

= .53) and constraining semantic search by low (λ = 

.80) and high (λ = .99) contextual demands. Factors 

showed small negative correlation, r = -.115. 

4 Conclusions 

  In this study, we introduced a novel behavioral 

method for assessing the ability to resolve linguistic-

conceptual conflict. First, the reaction time and error 

data from CMT confirmed that habitual semantic links 

play an opposing role in conflicting (i.e., context-

incongruent) versus non-conflicting (i.e., context-

congruent) conditions (Badre & Wagner, 2007; 

Macgregor et al., 2020; Ulrich et al., 2015). 

Specifically, while a strong conceptual link between 

the stimulus and target word accelerated the 

identification of a matching target, it impaired the 

resolution of a conflicting (or distracting) target. This 

dissociation aligns with the purported role of bottom-

up (automatic) processes in the emergence of semantic 

interference (i.e., faster spread of semantic activation 

along habitual conceptual links promotes efficient 

retrieval of contextually relevant information but at the 

same time induces higher interference when irrelevant 

conceptual elements need to be resolved, Miller & 

Schwarz, 2021; Nedergaard et al., 2023; Nelson et al., 

2008). Moreover, further analyses showed that the task 

design of CMT allows for parametric control of the 

intensity of conceptual conflict (i.e., RT costs on 

incongruent trials decreased as a function of semantic 

link strength, Fig. 2B left). Further support for this 

claim became apparent in EFA, which showed that RT 

costs associated with the resolution of contextually 

irrelevant information went beyond general costs 

stemming from imposing contextual demands or 

identifying less available semantic information. 

However, the results from the EFA may warrant 

further analyses in the future as RT costs derived for 

incongruent distractors versus congruent targets were 

contrasted against different baselines, which could 

artificially drive the observed two-factor structure. 

Nevertheless, when we subtracted the same RT (on 

strong context-congruent trials) in calculation of all 

RT costs, we still found the first factor reliably 

saturating only the costs from resolving interfering 

targets but not the costs related to identifying weak 

semantic links (i.e., the observed two factor structure 

did not result purely from ∆RT calculations). Finally, 

we note that the difference in resolution demands on 

weakly linked versus strongly linked incongruent 

trials may not seem considerable (i.e., ~ 150ms) 

despite presenting a ~ 30% decrease (against strong 

distractors). However, later iterations of the task may 

easily adjust this difference by considering 

multivariate and more robust metrics of semantic 

association in item construction and selection (e.g., 

combining human association norms and explicit 

ratings of relatedness with the data from distributional 

models of semantic memory or large language models, 

Kumar, 2021). 



 In summary, the CMT may offer novel means of 

assessing how unregulated executive control distorts 

the resolution of competing semantic information of 

varying intensity, which may be particularly relevant 

for addressing hypotheses regarding the sources of 

deficits in patients with language, memory, or thought 

impairment. 
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