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Abstract

Standard methods for training of the artificial neural net-
works (ANN) include various techniques for improving
their success rates that are more mechanistic than brain-
inspired. Brain-inspired learning makes use of elegant
principles, such as homeostasis, for making biological
neural networks learn more efficiently. The BCM rule is
the most parsimonious model of neuronal learning in the
brain today. An abstraction of this rule can potentially
improve the efficiency of error-backpropagation-based
learning in classical ANN. To test this hypothesis, we
propose an adaptation of the classical multilayer per-
ceptron to include a local learning rate component for
each weight that decreases gradually through the train-
ing based on the activation of presynaptic and postsy-
naptic neurons.

1 Introduction

The most important principle in both biological and ar-
tificial neural networks is that they store their knowl-
edge in patterns of synaptic weights, that modulated the
efficiency of connections between the individual neu-
rons (O’Reilly et al., 2024). Within artificial neural
networks learning we distinguish two main paradigms
based on what information is the network using to gain
knowledge, the so called unsupervised learning - with-
out any teaching signal - which is also implemented in
the brain and the so called supervised learning which
implements an input-output mapping function between
the data samples and their labels (arbitrary categories
given in the data).

1.1 Biologically motivated unsupervised learning

The general principle on which the synapses - weighted
connections - between neurons are promoted or dimin-
ished has been postulated by famous Canadian psychol-
ogist Donald O. Hebb in 1940’s (Hebb, 2005). The
Hebb’s rule states that ”neurons that fire together, wire
together“. This also includes the causal link between
the cells, the firing of the so called presynaptic cell has
to precede (or trigger) the firing of the postsynaptic cell.
This general principle indeed applies to learning in the

brain, however, it has one particular cavity. If we for-
mulate the change of the synaptic weight between these
two neurons as:

∆wxy = xy, (1)

where x and y stand for activation (rate-coded approxi-
mation of the neuron’s firing) of the presynaptic and the
postsynaptic neuron respectively. We can observe that
the weight wxy can be increased until infinity just by
correlated firing of these two cells.

Fig. 1: The BCM modification function. Figure taken
from (Blais and Cooper, 2008)

In reality, the weight adaptation needs to be con-
trolled by a homeostatic mechanism, preserving bal-
anced weight values and maintaining effective func-
tioning of the synaptic weights. The best basic model
of bio-realistic synaptic plasticity developed so far is
the BCM model (Bienenstock–Cooper–Munro, Bienen-
stock et al., 1982). This model introduces a modifi-
cation function of synaptic plasticity that is applied to
Hebbian principle according to which in the extrema
of the potentiation (strengthening) or depression of the
synaptic weight is limited and thus modulated using a
sliding modification threshold. The BCM theory pro-
poses the BCM modification function ϕ of the synaptic
plasticity update as follows:

ϕ = y(y − θM ) (2)

where θM is the sliding threshold adapted according to:

θM = λ⟨y2⟩τ , (3)



where ⟨y2⟩τ is the average of the square of neuron’s past
activity over the time interval τ and λ is a proportion-
ality constant. The final weight update rule can then be
formulated as follows:

∆w = αϕxj , (4)

where α is the learning rate. The modification function
ϕ is illustrated in Fig. 1.

The threshold θm is the point of crossover between
synaptic potentiation and depression. Considering that
this synaptic modification is a function of postsynap-
tic response, if it goes below the modification thresh-
old, active synapses depress. When postsynaptic activ-
ity surpasses θm, active synapses potentiate. The BCM
function also compensates for the situation in which the
synapses have not been potentiated for a long time and
are actually more readily potentiated if some correlated
firing appears. This is reflected in sliding of the thresh-
old to the left in Fig. 1. Since the modification function
of the BCM learning rule prevents the synaptic weight
to potentiate extremely or endlessly, as well as lets the
unused connection be potentiated even when the weight
is very weak, it ensures homeostasis of the whole sys-
tem. This is the property that we explore in the context
of supervised learning, namely the classical multilayer
perceptrons.

1.2 Classical supervised learning: the MLP

The multilayer perceptron (Rumelhart et al., 1986) has
been proposed in 1980’s as an extension of the single-
layer perceptron that would overcome the problem of
learning linearly inseparable problems. The MLP is also
known to be a universal function approximator. A stan-
dard MLP consists of an input layer x, one or more hid-
den layers h, and an output layer y connected with the
weight matrices v and w. Each projecting layer con-
tains a trainable bias input fed with constant input -1,
so when computing the layer activation the input vector
has k + 1 nodes (where k is the actual size of the pro-
jecting layer). A generic MLP architecture is displayed
in Fig. 2. Units in the network compute a weighted sum
of activation from the previous layer modified by the
activation function f (usually a sigmoid, e.g. logistic
function) according to:

hj = f(

n+1∑
i=1

vijxi) (5)

and

yk = f(

q+1∑
j=1

wjkhj) (6)

The MLPs are usually trained in a supervised
manner using the error back-propagation (BP) (Rumel-
hart et al., 1986). After the network produces an esti-
mate at the output layer y for a sample presented on the

Fig. 2: Schematic depiction of a MLP.

input layer x, the error computed as the difference be-
tween desired and estimated values on the output layer
is propagated through the network in the backward di-
rection (backward pass) and weights are updated ac-
cording to:

∆wik = αδihk, where δi = (di − yi)f
′
i , (7)

and

∆vkj = αδkxj , where δj = (
∑
i

wikδi)f
′
k, (8)

where α > 0 is the learning rate.
The MLP performs supervised learning in a very

efficient way. However, the saturation of the synaptic
weights of the model is only controlled by the data pre-
sented to the network to learn. Our research question in
this work is to explore whether regulation of the satu-
ration of the synaptic weights with a mechanism pre-
serving homeostasis inspired by the BCM could lead
to improvement in its performance, namely via attribut-
ing each weighted connection a local learning rate that
would be adapted based on the coactivation of the con-
nected neurons.

2 Related Work

The concept of local learning rates and dynamically
changing learning rates in the MLP has been proposed
in combination with other regularization techniques (Ja-
cobs, 1988). Various learning-rate adaptations have
been studied (Magoulas et al., 1999; Riedmiller and
Braun, 1993) and applied several times over the training
of the network, as well as at each iteration (Magoulas
et al., 2002). This is also known as the learning rate
scheduling and has also been proposed as not decreas-
ing, but cyclical function letting the learning rate to stay
between reasonable values (Smith, 2017). It achieves



improved classification accuracy without the need to
manually find the most suitable value.

The BCM rule has been applied as modification of
various models. Benuskova et al. (1994) proposed a sin-
gle representative cell model that used a dynamic synap-
tic modification threshold in order to explain plasticity
in the barrel cortex. Their results demonstrate gener-
alization of plasticity under numerous conditions. The
first application of BCM in the field of machine learning
was proposed by Bachmann et al. (1994). It is used as an
unsupervised learning algorithm using the modification
threshold, which is compared with classical BP and lit-
erally inhibited BP using ISAR classification problem.
Tino et al. (2000) applied a variation of BCM theory on
a second-order recurrent neural network with the aim to
investigate the unsupervised state space organization in
the domain of predicting complex symbolic sequences.
Meng et al. (2011) took a different approach with a spik-
ing neural network and simulated BCM regulated by the
gene regulatory network with results that demonstrate
its effectiveness in human behavior pattern recognition,
while acknowledging the need for more robust spatial
feature extraction.

3 Our Model

We propose a novel modification of the classical multi-
layer perceptron to include local learning rate αn for ev-
ery weighted connection in the network such that each
αn is modified according to a modification function ψ
related to the ϕ function in BCM. Our decision to ma-
nipulate the learning rate is based on the fact that the
MLP is a machine learning model performing super-
vised learning in which the updates of the weight are
driven by the data in such a way that the synaptic poten-
tiation and depression are arising from the backpropa-
gation of the errors from the data thus making it already
possible for the model to drive the weights in both ways.
In comparison, the BCM, as an unsupervised learning
method, is driving the potentiation and depression based
on the postsynaptic neuron q firing rate and does not use
any error terms. Therefore our model is inspired by, yet
different from the BCM.

The general formula of our new model’s learning
in a generalized form goes as follows:

∆w = ψ(α, θM )δx, (9)

where w are the synaptic weights, the δ is computed
in the same way as in equations 7 and 8 and the learn-
ing rate α is firstly set to initial value α0 and subse-
quently modified by the function ψ throughout the net-
work training.

Our experimentation is currently in progress
around various mechanisms that we test separately and
finally implement all mechanisms together to form the
new model. We are testing several variations of this

modification function to explore two crucial aspects of
the model. In general, each local learning rate is kept
constant until the point when the observed variable in-
dicating the neuron’s connection saturation is reached.
Subsequently it will be gradually decreased until the end
of training or until it reaches zero and thus the connec-
tion weight will stay fixed. For the shape of the func-
tion according to which the αn is decreased we consid-
ered a linear decrease as well as a logarithmically de-
creasing function − ln (x) + 2. For the model’s basis
for the threshold θM based on which αn will start de-
creasing we have chosen to experiment with two differ-
ent model’s variables, the activation of the postsynaptic
neuron q and the error term δ. In the first case the learn-
ing rate begins to decrease once the threshold value is
reached and in the second case it works the opposite
way, once the δ is smaller then the αn starts to decrease.
In our currently proposed model, the value of θM is set
up experimentally and does not change over the course
of the model training. Our proposed final modification
function ψ is shown in Fig. 3.

Fig. 3: Schematic depiction of two versions of our pro-
posed modification function ψ applied individually to
each local learning rate αn in the MLP network with
the linear (blue) and logarithmic (green) decrease as a
function of training epoch (time).

4 Conclusion and Future Work

We have presented our novel adaptation of the classical
MLP that defines local learning rates to maintain home-
ostasis of learning inspired by the BCM theory. There
is a lot of experimentation ahead of us. Many aspects of
the model shall be explored and studied, from the actual
performance enrichment up to the traits such as sensitiv-
ity to over-training and others. The model is proposed
in a way that would also allow us to implement various
regularization techniques such as the momentum. Last,
but not least, the computational and spatial complexity
shall be analyzed thoroughly to have a conclusive idea
on the model’s possible use in the future.
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