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Abstract

Computational models are becoming an indispensable tool for studying and understanding the

underlying mechanisms of various scientific phenomena. Thus, in recent years, the complexity

of diagnosing and treating mental health disorders has proven to be an exciting challenge for

the interdisciplinary field of computational psychiatry. In this thesis, an extensive literature

search and review of articles, books and lectures from the field of computational psychiatry

was used to provide a systematic review of computational approaches applied to mental health

disorders and identify possible research gaps.

This critical review has three main aims: (1) to provide a detailed and up-to-date

review of computational models used in computational psychiatry (data-driven, theory-driven

and combined approaches), as well as alternative approaches to traditional classification

systems; (2) to offer a systematic overview of all data types used in computational psychiatry

(i.e. neuroimaging, genetic, digital, and behavioral data) and highlight possible problems in

their collection, implementation into computational models and validation; (3) to synthesize

findings from the application of these approaches to depression and to identify possible

research gaps and understudied phenomena. Research into the application of computational

models to the study of depression have revealed so far that they are well-suited to

investigating different facets and mechanisms of the disorder, while machine learning models

show great promise for tackling practical issues in psychiatry (e.g., diagnosis, prognosis, and

treatment selection).

In conclusion, the inherently interdisciplinary approach of the field of computational

psychiatry should enable moving away from the traditional symptom-based categorization of

mental health disorders and provide findings that are more useful for translational psychiatry,

thus advancing a more individualized, efficient and optimal approach in clinical practice.
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Abstrakt

Výpočtové modely sa stávajú nenahraditeľným nástrojom na štúdium a pochopenie

základných mechanizmov rôznych vedeckých javov. V posledných rokoch sa tak zložitosť

diagnostiky a liečby duševných porúch ukázala ako vzrušujúca výzva pre interdisciplinárnu

oblasť počítačovej psychiatrie. V tejto práci bola použitá rozsiahla rešerš literatúry a prehľad

článkov, kníh a prednášok z oblasti počítačovej psychiatrie na poskytnutie systematického

prehľadu prístupov aplikovaných na duševné poruchy a identifikáciu možných medzier vo

výskume.

Tento kritický prehľad má tri hlavné ciele: (1) poskytnúť podrobný a aktuálny prehľad

výpočtových modelov používaných vo výpočtovej psychiatrii (prístupy založené na dátach,

prístupy založené na teórii a kombinované prístupy), ako aj alternatívne prístupy k tradičným

klasifikačným systémom; (2) ponúknuť systematický prehľad všetkých typov dát používaných

vo výpočtovej psychiatrii (neurozobrazovacie, genetické, digitálne a behaviorálne dáta) a

poukázať na možné problémy pri ich zhromažďovaní, implementácii do výpočtových modelov

a validácii; (3) syntetizovať zistenia z aplikácie týchto prístupov na depresiu a identifikovať

možné medzery vo výskume a nedostatočne preskúmané javy. Výskum aplikácie výpočtových

modelov na štúdium depresie odhalil, že sú vhodné na skúmanie rôznych aspektov a

mechanizmov tejto poruchy, pričom modely strojového učenia sú veľmi sľubné na riešenie

praktických otázok v psychiatrii (napr. diagnostika, prognóza, a výber liečby).

Na záver, interdisciplinárny prístup, ktorý je neodmysliteľnou súčasťou oblasti

počítačovej psychiatrie, by mal umožniť odklon od tradičnej kategorizácie duševných porúch

založenej na symptómoch a poskytnúť poznatky, ktoré sú užitočnejšie pre translačnú

psychiatriu, čím sa posunie individualizovanejší, účinnejší a optimálnejší prístup v klinickej

praxi.

Kľúčové slová: výpočtová psychiatria, poruchy duševného zdravia, depresia
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1 Introduction

1.1 Overview of the prevalence and impact of mental health disorders worldwide

To grasp the influence of mental health disorders in general population, it is necessary to look

at prevalence of particular mental health disorders (i.e. the share of people affected in a

population), incidence (i.e. number of new cases) or some other statistical indicators, such as

data from GBD (Global Burden of Diseases, Injuries and Risk Factors)1 study (e.g., pertaining

to the impact of the DALY metric2).

Although, ideally, we would like to rely solely on official medical records (i.e. clinical

data), these estimations have to be made by taking into account some additional factors.

Therefore, in some instances, the estimated figures might be even higher. For example, mental

health disorders are usually underreported, due to social stigma or fear of discrimination. Also,

the lack of awareness of the illness might prevent people from asking for professional help. In

some cases, the access to proper healthcare facilities is simply lacking. Matters are further

complicated in cases of undiagnosed or misdiagnosed disorders or multiple diagnoses

(comorbidity).

To get a complete picture of the impact of mental health disorders in overall population,

ideally, we should also have longitudinal data at our disposal, since mental health disorders are

often characterized by their recurring nature, resistance to treatments or the early age at which

they first appear, and thus may remain undetected over longer periods of time.

As we can see from Figure 1.1 and Figure 1.2, depressive and anxiety disorders,

schizophrenia, bipolar and eating disorders are the five most common mental health disorders,

out of which depressive and anxiety disorders (which are classified as mild) constitute the

largest

1 The latest source of data is from 2021, and it has been collected since 1990 by the Institute of Health Metrics
and Evaluation (IHME).
2 DALYs (Disability Adjusted Life Years) represent the sum of mortality and morbidity and are a metric
by which researchers from GBD study measure the “burden of disease”, which corresponds to one
year of loss of good health either due to premature death or disease or disability (Roser et al., 2024).
This is certainly a more informative metric than, for example, only taking into consideration the
suicide rates (i.e. mortality) from a particular disorder. However, alarming rise in suicide rates in a
particular population (e.g., teenagers and young adults) may point to a need for raising awareness or
implementing certain prevention strategies.
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Figure 1.1 Prevalence of mental illnesses worldwide (Source:
https://ourworldindata.org/grapher/mental-illnesses-prevalence).

Figure 1.2 Global burden of disease from each category of mental illness (Source:
https://ourworldindata.org/grapher/burden-disease-from-each-mental-illness).

https://ourworldindata.org/grapher/mental-illnesses-prevalence
https://ourworldindata.org/grapher/burden-disease-from-each-mental-illness
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share, and which recorded a rise from 2019 onwards (with COVID-19 pandemic cited as the

most likely contributing factor3). Although depression and anxiety are classified as mild, they

also have high prevalence, thereby costing the global economy $1 trillion in lost productivity

each year, with a cost projected to rise to $6 trillion by 2030, while the depression is cited as

the leading cause of disability worldwide (The Lancet Global Health, 2020).

The WHO Mental Health Atlas initiative from 2017 requested that countries estimate

their government's total spending on mental health. They found that, on average, mental health

expenditure accounted for less than 2% of government budgets for health (The Lancet Global

Health, 2020). According to the findings of Rajkumar (2022), government spending on mental

health was below 1% of health expenditure in 24.4% of the 78 countries studied. However,

Figure 1.3 shows that majority of countries have some kind of policy or plan in place to

address the issue of mental health.

Figure 1.3 Stand-alone policy or plan for mental health, 2017 (Source:
https://ourworldindata.org/grapher/stand-alone-policy-or-plan-for-mental-health).

3 WHO estimates that COVID-19 has directly or indirectly contributed to an additional 53.2 million cases of
depression and 76.2 million cases of anxiety, an increase of 28% and 26% in prevalence, respectively, since the
start of the pandemic (Kämpfen et al., 2020).

https://ourworldindata.org/grapher/stand-alone-policy-or-plan-for-mental-health
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These plans generally focus on raising awareness and prevention of mental health

disorders, encouraging population to seek adequate professional help, and outlining specific

strategies with allocation of funds or time limits within which certain targets have to be met.

1.2 Importance of the computational modeling approach for mental health disorders

It may be argued that research and treatment of mental health disorders have been in a

relationship of mutual dependency, since one informs the other and vice-versa, which was

especially prominent in the early stages of the psychiatric study and practice. For example,

cognitive behavioral therapy (CBT) grew from the early 20th century psychological tradition of

behaviorism (Watson, 1913; Skinner, 1938) (Series, 2020). Therefore, methods such as

exposure therapy to treat disorders such as phobias have been developed on the assumption

that behavioral response can be “unlearned” by gradual exposure to observed triggers, but

uncovering the cause or the neural basis of such maladaptive responses might have still

remained unclear. Furthermore, since the treatment was used to eliminate the undesired

observed behavior, it seemed that the main objective was achieved, without necessarily

understanding the exact mechanism behind it.

The main problem in psychiatry compared to other branches of medicine is that the

mechanism or the neural basis of many psychopathologies are still unknown or not completely

understood, due to the absence of specific (neuro)biological bases or biomarkers. The advance

of neuroimaging techniques and genetic studies marked a significant leap towards better

understanding of etiology of the disorders, whether by offering insight into the neural

mechanisms or into the influence of heritability on potential development of the disorder (risk

factors). At the cellular or molecular level, the knowledge about neurotransmitters and

neuromodulators (serotonin, dopamine, GABA) enabled targeting some of the imbalances that

are characteristic for certain disorders, with the use of medication.

Apart from psychotherapeutic treatments (based on traditions of psychodynamic or

behavioral theory), other options in psychiatry include pharmacology and more recently, brain

stimulation techniques. Psychotherapeutic and pharmacological interventions4 in use today

4 Psychotherapeutic approaches include, for example, analytical psychotherapy, cognitive behavioral therapy
(CBT) or interpersonal therapy (IPT), while pharmacological treatments include chlorpromazine and other
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(the so-called “first line” treatments) have mostly been discovered over 50 years ago (Series,

2020). Although they have since undergone some modifications (in terms of better tolerability,

but not significantly improved efficacy), recent meta-analyses suggest a ceiling effect in

treatment research5 (Leichsenring et al., 2022). Brain stimulation techniques, which offer

alternative treatment in cases where conventional treatment options fail, may target specific

brain structures implicated in the disorders, but different protocols used still yield varying

degrees of success (with significant between- and within-subject variability).

Therefore, the central problem of psychiatry remains, but it is possible to approach it

from different perspectives. The emergence of computational neuroscience, or more precisely,

the first successful computational models such as Hodgkin-Huxley model of action potential

generation and propagation (Hodgkin & Huxley, 1952) or Hebb’s rules of plasticity and

learning (Hebb, 1949), changed the way basic neurobiological processes can be described,

validated and simulated. However, only recently it has been proposed that computational

models of cognitive function could be used to explain psychopathology. The novelty of the

computational approach consists in formalizing the biological structures and mechanisms of

the nervous system in terms of information processing (Series, 2020)6.

Figure 1.4 shows how computational neuroscience, translational modeling and various

areas of application thereof (with focus on computational psychiatry) are related to each other.

However, as a still predominantly theoretical discipline, computational psychiatry does not

seek to offer any novel treatments; it has the aim of optimizing current treatment options for

better response in patients. Also, its ultimate goal is to translate its findings into meaningful

interventions in psychiatric practice.

Apart from explaining the cause of the disorders, current challenges for psychiatric

practice include better classification (in case of overlapping symptoms or comorbidity),

typical antipsychotics, lithium for bipolar disorder, tricyclic antidepressants, SSRI/SNRI for depressive disorders,
with various modifications to improve their tolerability and alleviate side-effects (Series, 2020).
5 A random effect meta-analytic evaluation of the effect sizes reported by the largest meta-analyses per
disorder yielded a standardized mean difference (SMD) of 0.34 (95% CI: 0.26-0.42) for psychotherapies and 0.36
(95% CI: 0.32-0.41) for pharmacotherapies compared with treatment-as-usual (TAU) or placebo.
6 However, the term “computational” in the context of psychiatry may also have another meaning, i.e. inferring
physiological or cognitive processes from measurements of brain activity and behavioral responses, respectively
(Stephan & Mathys, 2014).
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treatment selection, prediction of treatment outcomes (e.g., by means of simulations) and

tailoring the treatments for individual patients (e.g., in the domain of precision psychiatry7).

Computational approach, which is inherently interdisciplinary in the case of computational

psychiatry (CP), relies on the knowledge from branches of science such as machine learning

(ML) which is a powerful tool for the classification problems. In addition, CP relies on

statistical and modeling methods as a tool for prediction, and knowledge of translational

medicine and precision psychiatry to find ways of individualizing the treatment options, and

therefore has the necessary means to provide answers to some of those challenges.

Figure 1.4 Taxonomy of disciplines in computational neurosciences. Adapted from Frässle et al.
(2018).

On the one hand, computational models constrain the number of parameters, processes

and potential outcomes and thus provide a predominantly mechanistic representation of a

certain disorder, but on the other, they fail to take into the account other dynamic influences,

such as environmental or social factors.

7 Precision medicine applied to psychiatry, or precision psychiatry, is a new, promising approach in psychiatric
care, boosted by recent advances in neuroscience, that aims to tailor treatments and interventions to individual
patients based on their unique characteristics, including genetic makeup, biomarkers, clinical symptoms, and
personal preferences.
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1.3 Scope and aim of the review

SCOPE

Since computational psychiatry is a relatively new field, the research will be focused on the

articles and books published from 2007 onwards (PubMed, ResearchGate, Google Scholar), as

well as on the material presented at the Computational Psychiatry Course Zurich 2023 &

20248 (which is keeping up-to-date with the latest research in the field). This year has been

chosen as a tentative date since the first article containing the term “computational psychiatry”

appeared in 2007 (Montague et al., 2007). However, many concepts and findings related to

this research certainly predate this point in time, so related resources with earlier publication

dates will also be included. Thematically, only the research concerning the most prevalent or

the most known disorders is going to be presented.

Figure 1.5 Computational psychiatry as a research trend. Search for “computational psychiatry” on
PubMed yielded 7,825 results for the period between 2007 and 2024 and shows an increasing trend.

METHODS

Since this is a critical review (extensive, consistent overview of theoretical approaches and

concepts in a new area of study), the method used is finding relevant literature (articles, books

and lectures on CP), systemizing knowledge about computational approaches to psychiatry in

general, and more concretely, applying it to the study of one particular disorder (depression).

Another effort at systemizing findings from the literature refers to a more comprehensive

presentation of the types of data used in CP models. Various tools (e.g., ConnectedPapers,

8 This course has been organized by the Translational Neuromodeling Unit, University of Zurich & ETH
Zurich since 2014. A list of recommended literature for the course can be found in the following link:
https://www.tnu.ethz.ch/de/teaching/cpcourse/cpc2021readinglist

https://www.tnu.ethz.ch/de/teaching/cpcourse/cpc2021readinglist
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ResearchRabbit) are used to establish connections between articles and authors researching

overlapping phenomena.

In the conclusion of the thesis, the author will try to provide a critical overview of the

approaches in CP (possible limitations, ethical considerations, future directions), as well as

presenting possible new directions in their own research.

AIMS

This thesis has three main aims: (1) to provide a detailed and up-to-date review of

computational models used in computational psychiatry (data-driven, theory-driven and

combined approaches) (Huys et al., 2016), as well as other alternative models (e.g., RDoC

initiative by NIMH)9; (2) to synthesize findings from the application of these approaches to

depression and to identify possible research gaps and understudied phenomena. These

examples will try to illustrate how the necessity in clinical practice encourages novel solutions

by leveraging theoretical knowledge and computational tools (3) to offer a systematic

overview of all the types of data used in computational psychiatry (neuroimaging, genetic,

digital, behavioral data) and highlight possible problems that may be encountered when

attempting to include them in models and operationalize them as meaningful constructs, often

at different levels of analysis (e.g., relating neuroimaging and behavioral data).

2 Definition and overview of the most common mental health disorders

2.1 Definition of mental health disorders

The question of ‘what is a mental health disorder?’ is a fundamental one for the philosophy of

psychiatry, but it is also of great practical importance for both clinicians and patients. The first

instance refers to attempts to delineate behavior that is considered unacceptable or harmful

(e.g. crime, authoritarian behavior) in the broader context of society from the inherently

dysfunctional behavior that significantly impairs individual’s everyday functioning. The latter

is more concerned with coming up with a classification system of the disorders based on their

9 Research Domain Criteria (RDoC) is a new conceptual model proposed by the US National Institute
of Mental Health in 2010 (cf. 2.3. Alternative approaches (RDoC initiative by NIMH)).
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descriptive or phenomenological characteristics (categorical approach) that enables

comparability and validation by clinical practitioners, and is determined by its usefulness for

clinical practice.

There are currently two widely established systems that classify mental disorders:

ICD-11 Chapter 06: Mental, behavioral or neurodevelopmental disorders, part of

the International Classification of Diseases produced by the WHO (in effect since 1 January

2022) and Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Text

Revision (DSM-5-TR) produced by the American Psychiatric Association (APA) in 2022.

Table 2.1 contains complete definitions of mental disorders by both manuals (with

common themes highlighted).

Table 2.1 Definitions of mental disorders by DSM-5-TR and ICD-11.

DSM-5-TR ICD-11
A mental disorder is a syndrome characterized by
clinically significant disturbance in an
individual’s cognition, emotion regulation, or
behavior that reflects a dysfunction in the
psychological, biological, or developmental
processes underlying mental functioning. Mental
disorders are usually associated with significant
distress or disability in social, occupational, or
other important activities. An expectable or
culturally approved response to a common
stressor or loss, such as the death of a loved one,
is not a mental disorder. Socially deviant behavior
(e.g., political, religious, or sexual) and conflicts
that are primarily between the individual and
society are not mental disorders unless the
deviance or conflict results from a dysfunction in
the individual, as described above.

Mental, behavioural and neurodevelopmental
disorders are syndromes characterised by
clinically significant disturbance in an
individual's cognition, emotional regulation, or
behaviour that reflects a dysfunction in the
psychological, biological, or developmental
processes that underlie mental and behavioural
functioning. These disturbances are usually
associated with distress or impairment in
personal, family, social, educational,
occupational, or other important areas of
functioning.

There are some notable formal differences between these two classification systems. Firstly,

DSM-5-TR is primarily used in the US; while ICD-11 presents a broader, international system

covering all aspects of health, including mental health (corresponding chapters include

Chapter 06, 07 and 17). Secondly, ICD-11 uses alphanumeric codes that are integrated with

global health information systems, whereas DSM-5-TR uses combination of its own codes and

ICD-11 codes for compatibility.

https://en.wikipedia.org/wiki/International_Classification_of_Diseases
https://en.wikipedia.org/wiki/Diagnostic_and_Statistical_Manual_of_Mental_Disorders
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These manuals have undergone multiple revisions, reflecting changes in societal

attitudes, scientific knowledge, and clinical practices. This just highlights the fact that what

constitutes a mental health disorder might sometimes be regarded as a social construct and that

categorical classifications (due to highly overlapping symptoms between disorders) might at

some point have to give way to a more nuanced approach, i.e. that these disorders should be

observed as a continuum rather than a discrete category.

2.2 Brief overview of the most common classifications of mental health disorders (DSM-

5-TR, ICD-11)

The following table contains broad groups of mental health disorders from the latest versions

of DSM and ICD (Table 2.2).

Table 2.2 Groups of mental disorders from DSM-5-TR and ICD-11. Cells with a blue background

indicate complete match of diagnostic groups and cells with the yellow background indicate a

difference.

ICD-11 DSM-5-TR
Neurodevelopmental Disorders Neurodevelopmental Disorders
Schizophrenia and Other Primary Psychotic
Disorders

Schizophrenia Spectrum and Other Psychotic
Disorders

Catatonia
Mood Disorders Bipolar and Related Disorders

Depressive Disorders
Anxiety and Fear-Related Disorders Anxiety Disorders
Obsessive-Compulsive and Related Disorders Obsessive-Compulsive and Related Disorders
Disorders Specifically Associated with Stress Trauma- and Stressor-Related Disorders
Dissociative Disorders Dissociative Disorders
Feeding or Eating Disorders Feeding and Eating Disorders
Elimination Disorders Elimination Disorders
Disorders of Bodily Distress and Bodily
Experience

Somatic Symptom and Related Disorders

Disorders Due to Substance Use and Addictive
Behaviors

Substance Use and Addictive Disorders

Impulse Control Disorders Disruptive, Impulse-Control, and Conduct
DisordersDisruptive Behavior or Dissocial Disorders

Personality Disorders and Related Traits Personality Disorders
Paraphilic Disorders Paraphilic Disorders
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Factitious Disorders In Somatic Symptoms and Related Disorders
Neurocognitive Disorders Neurocognitive Disorders
Mental or Behavioral Disorders Associated with
Pregnancy, Childbirth and Puerperium

No separate grouping

Secondary Mental or Behavioral Syndromes
Associated with Disorders or Diseases Classified
Elsewhere

No separate grouping

Sleep-Wake Disorders (Ch. 7) Sleep-Wake Disorders
Sexual Dysfunctions (Ch. 17 Conditions Related
to Sexual Health)

Sexual Dysfunctions

Gender Incongruence (Ch. 17 Conditions Related
to Sexual Health)

Gender Dysphoria

As we can see from Table 2.2, many groups of disorders have similar or identical

names or they encompass similar disorders, which is indicative of the need for the

convergence in classification and terminology between these two systems.

DSM and ICD, in general, are based on a theoretical, descriptive approach, whereby

each disorder is characterized by a list of possible symptoms. A minimum number of those

symptoms need to be present concurrently and during a certain time span in order to warrant a

diagnosis.

A debate about the development and utility of these diagnostic manuals is ongoing and

often contentious; however, the span of this thesis is not broad enough to discuss them here.

Yet, just to illustrate how clinicians perceive utility of these classifications, we cite the

following example from a global survey from 2018: both classifications (DSM and ICD) were

rated to be most useful for assigning a diagnosis, communicating with other health care

professionals and teaching, and least useful for treatment selection and determining prognosis

(First et al., 2018).

2.3 Alternative approaches (RDoC initiative by NIMH)

Classifications based on current versions of DSM and ICD have facilitated reliable clinical

diagnosis and research for decades. However, recently it has become apparent that diagnostic

categories based on clinical consensus fail to align with findings emerging from clinical

neuroscience and genetics (Insel et al., 2010). Namely, classifications based on descriptions of

symptoms have not always been able to capture the underlying pathophysiology.
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Therefore, in 2010, the National Institute of Mental Health (NIMH, USA) launched the

Research Domain Criteria (RDoC) initiative to create a framework for research on

pathophysiology, especially for genomics and neuroscience. Instead of having some a priori

categories to which certain symptoms need to conform, RDoC, as a research framework,

offers greater flexibility to include and explain away other symptoms that potentially

contribute to the clinical picture of a particular disorder. However, RDoC is not intended to

serve as a diagnostic guide nor does it attempt to replace current diagnostic systems (Series,

2020).

Figure 2.1 Illustration of the RDoC matrix. Adapted from Series (2020).

As it can be seen from Figure 2.1, RDoC operates on several levels and utilizes several

types of qualitatively diverse data. It conceptualizes mental health as a continuum, i.e. the

disorders are viewed on a spectrum from complete health to varying levels of dysfunction.

RDoC proposes human behavior to be broken down into fundamental domains of function

(like negative/positive valence, cognitive systems, systems for social processes, arousal and
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regulatory processes, and sensorimotor systems)10. These domains are further differentiated

into psychological-level constructs, which should link the behavior to the function of specific

neural circuits or (biological) systems11. The matrix uses different levels of analysis: from

genes, molecules and cells, which correspond to neural systems, to physiology, behavior and

self-reports, which constitute behavioral dimensions, with neural circuits as a crossing point12.

The effects of environment and neurodevelopmental processes are also taken into account.

In order for us to validate these constructs and assess their clinical utility, they need to

be in line with empirical findings, and to be able to withstand rigorous testing13. Although it is

conceptualized as a research framework, the ultimate goal of the RDoC initiative is to be able

to translate these findings into clinical practice (e.g., for early detection, better classification,

treatment selection and targeting, prediction of prognosis and treatment outcomes). RDoC is

also taking into consideration subjective feedback from the patients (by means of self-reports),

which has possibly been undervalued in determining the complete clinical picture, i.e.

subjective experiences need to conform to particular established symptom descriptions to be

evaluated for diagnosis. This shift in conceptualization of the problems faced in psychiatry

serves as a basis for the emerging field of computational psychiatry, because it provides a

framework within which specific theories can be applied and models tested. The existence of

domains and dimensions in RDoC encourages interdisciplinary cooperation, which is also one

of the cornerstones of computational psychiatry research. Levels of analysis that transcend the

individual (as a biological entity), such as environmental and neurodevelopmental factors can

10 Negative valence systems involve responses to aversive situations or contexts, such as fear, anxiety,
and loss. Positive valence systems relate to responses to positive motivational situations, such as
reward seeking and habit learning. Cognitive systems operate with constructs such as attention,
perception, declarative and working memory. Systems for social processes mediate the responses to
various interpersonal settings. Arousal/Regulatory systems enable activation of appropriate neural
responses for achieving homeostatic balance (arousal, circadian rhythms, and sleep-wake patterns).
Sensorimotor systems are responsible for the control and execution of motor behaviors (NIMH»
RDoC Matrix, n.d).
11 For example, reward motivation is a construct that can be used to explain the following dimension
of functioning: if it is excessive, it may contribute to substance abuse or gambling, if it is deficient, it
may be a factor in anhedonia or anorexia (Kozak & Cuthbert, 2016). Biological underpinnings of
reward seeking behavior have already been well-documented (e.g., dopaminergic system).
12 Circuit-level is the focal element in the RDoC organisation (Insel et al., 2010).
13 The lack of specific biomarkers in psychiatry was one of the reasons for stagnation in this area of
medicine, compared to other areas, in which, once the right biomarker was identified, it was possible
to establish the diagnosis and identify targets for treatment.
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also be modeled this way. On the other hand, interoceptive processes have also gained

importance as a contributing factor to the overall understanding of mental health disorders

(Khalsa et al., 2018).

2.4 Diagnostic difficulties

As it was mentioned before, one of the main reasons for the difficulties in diagnosing mental

health disorders is that in other branches of medicine, in contrast to psychiatry, it is possible to

validate the diagnosis empirically by means of specific biomarkers or (neuro)biological bases.

This is possible only for a small number of mental health disorders,14 but is not routinely

performed.

Mental health disorders are usually associated with a heterogeneous clinical representation,

which often leads to diagnostic challenges, since multiple disorders have a lot of overlapping

symptoms. In other words, it is very rare to have a set of symptoms that are unique for one

particular disorder.

The use of current classification and diagnostic systems (DSM, ICD) has led to

discussions on both theoretical and practical levels. On the theoretical level, the concept of

comorbidity15 in psychiatry seems to require significant revisions in order to be clearly defined.

On the other hand, in clinical practice, it has been suggested that psychiatric

comorbidity might be an artifact or a by-product of the DSM/ICD strategy to “split”

categorical diagnoses. Another feature of the diagnostic manuals which contributes to

comorbidity is that users are instructed to follow the general rule of recording as many

diagnoses as are necessary to cover the clinical picture (First, 2005). However, this strategy

should be reviewed in light of clinical utility and whether it adds or obscures important

14 For example, genetic studies have yielded some significant results, especially about the higher
heritability (the proportion of causation attributable to genetic factors) for the more severe and less
common disorders such as autism, schizophrenia and bipolar disorder. Genome-wide association
studies (GWAS) have identified more than a hundred genetic variants associated with severe mental
illness (Uher & Zwicker, 2017). GWAS test hundreds of thousands of genetic variants across many
genomes to find those statistically associated with a specific trait or disease.
15 In simple terms, psychiatric comorbidity refers to the co-occurence of two or more mental
disorders. It is implied, however, that these disorders are mutually independent. Some authors (First,
2005) argue that true comorbidity in psychiatry is rare (it needs to fulfill the criteria of either known
etiology and/or circumscribed pathology, similarly to general medicine), and that most of the cases
can be classified as artifactual comorbidity, a by-product of the DSM/ICD strategy to
“split“ categorical diagnoses.
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clinical information. For example, allowing the diagnosis of panic disorder in the presence of

the diagnosis of schizophrenia adds clinically useful information in terms of clinical

management (e.g., choice of treatment, prognosis). However, the question remains whether

representation of a panic disorder due to agoraphobia, for example, is the same as the picture

of a panic disorder with comorbid schizophrenia. On the other hand, in DSM-IV, generalized

anxiety disorder (GAD) was not diagnosed if it occurred only during major depressive

disorder (MDD), since it was a commonly associated feature of MDD, thus obscuring the

presence of anxiety, with various therapeutic and prognostic implications. However, recording

of multiple disorders is important for indicating the complexity of the clinical picture, which is

an obvious predictor of greater severity, disability and service utilization (Maj, 2005).

This is also related to the hierarchical structure of the diagnostic manuals, which is

based on the order of diagnoses given by Kraepelin, so that disorders that are higher in the

hierarchy (e.g., organic disorders) take precedence over disorders of the lower order. For

example, if both are present in a patient, the diagnosis of schizophrenia will be ranked higher

than MDD (First, 2005). Another characteristic of the diagnostic systems is that they are based

on categorical principles. In such systems, diagnoses are established when the patient’s

symptoms exceed some (often arbitrarily set) threshold. In contrast, in dimensional systems,

symptoms can be viewed on a continuum (according to the degree of severity). Although

helpful in establishing diagnoses, categorical classifications are still artificial constructs to

some extent, since they are rarely associated with objective measurements. A more pragmatic

approach to psychiatric assessment, which would allow recognition of individual experiences

of distress, instead of strictly relying on clinical categories, would probably enable a more

holistic perspective (Maj, 2005). One of the dangers of allowing proliferation of diagnoses is

polypharmacy (simultaneous use of multiple medicines), which might lead to various adverse

effects and complications in treatment (Maj, 2005).

In psychiatric practice, there is also a risk of a misdiagnosis or a failure to detect the

disorder. If a misdiagnosis happens due to inadequately following diagnostic guidelines, it is

both unethical and harmful for the patient (Nordgaard et al., 2023). Apart from the

heterogeneous clinical picture, mental health disorders often have unusual trajectories, from

symptom onset (which may not always be recognized) to recurrent episodes or remission, over

a period that might span for years or decades. Therefore, temporal dimension and progression
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of mental health disorders is a significant facet, which is why computational models are well-

suited to provide answers to questions regarding treatment outcomes or disease prediction.

3 Definition and scope of computational psychiatry

Computational psychiatry (CP) is an emerging interdisciplinary field16 that aims to integrate

computational modeling, empirical data, and theoretical insights from various fields, such as

psychology, neuroscience, computer science, and mathematics, in order to better understand

psychiatric disorders and their underlying mechanisms (Vasilchenko & Chumakov, 2023).

Although it is difficult to give an all-encompassing and comprehensive definition of CP, since

it does not have a uniform “manifesto” (possibly due to its interdisciplinarity and/or

complexity of phenomena studied), it seems that it has emerged as a (mostly) theoretical

framework in a Series of articles of like-minded authors (Montague et al., 2012, Friston et al.,

2014, Huys et al., 2016)17. The hope is, however, that these findings will eventually be

translated into clinical practice18.

Computational models are becoming an indispensable tool for studying and explaining

the underlying mechanisms of various scientific phenomena. The complexity of diagnosing

and treating mental health disorders has proven to be an exciting challenge for the emerging

field of computational psychiatry. Simply defined, this field represents the application of

computational modeling and theoretical approaches to psychiatric questions (e.g., to explain

the underlying mechanisms of psychopathologies). Despite the progress in brain imaging and

success of computational neuroscience in explaining various phenomena related to the

16 Interdisciplinarity in the context of computational psychiatry refers not only to cooperation
between various branches of science and scientific disciplines, but also to the cooperation between
theorists and clinical practitioners.
17 The first international computational psychiatry meeting was held in 2013, and 2014 saw the
inception of the Max Planck Society-University College London Initiative on Computational Psychiatry
and Ageing Research (Friston et al., 2014).
18 In general, translational research is a bidirectional concept in which the knowledge generated from
the “benches” of laboratory science can be translated to “bedside” (or the population) and vice-versa.
When applied to psychiatry, it involves the translation of (neuro)scientific discoveries into clinically
meaningful interventions. Additionally, translational psychiatry involves translating observations and
clinical insights from patients into hypotheses for basic research, facilitating a bidirectional flow of
information between laboratory research and clinical practice (Weissman et al., 2011).
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functioning of the brain, in the case of psychiatry, there is still an explanatory gap. Due to

insufficient understanding of human cognition (and cognitive phenotypes)19, the researchers

have been unable to provide a bridge between the molecular/neural and

phenomenological/behavioral levels and to explain how some changes on neural level give

rise to the changes in behavior.

Apart from the most obvious, observable changes at the symptom level (e.g., changes

in mood), some authors emphasize the importance of aberrant decision-making in a large

number of psychiatric conditions. For example, patients suffering from depression choose not

to explore, persons affected by obsessive-compulsive disorder (OCD) choose to repeat some

behavior (despite the lack of some rational basis), etc. (Montague et al., 2012). But why

patients “choose” to act along these lines remains unexplained and indicates that aberrant

decision-making is not a primal cause, but rather a consequence or symptom of some

underlying cause. Other authors (Friston et al., 2014) place importance on the production of

false beliefs as the central problem in psychiatry (e.g., false beliefs about agency in

schizophrenia, learned hopelessness or helplessness in depression). The question about

different kinds of false beliefs in different kinds of mental disorders however points to the

assumption that these false beliefs are rather a consequence than a cause of the underlying

disorder.

Computational models have the advantage of formalizing operational concepts and

explicitly stating experimental hypotheses. The models can be constrained in terms of number

of parameters, processes and potential outcomes in order to test a particular hypothesis. Both

manipulated (independent) and measured (dependent) variables can be incorporated into the

model, so that the extent to which experimental results match model predictions can

quantitatively and qualitatively inform our mechanistic understanding and guide future

experiments. Computational models can also explicitly incorporate time, giving the possibility

to understand temporal progression of mental health disorders (e.g., by means of treatment

outcome simulations) (Series, 2020). If there is a discrepancy between the model predictions

19 Cognitive phenotype can be defined as a measurable trait of some aspect of cognitive functioning.
Similarly, a computational phenotype is a measurable behavioral or neural type defined in terms of
some computational model. An individual’s computational phenotype is defined as a set of
mechanistically interpretable parameters obtained from fitting models to behavioral data (Schurr et
al., 2024). Large-scale computational phenotyping in humans has not yet been carried out.



18

and empirical data, the model can be refined in order to include some latent/hidden variables

that might be required to explain the phenomenon, but were not obvious at the time.

In order to fully understand the computational approach to mental health disorders, we

need to look at some broader theoretical and methodological concepts that constitute the

operational framework of computational psychiatry. Predictive coding, free energy principle

and Bayesian inference are three interconnected concepts that are used to explain the

transmission of neural messages in the brain, or more generally, information processing. The

brain is constantly confronted with a wealth of sensory information that must be processed

efficiently in order to facilitate appropriate reactions. One way of optimizing this processing

effort is to predict incoming sensory information based on previous experience, so that

resources can be allocated to novel or surprising stimuli. This idea emerged as a predictive

coding framework (Friston, 2005; Rao & Ballard, 1999). Predictive coding states that brain is

continually generating models of the world and that it is trying to predict sensory input. These

predictions are then compared to actual sensory input, and the “mismatch” between the two,

i.e. the prediction error, is then used to update the brain’s model of the world. Predictive

coding assumes a hierarchical brain structure (Figure 3.1). A predictive model is created in

higher cortical areas and passed through feedback connections (top-down) to lower sensory

areas (directly receiving sensory stimuli), while certain feedforward connections project an

error signal, i.e. prediction error (bottom-up). The predictive model is constantly updated

according to this error signal (Rao & Ballard, 1999).

The free energy principle (FEP), introduced by Karl Friston, is a theoretical framework

that generalizes the idea of predictive coding. It states that all biological systems (including

the brain) are driven to minimize a quantity called “free energy”, which also corresponds to

discrepancy between the predicted and actual signal. The brain minimizes “free energy” either

by updating its internal model or by acting on the environment so that it fits its prediction.

Active inference is a corollary of the free energy principle that describes the process of

inferring the causes of sensory data, which have to be actively chosen or sampled (Friston et

al., 2014). Bayesian inference is a formal mechanism central to both predictive coding and

FEP, and it presents a statistical method used to update beliefs or models based on new

evidence. In simple terms, it entails updating our existing belief (the prior distribution) with
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new information (the likelihood distribution) to form our new belief (the posterior

distribution).

Figure 3.1 Hierarchical representation of the neuronal message transmission in predictive coding.
Adapted from Friston et al. (2014).

Taking all of the above into the consideration, computational psychiatry can be

conceptualized as an attempt to characterize mental dysfunction in terms of aberrant

computations over multiple scales (Montague et al., 2012). The idea is that computational

models can provide possible explanations and hypotheses testing by comparing how these

computations differ in healthy controls and patients suffering from mental health disorders.

For example, a key issue in schizophrenia research is a false belief about agency, i.e. the fact

that the patients suffering from schizophrenia attribute beliefs about their actions to external

forces. The proof for this is the resistance of patients towards sensory attenuation compared to

healthy subjects. The study by Shergill et al. (2005)20 showed that self-generated forces were

attenuated less in the patient group, suggesting a dysfunction in their ability to predict the

sensory consequences of their actions. This can be conceptualized as a propagation of the

prediction error of the proprioceptive signal in a computational model (Friston et al., 2014)

20 This study used the force-matching task to assess the level of sensory attenuation, whereby
participants are instructed to reproduce the sensation, i.e. applying pressure on a passive finger, by
directly pressing it with a finger of the other hand. Healthy subjects tend to overestimate the required
force needed to match the force of the stimulus.
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(Figure 3.1). Therefore, in the case of schizophrenia, this error signal is not transmitted

optimally. However, mental health disorders are complex phenomena, so computational

models are usually able to capture only some facet(s) of the process(es) underlying particular

disorders. Additionally, due to their reductionist nature, models need to constrain the number

of variables required for the explanation.

The main aims or goals of computational psychiatry, apart from providing theoretical

explanations, seem to be more practical and pragmatic, with the intention to facilitate

processes in clinical practice. Therefore, main aims of computational psychiatry include, but

are not limited to, improved classification of mental health disorders, predictions and

simulation of treatment outcomes and longitudinal disease course, treatment selection etc.

The ultimate goal of computational psychiatry, however, is to be able to translate these

findings into useful interventions in clinical practice.

4 Types of data used in computational psychiatry

4.1 Main types of data used in computational psychiatry

Due to complexity of biological mechanisms of mental health disorders, their heterogeneous

representation, and different ways of probing behavioral and cognitive components of the

disorders, computational psychiatry deals with large and very diverse datasets (Figure 4.1).

Psychiatric practice may have started with collecting self-report and behavioral data (which

contributed to the establishment of current classification and diagnostic systems), but advances

in neuroimaging and genetics enabled collection and interpretation of biological data that

underlie the disorders. Finally, mobile devices, social media and online data collection

platforms offer a more ecologically valid, cheaper and possibly more efficient way of

collecting data from participants compared to clinics or laboratories. Additional advantage is

tracking or collecting data in real time. We discuss these types of data in more detail below, as

well as the problems and challenges encountered during the processes of data collection,

implementation into computational models and data validation.
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Figure 4.1 Types of data used in CP. Adapted from Hauser et al. (2022)

Based on the place or source of collection, we can distinguish between these types of

data: (1) clinical, (2) laboratory-based and (3) digital data. Clinical data are collected by

clinical staff and provide information about the process of diagnosis and treatment in

healthcare facilities (e.g., detailed notes on patients, records of self-report and interviews,

assessment scales, questionnaires, etc.). However, privacy concerns and missing data

infrastructures make it challenging to harvest such data for modeling purposes (Hauser et al.,

2022). Laboratory-based data is data collected in controlled environments for scientific studies.

These often entail behavioral and biology-derived data. Due to controlled conditions and

selective participant recruitment, these data are reliable and denoised. However, due to

expensive methods, sample sizes are usually quite small and biased, which has implications

for model generalizations, statistical power and translation of findings. Digital data is collected

via digital devices, social media and online data collection platforms. Compared to other two

methods of collection, digital data collection is faster, has fewer limitations regarding the
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diversity of the sample (various demographics) or collection in multiple points in time

(suitable for longitudinal research).

4.2 Clinical data

4.2.1 Clinical measures

Self-reported or clinician-rated symptom data provide qualitative and quantitative measures of

mental health states. The primary psychiatric assessment tool is a direct face-to-face interview,

with the emphasis on both form and content, and it is tailored to the needs of the individual

patient. Other clinical assessment tools that complement the interview include (semi)-

structured interviews21, standardized data forms, questionnaires, and rating scales22.

Assessment tools are used for diagnostic reasons, for assessing the severity of the disorder and

for recording the change during treatment (Koen Demyttenaere & Heirman, 2023). Although

these tools are widely used in clinical research, they are less often incorporated into daily

practice, but due to rigorous development and validation process, quantitative and qualitative

data obtained this way is highly reliable.

4.2.2 Behavioral data

Behavioral paradigms in psychiatry

In psychiatric research, experimenters can use various behavioral paradigms in order to elicit

and test various aspects of observable behavior. Paradigms that are often used include:

decision-making, social behavior and emotional processing, since these are the areas of

functioning that are often compromised in mental health disorders.

Tasks that can probe the function of decision-making in patients include Iowa

Gambling Task (IGT)23, delay discounting and two-step tasks. IGT evaluates risk and reward

21 Fully structured interviews have detailed standardized questions while semi-structured interviews resemble a
guided diagnostic conversation.
22 Important distinction has to be made between the observer-rating scales and self-rating scales, whereby the
latter provides more “subjective” and possibly biased information regarding the patient’s condition.
23 The Iowa Gambling Task (IGT, designed by Bechara et al., 1994) involves probabilistic learning via
monetary rewards and punishments, where advantageous task performance requires subjects to
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processing, which is useful for studying addiction and impulsivity. Similarly, delay

discounting measures preference for immediate versus delayed rewards, which is often altered

in disorders such as ADHD and addiction. Two-step task is a reinforcement learning paradigm

used to dissociate model-based and model-free learning, and can be applied to disorders such

as OCD or schizophrenia (Castro-Rodrigues et al., 2022).

Tasks related to assessing social behavior are usually game-based, e.g., ultimatum

game or trust game24. The elements of trust, reciprocity, cooperation, but also risk-taking

(which has been recognized as a confounding variable involved in such games) made them

suitable for studying disorders such as schizophrenia or autism spectrum disorders (ASD)

(Robson et al., 2019). Importance of correctly recognizing emotions and intentions of others in

social contexts is particularly highlighted in ASD. Facial emotion recognition tasks measure

the ability to identify emotions, which might be impaired in disorders such as depression

(Krause et al., 2021). In some cases, patients show attentional biases towards “sad faces”.

Affective Go/No-Go tasks (especially inhibition of the prepotent response in the No-Go

element) enable measuring impulsivity in a variety of disorders, such as ADHD or eating

disorders. Simpler psychometric measures, such as reaction times, are useful for studying

certain aspects of the disorders, e.g., slower response time in decision-making tasks in

depression, reflecting affected cognitive effort and/or possibly psychomotor retardation.

4.3 Laboratory-based data

4.3.1 Neuroimaging data

Neuroimaging data used in computational psychiatry may be divided into three distinct

categories: (1) structural imaging (e.g., magnetic resonance imaging (MRI), diffusion tensor

imaging (DTI)), (2) functional imaging (functional MRI (fMRI), electro- and

magnetoencephalograpy ((M)EEG)), and (3) molecular imaging (positron emission

forego potential large immediate rewards for small longer-term rewards to avoid larger losses (Bull et
al., 2015).
24 An Ultimatum Game is defined as a behavioral economics exchange game where two players, a proposer and
a responder, decide how to split a sum of money. If the responder rejects the proposer's offer, neither player
receives any money. Trust game (designed by Berg et al., 1995) is another example of a neuroeconomic game
whereby the amount given by the investor to the trustee may be multiplied.
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tomography (PET)). Neuroimaging in CP is mostly used for studying brain connectivity or for

biomarker discovery25 (diagnostic or prognostic) in mental health disorders. Development of

biomarkers in psychiatry seems especially tantalizing because of the lack of objective

measures or “gold standard” diagnostic markers. However, neuroimaging-based markers for

CP have shown varying degrees of validity and clinical utility.

MRI is primarily used in research for establishing quantitative differences between

patients with mental health disorders and healthy controls in specific ROIs, thereby enabling

the formulation of hypotheses regarding pathophysiology26. More recently, a variation of

structural MRI called DTI has been utilized in psychiatry for assessment of white matter tracts,

and indirectly, as a measure of connectivity in psychiatric conditions (Teixeira et al., 2023).

Recent application of ML techniques for identification of patterns in MRI data enables the

discrimination of patients versus controls, however with variable degrees of sensitivity and

specificity.

In the group of functional imaging methods, fMRI is the most used and studied

technique and it enables mapping of functional connectivity between specific brain regions

based on the BOLD signal. Task-based fMRI studies engage particular networks (e.g.,

working memory, emotional processing) and measure the BOLD signal changes between the

task and control states. On the other hand, resting state fMRI measures low-frequency changes

and it is useful for the characterization of the functional architecture of the brain (Teixeira et

al., 2023).

Finally, PET imaging is a valuable tool for assessing the accumulation or distribution

of certain neurotransmitters and neuromodulators suspected to be implicated in a variety of

mental health disorders (e.g., dopamine, serotonin, glutamate). PET radioligands can be used

for characterization of functional anatomy and pathophysiology, diagnosis, early detection and

prognosis, disease monitoring and pharmacological advancement in (neuro)psychiatry

(Teixeira et al., 2023).

25 A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention (Biomarkers
Definitions Working Group, 2001).
26 MRI has also been used for elimination of the dichotomy between functional and organic mental health
disorders.
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4.3.2. Genetic data

Biobanks are collections of human biological materials (biospecimens) alongside personal

health information that are stored for scientific research. Biological specimens usually include

blood, but also saliva, hair, feces, cerebrospinal fluid (CSF), and tissue. These samples are

then linked to individuals’ personal medical records such as history, lifestyle and genetic

markers. Samples need to be properly collected, stored and maintained. For mental health

disorders, the process usually involves comparing genetic markers of individuals with the

same diagnosis or identifying inflammatory pathways in specific conditions (Govind et al.,

2024). The best known biobanks are UK Biobank (voluntary collected data from 500,000

participants) and All of Us Research Program (US) (longitudinal data from over a million

participants). Ethical considerations and possible limitations regarding the use of potentially

sensitive data will be discussed in Chapter 7.

Heritability has been assumed to play a role in the development of mental health

disorders for a long time. Over the past decade, advances in psychiatric genetics have provided

significant insights into the genetic etiology of psychiatric disorders (e.g., pathobiology)27 and

the effects of gene-environment interplay, which is considered to be the most likely

mechanism for the emergence of mental health disorders. Genome-wide association studies

(GWAS) have become the most successful approach for linking genetic variants to human

phenotypes. GWAS test hundreds of thousands of genetic variants across many genomes to

find those statistically associated with a specific trait or disease.

In psychiatry, genetic data is useful for the assessment of heritability for the potential

development of mental health disorders, i.e. determining the risk factor. The estimated

heritability is generally higher in psychotic and neurodevelopmental disorders such as

schizophrenia and autism (74-85%) than in mood and anxiety disorders (37-58%). However,

current polygenic risk score tools, which predict individual genetic susceptibility to illness, do

not yet provide clinically actionable information, e.g., are not ready to use for early detection,

prevention or prediction (Andreassen et al., 2023).

27 The most convincing biological interpretation of the genetic findings implicates altered synaptic function in
ASD and schizophrenia.
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4.4 Digital data

Digital data may be roughly divided into passive and active data and includes any data

collected from participants via digital devices. Data are most commonly collected via mobile

phone applications, social media and online collection platforms. Active data requires the

participant to interact with a request from the experimenters, while passive data is obtained

from social media activity and sensor data from smartphones and wearable devices28

(recording physiological responses and other responses, e.g., capturing information about

circadian rhythms). Passive data collection is unobtrusive (requires minimal participation) and

as such it is especially suitable for obtaining longitudinal data. In active data collection,

participants most commonly engage in self-report as a means of assessing their mood and

experiences or in game-like activities used for cognitive assessment. Data collected by both

approaches meet the three criteria of “big data”: velocity, volume and variety (Torous et al.,

2015).

A move towards online-based task assessments in recent years is a first step towards

clinically usable data assessment tools. Online services, i.e. crowdsourcing sites like Amazon

Mechanical Turk (AMT) or Crowdflower allow large samples to be rapidly tested on cognitive

tasks, allowing robust assessment of novel task characteristics and their relationship to self-

reported clinical symptoms (Rutledge et al., 2019). The use of gamified smartphone

applications29, such as Brain Explorer (UCL, London) and Neureka (Trinity College, Dublin)

has also proven to be promising.

Combining the data from mobile assessment platforms with self-reports constitutes

ecological momentary assessments (EMA)30. However, despite obvious advantages of having

28 Mental health has been linked to various types of information obtainable from mobile and
wearable devices, such as geolocation (movement), sleep pattern data, smartphone and keyboard
usage patterns (e.g., typing speed). For example, accelerometer data on 91,105 UK Biobank
participants were used to derive circadian rhytmicity parameters related to sleep patterns. Circadian
disruptions has been shown to be associated with increased lifetime risk of both major depression
and bipolar disorder (Lyall et al., 2018). Also, tracking of sleep-wake cycles in real-time may indicate
the onset of manic episode in bipolar disorder and enable timely interventions (Huang et al., 2021).
29 Gamification refers to the approach of making cognitive (and other) tasks more game-like using the
design principles implemented in electronic games, thus making them more entertaining, which
increases user engagement (Hauser et al., 2022).
30 Ecological momentary assessments include methods of repeated sampling of an individual’s
behavior and experiences in real-time and in natural environments (Hauser et al., 2022).
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a more diverse participant pool31, being cheaper and faster to implement, data collected this

way should nevertheless be validated in some way. Promising results obtained in anonymous

online studies should be replicated in more controlled laboratory studies (Rutledge et al.,

2019)32. Bringing together passive and active data sources, e.g., by collecting eye-tracking

data during game play could yield insights in future studies.

All these developments played a role in the emergence and need for digital phenotyping.

Digital phenotyping (or personal sensing) is the moment-by-moment, in situ quantification

(and prediction) of the individual-level human phenotype using data from personal digital

devices (Huckvale et al., 2019).

Apart from data collection, attempts to leverage online data acquisition and testing for

therapeutic purposes are also of great significance for mental health treatment. For instance, a

smartphone study of digital cognitive behavioral therapy (CBT) showed alleviated symptoms

of insomnia in participants compared with usual practice (Freeman et al., 2017). These

approaches have gained additional popularity due to restrictions imposed by COVID-19

pandemic (i.e. the lack of direct contact between the patients and mental health care providers,

which can be overcome by telepsychiatry, chatbots etc.).

4.5 Possible problems with data

In the process of computational modeling, various problems associated with the use of data

may arise during different stages of data collection, implementation and validation.

Data collection process

Some of the problems that arise during the data collection process include working with noisy,

missing and sparse data and small sample sizes. Noise in the data affects model quality and

reliability and can add bias. Measurement noise can arise from poorly controlled data

collection environments, imprecise data collection (e.g., MRI artifacts) or insensitive task

31 Participants can be sourced worldwide and from diverse demographic backgrounds, they can
participate anonymously (or not), belong to both control or patient groups, etc.
32 For example, depressive symptoms collected via AMT had a high test-retest reliability (r = 0.87)
after one week (Shapiro et al., 2013). Furthermore, data collected this way has the advantage of
capturing momentary reactions compared to traditional clinical testing, whereby patients need to rely
on their memory about past events when answering a questionnaire.
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measures. Missing data is one of the main concerns in model building and it often requires

statistical preprocessing and corrections, especially for longitudinal data. Sparse data (e.g.,

imbalanced samples) also lead to substantial biases. As mentioned previously, laboratory

studies usually have smaller and biased sample sizes, which can lead to non-reproducible

effects and low statistical power. On the other hand, online data collection can ensure large

sample sizes, but such data tends to be noisy (Hauser et al., 2022).

Data implementation process

Collected data sometimes needs preprocessing or other preparation procedures in order to be

implemented in computational models. Dimensionality of the data is determined by the

number of input features. Highly dimensional data are rich in information (i.e. they contain

many data points per participant) and potentially more robust against noise, but often require

special treatment prior to model implementation, such as unsupervised dimensionality

reduction or regularization techniques33. Sheer volume or dimensionality of the data may be

reflected in the requirement of computational power to run such a model or in model

scalability.

In addition to high dimensionality, data included in computational models are often

multimodal. Some research has shown that combining and integrating various types of data

(e.g., MRI in combination with other data sources, such as clinician ratings, genetic data and

neuropsychological tests) improved predictive ability in ML approaches, compared to using

MRI data alone (Koutsouleris et al., 2021).

Data validation process

When using computational models, it is crucial that the model’s performance is validated

against an independent test dataset, usually by applying procedures such as cross-validation. If

such an approach is not used (i.e. within-sample prediction), then the accuracy might be

inflated and the results prone to overfitting (Hauser et al., 2022).

33 Regularization can be described as a set of constraints imposed on model parameters (e.g., weights or
coefficients) to prevent them from taking too large values, thus eventually reducing model complexity and
preventing overfitting. These models can account for the redundancy and high covariance between features.



29

Latent or hidden variables are those variables that are not immediately observable in

the behavioral data (e.g., values of different choices in a task), but which the theory assumes

are important for the computations occurring in the brain (Wilson & Collins, 2019).

Possible implications of the use of various types of data in different stages of the

modeling process will be discussed in the next chapter, which outlines the process of

computational model building and highlights possible problems along the way.

5 Methodologies of computational modeling and model building in

psychiatry

Computational psychiatry encompasses three broad approaches: data-driven, theory-driven,

and combined models (Figure 4.1). Data-driven approach consists of theoretically agnostic

data analysis and methods from machine learning (ML) including, but also extending, standard

statistical methods. Theory-driven models mathematically specify mechanistically

interpretable relations between variables, often including both observable variables and

postulated, theoretically meaningful hidden variables. However, these approaches are not

mutually exclusive, and may be combined if necessary. For example, in high-dimensional

datasets, theory-driven approach may be employed in the preprocessing step (for

dimensionality reduction), in order to choose theoretically meaningful parameters for

prediction and classification (Huys et al., 2016).

Figure 5.1 Combining theory- and data-driven approaches in high-dimensional datasets. Adapted from
Huys et al. (2016).
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5.1 Data-driven modeling

In computational psychiatry, it is not unusual to work with high-dimensional, multimodal

datasets, including clinical, genetic, cognitive, neuroimaging, behavioral and other data types.

ML techniques applied to such diverse data are generally agnostic in regards to the underlying

mechanisms of the studied disorders and are used for finding patterns in data.

Machine learning (ML) is a field of artificial intelligence (AI), related to the study,

design and development of algorithms and statistical models that can learn from data without

explicit instructions (Silva & Zhao, 2016). The main aim of ML methods is to devise models

capable of enhancing their precision over time by training on extensive datasets, followed by

making predictions or decisions on unseen data. ML encompasses several learning types:

supervised, unsupervised, semi-supervised and reinforcement learning (RL). In this section,

we focus only on supervised and unsupervised methods. In supervised learning, input data and

correct outputs are labeled with the aim of generalizing the association between the two. This

enables the algorithm to predict unseen data via classification or regression. Unsupervised

learning, conversely, uncovers hidden patterns within unlabeled data, commonly used for

clustering, dimensionality reduction, and feature extraction. Other AI methods, such as deep

learning (DL) models, an extension of learning to multilayer artificial neural networks (ANNs),

are successfully used for the analyses of more extensive, complex and structured data, such as

images or textural features (Wu et al., 2023).

In data-driven approach, the neuroimaging data are one kind of data that can be used to

identify some neuropsychiatric disorders. Two common types of neuroimaging data analyzed

in mental health studies are functional magnetic resonance imaging (fMRI) and structural MRI

(sMRI). DL models have been successful in finding patterns in neuroimaging data for

detection and prediction of disorders such as ADHD, schizophrenia and to some extent,

depression (Su et al., 2020). In recent years, approaches such as natural language processing

(NLP) have been applied to textual, audio or video data collected from patients/participants

and show great potential for proactive mental healthcare, i.e. for early diagnosis, prevention

and other mental health interventions34 (Zhang et al., 2022).

34 The examples of such data include social media posts, interviews, clinical and non-clinical notes.
NLP approaches facilitate various tasks such as information extraction, sentiment analysis, emotion
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In general, the ability of pattern recognition by ML is particularly useful for the

following problems in computational psychiatry: (1) predicting clinical variables, (2)

stratifying psychiatric disorders, and (3) learning mappings between behavior and brain

systems.

The first group of problems generally consists of diagnostic classification (i.e.

automating the diagnostic process), prediction of treatment outcomes (prognosis) and

treatment selection. These problems can mostly be addressed by supervised learning. For

example, these methods can be used to automatically classify patients versus controls (e.g.,

schizophrenia) or to differentiate between the disorders (e.g., overlap between anxiety and

depression) (Richter et al., 2020). Prediction of treatment response and outcome bears great

clinical significance for the whole course of the treatment. For example, in depression,

although up to three quarters of patients eventually respond to a particular antidepressant, two

thirds require multiple treatment trials before responding (Huys et al., 2016). In order to make

this process more efficient, response to various medications can be optimized by first

performing referenced-EEG (rEEG) procedure35 and then submitting it to automated analysis

for medication ranking (DeBattista et al., 2011). Similarly, multiple regression analysis can be

used for treatment selection; for instance, choosing between cognitive behavioral therapy

(CBT) and antidepressants based on other relevant variables (marital or employment status,

presence of comorbid disorders etc.) (Huys et al., 2016).

Clustering methods (an example of unsupervised learning) have been used extensively

for stratifying (subtyping) mental health disorders, both within and across different diagnoses.

These methods perform very well if the disorder can be clearly separated into subgroups. On

the other hand, the problem with this approach so far is that it always yields a result and

separates data into a specified number of clusters regardless of underlying data distribution.

Therefore, the number and validity of clusters must be specified a priori or assessed post hoc

(Marquand et al., 2016). As an example of hierarchical clustering, Checkroud et al. (2017)

stratified the symptoms of common depression into three statistically robust and replicable

detection, and mental health surveillance (i.e. they are useful for different types of screening, e.g.,
suicide, risk of self-harm).
35 Referenced-Electroencephalogram (rEEG), or medication sensitivity testing, is a test that provides
physicians a treatment guide for more effective medication treatment. Medication sensitivity testing
can be completed during a quantitative (qEEG) brain mapping.
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clusters: a mood/emotional cluster, a sleep/insomnia cluster, and an atypical symptom cluster.

The utility of this finding was reflected in different responsiveness to antidepressants.

Clustering approaches are also significant for establishing new descriptions and

classifications, beyond traditional, symptom-based categories. Starting from these descriptions,

but taking into consideration a variety of collected data for these cohorts (genetic, brain

activity, physiological etc., pointing out to possible underlying mechanisms), new clusters

may emerge that are perhaps more homogeneous than the original classification (Figure 4.2).

Also, clustering methods like DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) have not been evaluated yet. This density-based clustering algorithm does not

require specifying the number of clusters. Instead, it relies on the density of data points to

form clusters, making it robust to noise and capable of finding arbitrarily shaped clusters

(Ester et al., 1996).

Figure 5.2 A hypothetical example illustrating how precision medicine might deconstruct traditional
symptom-based categories. Adapted from Insel & Cuthbert (2015).

Finally, technical advances and large-scale neuroimaging data sets have allowed for the

development of models capable of predicting individual differences in traits and behavior

using brain connectivity measures derived from neuroimaging data. These mainly data-driven

models, based on regression methods, use approaches such as principle component regression

(PCR), connectome predictive modeling (CPM) and canonical correlation analysis (CCA) for

linking brain and behavior, i.e. creating models able to generate predictions of behavioral

measures in novel subjects based on brain connectivity data (Rutherford et al., 2021).
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5.2 Theory-driven modeling

In contrast to theoretically agnostic models discussed above, theory-driven models rely on

existing theoretical knowledge (from brain anatomy and/or physiology to higher level

functions such as mechanisms of perception, learning or decision-making) to test particular

hypotheses about psychiatric phenomena against experimental data. In case of discrepancies

between the two, assumptions can be made that there are some hidden/unobserved variables

that may account for observations, thus pointing to gaps in the knowledge. Huys et al., 2016

propose three broad groups of theoretically-driven models: synthetic (biophysically realistic

neural-network models), algorithmic (RL models) and optimal (Bayesian) models. They will

be presented in further detail below.

5.2.1 Synthetic models

Synthetic, biophysically realistic neural-network models are commonly used to elucidate how

biological abnormalities found in mental health disorders affect neurobehavioral dynamics.

Therefore, they are the most intuitive and straightforward in terms of model building. These

models are validated by qualitatively examining their predictions, which may include multiple

levels of analysis (e.g., neural activity and behavior). If the biological mechanism is too

complex or realistic and if it requires a multitude of parameters to answer the scientific

question at hand, this increases computational power required for the task, so a more

reductionist approach might be needed. However, despite these limitations, synthetic models

have been successfully used for explaining the disturbances in OCD, schizophrenia, addiction

and the like. For example, attractor models36 have been used to explore the effects of

glutamatergic and serotonergic disturbances in OCD. Decreased levels of serotonin and

increased levels of glutamate, two suspected abnormalities in OCD, led to the strong and

persistent activity patterns towards which the network tended to settle (and could not get out

of). Models of control subjects were reported to be able to flexibly switch to a new stimulus,

36 Attractor network is a network of nodes (i.e., neurons in a biological network), often recurrently connected,
whose time dynamics settle to a stable pattern (Eliasmith, 2007).
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while in models of OCD patients, obsessive thoughts proved to be resistant to switch (Huys et

al., 2016).

Synthetic or neural network models originate from the connectionist framework in

cognitive science. Donald Hebb introduced the term “connectionism“ to describe the set of

approaches that models mental or behavioral phenomena as emergent processes in

interconnected networks of simple units, i.e. in neural networks comprised of simplified

models of neurons. This eventually led to the idea that possible impairments of the cognitive

function, such as those observed in mental health disorders, could be explained by

impairments in either the structure or the elements of the underlying neural networks (e.g., the

destruction of certain connections or an increase of noise in some nodes). For example,

patients with schizophrenia or mania experience hallucinations and delusions, as well as

rapidly changing, loose associations in thought and speech. Working under the assumptions

made in Hopfield networks, the increase in noise may lead to less specific (broadening of

associations) and less stable (constantly altering) memories. Similarly, destruction of

connections, which resembles excessive pruning, or overload of network with memories,

produces localized, spurious attractors, which correspond to hallucinations or delusions37

(Hoffman & Mcglashan, 2001).

Another intriguing approach to tackle molecular processes involved in psychiatric and

neurological disorders is computational neurogenetic modeling (Benuskova & Kasabov, 2007).

The authors outlined how expression of genes that code for proteins which neurotransmitter

receptors and ion channels are made of, can be linked to parameters of model neurons. In

addition, they took into account that genes do not work in isolation but instead they

themselves are nodes in the internal gene-protein regulatory networks that have their own

temporal dynamics. Thus, the expression of genes and consequently concentrations and

properties of neuronal proteins are not constant, but instead a complex function of intracellular

and extracellular influences. In line with this approach, Mäki-Martunen et al. (2024) used

biochemically detailed computational modeling of synaptic plasticity to investigate how

schizophrenia-associated genes can affect synaptic plasticity in the cortex. They showed that

the gene expression alterations lead to impaired protein kinase A - pathway and consequently

37 Excessive pruning caused the network to produce percepts spontaneously, that is, in the absence of inputs,
thereby simulating hallucinations. Note: Delusions are distorted beliefs, while hallucinations are imaginary
sensations (visual or auditory).
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to specific changes in characteristics of synaptic plasticity. Such models provide insights into

possible genetic mechanisms for plasticity impairments in mental health disorders, which in

turn can lead to improved understanding of their mechanisms, and ultimately their

pharmacological treatment.

5.2.2 Reinforcement learning models

Reinforcement learning (RL) is a field that spans mathematical psychology, artificial

intelligence, operations research, statistics and control theory. Reinforcement learning

(algorithmic) models address how an agent (in either natural or artificial system) optimizes

behavior in a complicated environment, that presupposes transitions between states, i.e. how it

can learn to gain rewards and avoid punishments. When applied to psychiatry, dysfunctional

behavior can be understood in terms of flaws, inefficiencies, or miscalibration of RL

mechanisms. RL approaches have been applied to the issues of affect, motivation and

emotional decision-making in psychiatry38.

These models are usually simpler than synthetic models, with comparatively smaller

number of parameters and are typically validated through quantitative statistical means. They

are useful for measuring hidden variables and processes that are difficult or impossible to

measure directly (Huys et al., 2016). There are three main control systems in RL framework:

(1) model-based, (2) model-free and (3) Pavlovian. Pavlovian control involves involuntary

actions on the basis of prediction of outcome, whether or not the actions are appropriate for

gaining or avoiding consequences. On the other hand, model-based and model-free systems

link the choice of actions directly to affective consequences39. Model-based systems are

computationally costly, they make predictions based on the previously built internal model of

the environment (a form of cognitive map), are thought to capture goal-directed actions and

38 Learning and decision-making are highly intertwined processes. If learning mechanisms are impaired,
maladaptive decisions will be taken, which in turn will influence what will be learned. Also, decision-making
involves the accumulation of evidence associated with the utilities of possible options and choosing one based
on the evidence. This is similar to the basic concept of drift diffusion models (DDMs), a process of making a
decision between two choices based on accumulation of evidence toward one of the possible outcomes. A
decision is made when the accumulation process reaches a certain threshold (Series, 2020).
39 These two approaches reflect the difference between the classical (Pavlovian) conditioning and operant
(instrumental) conditioning. Classical conditioning involves approaching or withdrawing behaviors, which is why
it appears to be involuntary, while instrumental conditioning requires taking action towards optimizing the
behavior.
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rely on cognitive and limbic cortico-striato-thalamo-cortical (CSTC) loops. Conversely,

model-free systems learn values by iteratively updating them with prediction errors through

experience, are thought to capture habits and rely on sensorimotor CSTC loops (Huys et al.,

2016). However, both are used for choice valuation. Table 4.1 summarizes the differences

between these two approaches.

Table 5.1 Differences between model-based RL and model-free RL approach

Model-based RL Model-free RL
Building a statistical model of the
environment

Without building a model, relies on trial-and-
error

Huge memory and computational resources Lower demands on memory and computation
Improves predictions by optimizing the
model, flexible

Less flexible to changes in environment

Goal-oriented behavior Habit-forming behavior
Forward planning Decision is made based on present state

Distinctions between model-based and model-free learning appear to be especially relevant for

psychiatry. It has been proposed that addictive and compulsive disorders might involve a shift

from model-based to model-free decision-making, which could explain inflexible behavior in

patients. The process of RL presumes that learning is guided by a signal called reward

prediction error (RPE), which represents the difference between the actual and expected

reward. In the brain, this signal is decoded by the firing of dopamine neurons (Montague et al.,

1996; Montague et al., 2004). The link between dopamine and prediction error has important

consequences for understanding maladaptive behaviors such as addiction. As most addictive

substances release dopamine, they may boost learning based on RPE and speed up the

establishment of drug-related habits. In other words, dopamine release may interfere with the

RPE signal by giving increasingly higher values to actions leading to the obtaining of the drug

(Series, 2020).

The notion of reward is one of the central concepts in RL and sensitivity to reward

seems to be altered in many psychiatric conditions. For example, anhedonia is a common

feature of depression and it is generally defined as the inability to feel pleasure in normally

pleasurable activities. Therefore, anhedonia may be related to impairments in the motivation,

and consequently, exerting effort to obtain a reward. Another, slightly more complicated



37

example, is the interpretation of impulsivity in ADHD as the reduced delay aversion to over-

discounting of delayed rewards (Sonuga-Barke, 2003).

5.2.3 Bayesian (optimal) models

Bayesian (optimal) models attempt to link observed behavior to the Bayes-optimal solution of

the problem. Bayesian decision theory (BDT) allows for formulating optimal behavior during

a task and then analyzing how suboptimal behavior can arise.

These models, similar to RL models, can be used for quantitative assessment of

differences between controls and patients. The central idea of Bayesian models applied to

psychiatry is that internal models of patients, in particular their prior beliefs, differ from those

in healthy subjects. For example, positive symptoms of schizophrenia, i.e. hallucinations and

delusions (discussed above) can also be related to imbalance between incoming sensory

information and prior beliefs and expectations40. Similarly, in autism, it has been proposed that

prior expectations might be attenuated compared to actual sensory inputs, which might explain

why patients experience the environment as overwhelming and “too real” (Series, 2020).

Following the similar vein, another question that might be answered by Bayesian

models is whether a given symptom is related to suboptimal inference. For instance, a study

conducted by Browning et al. (2015) showed that subjects with high trait anxiety cannot

update optimally on how volatile an aversive situation is, while low anxiety controls presented

close to Bayes-optimum behavior. Therefore, this element of uncertainty (of the environment)

is another important aspect of Bayesian models. It has been shown that the statistics of

aversive experience play an important role in several processes, from learned helplessness and

depression to familiarity in fear conditioning.

40 Within Bayesian framework, hallucinations and delusions are explained as the disruption in the
mechanism for the minimization of prediction error. It is assumed that this mechanism applies to
both perception (hallucinations) and beliefs (delusions). In hallucinations, it is common for patients
with schizophrenia to attribute agency to external forces, thereby perceiving absent sensory input
(e.g., voices, inner speech) as externally generated (Fletcher & Frith, 2009).
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Additional note – Integrating approaches

As we have seen from the examples presented above, the mechanisms of psychiatric

conditions can be very complex, which is why sometimes knowledge of more than one

framework is needed to explain the entire process. For example, learned helplessness41 is one

of the prominent features of anxiety and depression. However, if we want to explain it in

computational terms, we can conceptualize this initially as impaired learning due to inability

to consistently predict outcomes of one’s actions, because of uncontrollable rewards and

punishments. The onset of learned helplessness (as a kind of conditioned response) is marked

by unwillingness to explore or making no attempts to escape when placed in a new

environment, even if the options are available to the subjects. However, the whole process can

be observed from Bayesian perspective as well: the prior belief that the environment is

uncontrollable will discourage exploration. Additional interpretation is that due to the

impairment, prior beliefs are not updated correctly based on new information, i.e. new

information does not have any discriminatory value for the subject. Also, in the context of RL,

the exploration-exploitation dilemma seems to be attenuated (or non-existent), as learned

helplessness can be seen as avoiding exploration in favor of the current unsatisfactory

situation (Teodorescu & Erev, 2014). Furthermore, it would also be interesting to explore how

a one-time traumatic event and one of the possible responses (e.g., freeze42) is different from

the repeated exposure to aversive stimuli that leads to learned helplessness.

41 Learned helplessness is a behavior exhibited by a subject after enduring repeated aversive stimuli
beyond their control. It was initially studied in animals undergoing experimental neurosis (induced by
presenting them with an insoluble learning problem or subjecting them to inescapable electric
shocks). In the 1970s, Martin E. P. Seligman extended the concept from nonhuman animal research to
clinical depression in humans and proposed a learned helplessness theory to explain the
development of or vulnerability to depression. According to this theory, people repeatedly exposed
to stressful situations beyond their control develop an inability to make decisions or engage
effectively in purposeful behavior (APA Dictionary of Psychology, 2014).
42 The link seems to be the ability of vmPFC to turn off the dorsal raphe nuclei response (which
stimulate amygdala and sensorimotor cortex, i.e., „freeze“ response) if and when we experience that
taking purposeful action leads to a desired result (Maier & Seligman, 2016) .
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5.3 Combined approach

Based on the approaches presented above, it seems that there is a tendency to use theoretically

agnostic ML approaches when developing clinically useful applications, and theory-driven

approaches when trying to better understand the mechanism of the studied disorders (Huys et

al., 2016). As it was previously mentioned (see Figure 4.1), these approaches are not mutually

exclusive, but rather complementary. Existing theoretical knowledge can significantly reduce

the dimensionality of the data set (and capture non-random variation in the data), thus

preparing the data for the application of ML techniques. According to some findings,

combining theory-driven and data-driven approaches can outperform data-driven approaches

alone (Rutledge et al., 2019, Huys et al., 2016).

5.4 Computational model building and development

In this subsection, we will present steps that are necessary for model development in CP as

well as to point out to some problems or challenges in this process. Irrespective of the choice

of approaches outlined above (theory-driven, data-driven or combined), the process of model

building needs to start with the formulation of the research question or hypotheses and

identifying variables and their relationships (based on existing psychiatric theories and

theoretical frameworks). Any computational model may be described as trying to capture

associations (formulated as mathematical equations) between a set of input variables and one

or more output variables. In psychiatry, the example of input variable could be neural activity

or self-report data, while diagnosis or treatment response would correspond to output

variables43. Furthermore, computational models can quantify how well these associations are

reflected by output variables (i.e. model fit).

However, before the incorporation of data into the model, they need to be collected and

preprocessed. Data collection process and possible problems with data have been outlined in

the previous chapter. In the preprocessing step, some issues that need to be addressed include

noise and artifact removal (applying techniques such as PCA/ICA), standardization and

43 Both input and output variables can be numeric (e.g., continuous, such as duration of treatment),
categorical (e.g., whether an individual will develop a disorder or not) or complex (e.g., text strings).
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normalization of data44, handling missing values and transforming complex data (e.g.,

dimensionality reduction for neuroimaging).

Depending on the research question, the key step and challenge is to determine the

right level of abstraction (from modeling impairments on the level of ion channels to

interactions between different brain regions or even the whole brain connectivity). It is also

possible to move between different levels of abstraction, allowing models to map processes

spanning different layers of disease pathology (Hauser et al., 2022). This obviously has

implications for incorporating data from different brain imaging modalities.

Modeling process should contain three general steps: building a model, simulating the

model with artificial data (simulation) and applying the model to real data (validation) (Series,

2020). Furthermore, a model can then be compared to other models in the process of model

comparison. Model comparison involves evaluation of which set of possible models best

describes the data, as a way to understand which mechanisms are more likely to underlie the

behavior (Wilson & Collins, 2019). Essentially, we are trying to evaluate differences and

relative performance of the models, e.g., by using statistical methods. However, it should be

noted that accuracy of a model is not a necessary indicator of its clinical utility. It is also

important to consider the interpretability of the models which are not easily quantifiable.

After data collection and preprocessing (ensuring the adequate quality of data), model

features need to be established. These are data or aggregated substrates thereof which are used

to train a computational model to predict a label (outcome variable in a supervised model). A

feature is any characteristic that can be extracted from the data and that is believed to be

informative about the class labels (Wolfers et al., 2015). Sometimes, it is also necessary to

select certain features (feature selection and extraction)45. Model fitting is a process of

44 Normalization refers to rescaling data to a specific range, while standardization transforms data to
mean 0 and variance 1 (when data has varying distributions and requires Gaussian-like scaling in
order to be similar to normally distributed data).
45 According to Gao et al. (2018), feature selection and feature extraction can be grouped into feature
reduction methods. Feature selection is performed in supervised models when the most discriminant
features are selected with the help of labels in the training data to reduce noise. One strategy is to
use prior knowledge to decrease dimensionality. Feature extraction occurs when the original high-
dimensional data is projected onto a lower dimension while maintaining the feature’s discriminative
abilities. One typical example is PCA.
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finding model parameters46 so that the model’s predictions maximally match the data

(parameter optimization). Parameter optimization is a set of procedures for finding a set of

parameter values in the model that will maximize the model’s objective function (e.g.,

likelihood in probabilistic models) or that will minimize the error between the model

predictions and actual data (Hauser et al., 2022).

It is useful to simulate the data on several models before running the model on real

data. Simulation involves running the model with particular parameter settings to generate

“fake” data. Simulation is a way to make theoretical predictions more precise and testable

(Wilson & Collins, 2019). Essentially, we are trying to establish whether the model can

answer the question in theory. If the answer to this question is satisfactory, one can proceed to

validating the chosen model against real data. A model is chosen in a process of model

selection. It considers the model fit and the model complexity, to avoid underfitting or

overfitting47. Another, more general principle that is implicated in model building is Occam’s

razor, i.e. the fact that a simple theory or model is favored over a complex one, if the former

can explain the phenomena and capture the data adequately (Hauser et al., 2022).

Datasets are split into two subsets: a training data set, which is used to estimate the

model parameters, and a validation data set, which is used to test how well those parameters

predict “new” data. It is crucial that the model’s performance is validated against an

independent test dataset, usually by applying procedures such as cross-validation48. It is

essential that the training and testing set are kept independent from one another to avoid

overfitting. Validation enables us to establish whether the model can account for the new data.

Generalisability refers to the ability to use models beyond the data that were used to

develop the original model (i.e., predicting the labels correctly in new data). This is crucial for

46 Parameters represent aspects of the model that control how it behaves or predicts outcomes (e.g.,
a learning rate in reinforcement learning model or the connectivity weights in a neural network).
47 Bias-variance trade-off is a conflict between two types of errors in computational model
development. High bias arises due to underfitting, when the model is not capturing relevant
associations between features and output labels. Variance error arises when a model is overfitting
the training set and interprets random noise as meaningful variation, thus generalizing poorly on new
data (Hauser et al., 2022).
48 If the validation procedure is repeated using multiple different training and test partitions, the
procedure is called k-fold cross-validation, where k denotes the number of data partitions (folds). The
special case, where k is equal to the number of samples is referred to as leave one out-cross
validation (LOO-CV) (Wolfers et al., 2015). By averaging the results from all the tests we get a more
reliable estimate of how well the model performs.
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the clinical success of modeling efforts, i.e. for translating the findings into clinical practice.

There are several instances in which such procedures have proved to be useful: (1) predictive

use (a model is used to predict clinical outcomes such as risk of relapse or treatment response),

(2) personalized interventions (tailoring interventions based on individual model parameters)

and (3) decision support (e.g., for treatment selection).

It should also be pointed out that modeling is an iterative process, i.e. model may

require revision or refining based on validation results, new data, or feedback. For instance,

this can be done through latent variable analysis or inference (e.g., adding a latent variable for

attention in a model of decision-making). Also, modifications can consist of updating

theoretical assumptions if the model reveals some unexpected insights.

5.5 Areas of application of CP models

Hauser et al. (2022) propose four application areas of computational modeling in psychiatry:

uncovering the mechanism (theory-driven approach), subtyping, status prediction and

treatment stratification/selection (data-driven approaches).

Figure 5.3 Correlations between model characteristics and explainability. Models differ in the
transparency of mechanisms, which determines their best use. Although most complex models often
achieve higher predictive performance, “white box” models allow for an understanding of the
underlying mechanisms. Adapted from Hauser et al. (2022).
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Mechanism-agnostic (i.e. data-driven) models are termed “black box” in ML because

they provide no information on how input variables meaningfully relate to or explain output

variables. On the other hand, mechanism-driven models, also known as “white box” or “glass

box” models, enable understanding of the underlying mechanisms (Figure 6.1). For

mechanism-agnostic models, the key challenge is understanding how these models operate and

what they predict. Their complexity renders them opaque, but there are ways to move from

“black box” to “grey box” models. For example, this can be done with the use of causal ML

models that allow advancement beyond simple correlational effects, and thus improving

interpretability (e.g., XGBoost49). For mechanism-driven models, the biggest challenge is their

predictive performance. One solution is using mechanism-driven algorithms as a

dimensionality reduction step before the subsequent generation of optimally predictive

mechanism-agnostic models.

6 Overview of models applied to depression

This section outlines some applications of CP models to the study of depression. We start by

providing the description of the clinical picture of major depressive disorder, followed by the

description of the neural bases of the disorder. Various aspects of depression can be explored

via RDoC matrix. Theory-driven models will be used to explain or interpret the aspects of

depression such as anhedonia, rumination, cognitive deficits and learned helplessness. Data-

driven approaches will be used to illustrate the most interesting findings arising from some of

the most pressing issues in clinical practice.

49 XGBoost (Extreme Gradient Boosting) allows better interpretability due to its tree-based structure
and measures of feature importance, among other characteristics. The structure of sequentially built
decision trees can be visualized to understand how specific features influence predictions. Metrics
such as gain, frequency and weight allow users to evaluate the relative importance of features in the
model (Sagi & Rokach, 2021). This approach is particularly useful for healthcare providers who have
to make informed decisions about patients.
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6.1 Depression – a clinical picture

Major depressive disorder (MDD) represents the classic condition in the group of depressive

disorders outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR,

2022). The manual lists two core symptoms of MDD: depressed mood and loss of interest or

pleasure (anhedonia), of which at least one needs to be present for diagnosis. Other symptoms

(somatic, emotional and cognitive) include significant fluctuations of body weight, insomnia

or hypersomnia, psychomotor agitation or retardation, fatigue or loss of energy, feelings of

worthlessness or guilt, problems in thinking and concentrating, and recurrent thoughts of death

or suicide. Overall, five or more symptoms have to be present for at least two weeks (most of

the day, nearly every day), cause significant disturbances in daily functioning, and should not

be better explained by other disorders. A diagnosis based on a single episode is possible,

although the disorder is a recurrent one in the majority of cases. Careful consideration should

be given to the discrimination of normal sadness and grief (due to adverse life events) from

MDD. A chronic form of depression, persistent depressive disorder, can be diagnosed when

the mood disturbance continues for at least two years in adults and one year in children.

6.2 Neuroscience of depression

As we have seen from the symptoms listed above, depression can have a very heterogeneous

representation. Despite being considered primarily a mood disorder, depression is also

characterized by cognitive and decision-making deficits. Therefore, processes involving

emotional regulation and processing, memory and executive function are usually impaired in

people suffering from depression. These dimensions of functioning are associated with certain

brain structures. To get the overview of the neural correlates of depression, the following

structures need to be considered: certain brain regions, brain networks, neurotransmitter

systems and structural abnormalities.
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Brain regions

Most common brain regions implicated in depression are summarized in Table 6.1.

Table 6.1Most common brain regions implicated in depression.

Brain region Role Findings in depression
Prefrontal cortex (PFC) Executive function, emotion

regulation, decision-making
Reduced DLPFC activity,
increased VMPFC activity

Amygdala Emotional reactivity Hyperactive to negative valence
stimuli

Hippocampus Learning, memory, cognition Reduced volume, impaired
function (both working and
episodic memory)

Anterior Cingulate Cortex
(ACC)

Emotion cognition and
integration

Hyperactive sgACC

Striatum Reward processing Hypometabolism, anhedonia
Hypothalamus Control of HPA axis Altered response to stress (stress

→ anxiety → depression)
Orbitofrontal cortex (OFC) Assessment of stimulus value

and reward, representation of
internal values

Negative sense of self

The table contains main brain regions implicated in the depression, their corresponding roles and
findings in depression. Abbreviations: DLPFC (dorsolateral prefrontal cortex), VMPFC (ventromedial
prefrontal cortex), sgACC (subgenual anterior cingulate cortex)

Brain networks

Li et al., (2018) point out to the involvement of at least four networks in patients with

depression (see Figure 6.1). Elevated connectivity of a ventral limbic affective network (AN)

appears to be associated with excessive negative mood (dysphoria) in patients. Decreased

connectivity of a frontal-striatal reward network (RN) has been suggested to account for the

loss of interest, motivation and pleasure (anhedonia). Enhanced default mode network (DMN)

connectivity seems to be associated with depressive rumination. Finally, diminished

connectivity of a dorsal cognitive control network (CCN) is related to cognitive deficits,

especially ineffective top-down control of negative thoughts and emotions.
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Figure 6.1Major brain networks implicated in depression.
Affective network (AN) (hyperconnectivity, (red)); Reward network (RN) (attenuated connectivity
(green); Default mode network (DMN) (hyperconnectivity, (red)); Cognitive control network (CCN)
(attenuated connectivity (green)).
Main structures: OFC: orbitofrontal cortex; INS: insula; AMY: amygdala; HIP: hippocampus; vACC:
ventral anterior cingulate cortex; mPFC: medial prefrontal cortex; PCC: posterior cingulate cortex;
PCUN: precuneus; ANG: Angular; DLPFC: dorsolateral prefrontal cortex; dACC: dorsal anterior
cingulate cortex; PFC: prefrontal cortex; CAU: caudate; NA: nucleus accumbens. Adapted from Li et
al. (2018).

Neurotransmitter systems

Monoamine neurotransmitters, such as serotonin (5-HT), norepinephrine (NE) and dopamine

(DA), are implicated in different processes in depression. Noradrenergic neurons in the brain

form a neurotransmitter system, which when activated, exerts effects on large areas of the

brain. The effects are manifested in alertness, arousal, and readiness for action. Dopamine is

associated with reinforcement learning processes, while serotonin is linked to processing of

aversive stimuli. Learned helplessness and depression may be related to a failure to stop such

aversive processes. Antidepressant medications (SSRI/SNRI) commonly target serotonin or

norepinephrine receptors by inhibiting the reuptake of 5-HT and NE (Cui et al., 2024).
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Structural abnormalities

Large meta-analyses have concluded that MDD is associated with alterations in cortical

thickness, especially in OFC. Cortical thickness measurements showed greater differences

than surface area measures in adult MDD, but consistent surface area deficits were found in

adolescent MDD. Cortical thickness and surface area represent distinct morphometric features

of the cortex and may be differentially affected by depression at various stages of life

(Schmaal et al., 2016). Decrease in the total gray matter volume (Grieve et al., 2013) and

alterations in cortical thickness are the two most consistent findings in structural neuroimaging

studies.

6.3 Exploring depression with RDoC matrix

Depression is a highly heterogeneous mental health disorder, in terms of etiology, symptoms

(varying degrees of severity and levels of dysfunction) and underlying neural bases and

mechanisms. RDoC framework has two main advantages for studying depressive disorders: (1)

it encourages interdisciplinary research, so that the systemized knowledge from fields such as

neuroscience, psychology and genetics contributes to a more complete picture of the disorder;

(2) it provides transdiagnostic insight, i.e. it enables comparison with other similar disorders

and identifies overlapping areas50.

There have been various attempts to apply RDoC framework to the study of aspects of

depression (Woody & Gibb, 2015; Gibb et al., 2015; Park & Kim, 2021). Following the

general RDoC principle, we can try to conceptualize depression as a deviation from otherwise

normal dimensions of psychological functioning. In the negative valence system, researchers

have been focused on the hypertrophy of the feelings of loss, while maladaptive reward

patterns have been studied within the negative valence system. Depression is characterized by

the impairment of cognitive systems, particularly in the area of working memory and

executive control (ineffective top-down control of negative thoughts and emotions). In the

sensorimotor domain, there are also two dimensions: psychomotor retardation or agitation, as

50 We may conceptualize this similarly to the within- and between-subject (disorder) research design,
both of which can potentially provide clinical utility (e.g., improved classification).
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well as irregularity in sleep-wake patterns (either insomnia or hypersomnia (and other

impairments along the continuum)).

Regarding different units of analysis, depressive disorders have been linked with a

variety of indicators. For example, at the genetic level, research focuses on the genes that are

known to regulate neurotransmission of monoamines including serotonin, dopamine and

norepinephrine (e.g., 5-HTTLPR, 5-HT receptor genes, MAOA and COMP) (Woody & Gibb,

2015)51. On the cellular level, depression is characterized by deficits in synaptic plasticity

(Duman et al., 2016). Studies that investigate the influence of antidepressant (AD) therapy on

synaptic plasticity reveal that the increase in number of extrasynaptic receptors leads to

enhancement of synaptic efficiency by promoting new synapse growth. These are adaptive

responses of neurons to the decrease in neurotransmitter levels. However, these newly formed

synapses are either stabilized if they receive appropriate synaptic input, or pruned if they are

inactive. The desired effect is the enhancement of synaptic transmission efficiency, which is

crucial for alleviating depressive symptoms and better understanding of the AD mechanism

(Beňušková, 1991; Castrén & Hen, 2013). At the level of neuronal circuits, depressive

symptoms have been linked to altered functional and effective connectivity52 (either enhanced

or diminished). Enhanced connectivity of a ventral limbic affective network seems to be

associated with excessive negative mood (dysphoria), while diminished connectivity of a

frontal-striatal reward network has been suggested to account for the loss of interest,

motivation and pleasure (anhedonia) (Li et al., 2018).

At the physiological level, peripheral measures of autonomic nervous system (ANS),

hypothalamic-pituitary-adrenal (HPA) axis, and neuroimmune dysregulation seem to be

connected to depression (Woody & Gibb, 2015). In terms of observable behavior, many

features are congruent with symptoms listed by the DSM (anhedonia, social withdrawal,

fatigue and low energy, deficits in cognitive functioning etc.). Finally, the self-report level of

analysis highlights attributional styles and hopelessness.

51 Some research suggests that joint consideration of multiple genetic and environmental factors has
much greater explanatory power than separate studies of genetic or environmental causation.
Multi‐factorial gene‐environment interactions (GxE) are likely to be a generic mechanism involved in
the majority of cases of mental illness (Uher & Zwicker, 2017).
52 Functional connectivity refers to (undirected) correlations between the activity of two brain regions,
while effective connectivity refers to (directed and usually reciprocal) causal inferences among brain
regions within a network (Li et al., 2018).
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6.4 Theoretically-driven models applied to specific aspects of depression (rumination,
anhedonia, learned helplessness, cognitive deficits)

This section will provide some examples of different types of theory-driven models that have

been applied to specific aspects of depression. These are either symptoms (such as anhedonia)

or other constructs associated with the disorder (learned helplessness) that are helpful for

understanding the mechanisms and impairments in depression, and possibly determining

approaches to treatment.

Rumination

Rumination may be defined as a tendency to repetitively think about the causes, situational

factors, and consequences of one’s negative emotional experience. This aspect of depression

has been shown to predict the onset of depression, prolong the duration, exacerbate negative

thinking, and impair problem-solving. Hyperconnectivity of the DMN53 may represent

excessive self-referential processes and maladaptive rumination in patients.

Siegle and Hasselmo (2002) provided an example of how a neural network, i.e.

connectionist models, can be used to better understand deficits in depression during

(negatively biased) emotional information processing. A neural network model was used to

simulate classification of emotional word stimuli (labeled positive, negative or neutral). It was

able to reproduce typical behavior in depression, i.e. it was quicker to identify negative

information and showed larger sustained activity when confronted with negative words54. The

authors proposed overlearning of negative information as one of the mechanisms related to

rumination. A network that had “overlearned” on negative information could be retrained

using positive information (corresponding to CBT), which resulted in normalization of

network activity in response to negative content.

There is another interesting link between rumination and certain cognitive deficits, i.e.

working memory. Namely, depressive rumination increases cognitive load, reducing available

resources for working memory tasks, resulting in impaired attention and concentration,

53 Elevated DNM functional connectivity appears to be a robust marker of MDD that is evident even in
remitted and recovered state.
54 Depressed individuals have been shown to pay excessive attention to negative information,
ruminate about it, preferentially remember it, and interpret information as negative (Siegle &
Hasselmo, 2002).
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reduced processing speed, difficulty in task switching (cognitive flexibility) and poor recall

and retention of information (Onraedt & Koster, 2014).

Anhedonia

Anhedonia is one of the core symptoms of depression. Evidence from neuroimaging studies

suggests that anhedonia may be attributed to diminished connectivity in frontal-striatal reward

network55 (Li et al., 2018). On the neuronal level, prediction-error signals appear to be reduced

in the striatum and other dopamine-rich regions of the brain, thereby suggesting that

depressive symptoms are associated with impairment in encoding of reward-learning signals.

In CP, anhedonia has primarily been studied within the RL framework. Temporal-

difference (TD)56 prediction-error learning signals have been linked to the firing of dopamine

neurons in the brain (Montague et al., 2016). Kumar et al. (2008) found blunted reward-

prediction error signals in patients versus controls, as well as the correlation between such

blunting and illness severity.

In a meta-analysis by Huys et al. (2013), different variants of RL models were used to

explore different mechanisms in anhedonia. The goal was to find out whether anhedonia was

associated with the initial rewarding experience of stimuli, or the subsequent learning from

these rewards. Two mechanisms are important to disentangle, as they probably correspond to

different etiologies and possible strategies for therapies. The result suggested that reward

sensitivity rather than learning rate is primarily impaired in this phenomenon. The model also

allowed them to make a distinction between the absence of reward and punishment, i.e. that

participants could interpret the absence of reward on a given trial as punishment. They did that

by including a punishment sensitivity parameter in the model.

Learned helplessness

For the discussion on learned helplessness, please see 4.2.3 (Additional note – Integrating

approaches).

55 Reduction in connectivity has been found to be in proportion to depression severity and an
important predictor of depressive relapse.
56 TD learning is an unsupervised technique in which the learning agent learns to predict the expected
value of a variable occurring at the end of a sequence of states.
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Cognitive deficits

Negative perceptual and cognitive biases

Commonly observed pessimistic cognitive biases in depression have been explained using

prior beliefs within the framework of Bayesian decision theory. Huys, Vogelstein, and Dayan

(2009) fitted a Bayesian learning model to the behavior of depressed and healthy participants

and included two parameters in the model: sensitivity to reward and a prior belief about

control (i.e. helplessness). Individuals with strong priors (i.e. belief that they have the control

over their environment) would predict that previously rewarded actions will likely be

rewarded again, while depressed patients would expect weaker associations between actions

and rewards. The formulation of the model enabled them to use a simple linear classifier to

distinguish between healthy and MDD population based purely on behavioral measures, and

avoiding any verbal reports. This obviously has important implications for the psychiatric

practice, since reliable classification is one of the important goals in CP.

Deficits in executive function

Dillon et al. (2015) used the drift diffusion models (DDMs) to explore a seemingly

counterintuitive notion that enhanced executive functioning in depression is sometimes

observed during tasks that require careful thought and precision. Depression can lead to

increased analytical information processing (similar to rumination), yielding worse

performance in tasks requiring fast decisions, but higher accuracy in more detail-oriented tasks.

Drift rate for the executive control mechanism was lower, but there was an additional

decreased drift rate in the reflexive mechanism (signaling to inhibition). In other words, they

found that patients were more accurate but slower on trials with incongruent stimuli. This

approach enabled the study of the regulation of speed-accuracy trade-offs in depression.

Memory deficits

Various memory impairments are common in depression. For example, episodic memory is

disrupted in unipolar depression. Depressed individuals typically show impaired recollection,

biased memory performance for positive and negative events, and “overgeneral”

autobiographical retrieval (Dillon & Pizzagalli, 2018). However, these deficits seem still
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largely unexplored computationally (Series, 2020). Additionally, there is some research that

suggests that cognitive deficits persist even in remitted patients. In their meta-analysis, Rock

et al. (2014) demonstrate that cognitive impairment represents a core feature of depression,

and not an epiphenomenon secondary to symptoms of low mood.

Other aspects of depression

Other aspects of clinical symptoms in depression, such as bodily or somatic symptoms and

social deficits57, are also central to the disorder yet remain underinvestigated with

computational modeling (Saez & Gu, 2022).

In addition to symptom overlap between the disorders and their heterogeneous

presentation, difficulties in studying mental health disorders also arise from the need to

decompose and analyze some of the more complex constructs associated with the disorder.

Including them in computational models enables testing some very specific hypotheses about

various facets of those constructs or their possible interaction (e.g., reward sensitivity and

control over priors).

Additional note

In the majority of RL studies, rewards were presented as monetary gains or points.

Considering the fact that motivation and exerting effort are also compromised in depression, it

would be interesting to explore whether a more (emotionally) salient reward would correspond

to a more ecologically valid representation of a rewarding experience, and whether it might

consequently affect learning.

6.5 Data-driven approach: which models are suitable for predicting the treatment
outcomes?

Antidepressant treatment efficacy is low and it usually involves a process of trial-and-error to

achieve adequate responsiveness in patients. All this delays clinical improvement and

increases risks and costs of treatment. Chekroud et al. (2016) developed an ML model to

predict whether patients would achieve clinical remission from MDD after a 12-week course

57 Social skill, defined as the emission of behaviors which are positively reinforced by others, is seen as
an area of deficit especially important in the development of depressive behaviors (Lewinsohn &
Atwood, 1969)
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of citalopram. The model was trained on data from STAR*D and identified 25 variables that

were most predictive of treatment outcomes from a total of 164 patient-reportable variables.

The choice of variables was one of the most important steps in the model development. Top

25 predictive items were chosen by using elastic net regularization (supervised dimensionality

reduction), which is a method that avoids issues of correlated predictors and overfitting.

Validation method was a repeated 10-fold cross-validation. The model demonstrated

statistically significant predictive accuracy, achieving an internal validation accuracy of 64.6%

in the STAR*D cohort (p<0.0001). It was also externally validated in the COMED58 trial,

where it showed an accuracy of 59.6% (p=0.043) in the escitalopram treatment group.

Ultimately, researchers came up with an ML model optimized to detect future responders for a

specific, first-line antidepressant (citalopram), with a simple 10-minutes questionnaire. The

model uses easy to obtain (patient-reportable) information, and could be hosted online or in a

clinical setting. One of the advantages of this model is that it was developed by mining

existing clinical trial data, thus reducing the time, effort and costs of data collection.

Alternative method of predicting the antidepressant treatment outcome is quantitative EEG

(QEEG) biomarker, the Antidepressant Treatment Response index (ATR). QEEG power in the

theta and alpha frequency bands may identify patients who are most likely to respond to

tricyclic antidepressants (TCAs) or SSRIs (Leuchter et al., 2009). However, it still requires

EEG data collection and processing, even with a limited electrode array in the prefrontal

region.

58 STAR*D (Sequenced Treatment Alternatives to Relieve Depression) is the largest prospective,
randomized controlled study of outpatients with MDD (data was collected from June, 2001, to April,
2004). COMED (Combining Medications to Enhance Depression Outcomes) was a single-blind,
randomized, placebo-controlled trial comparing efficacy of medication combinations in the treatment
of MDD (Chekroud et al., 2016).
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6.6 Application of CP models to brain stimulation techniques (rTMS) and discovery of

discriminative biomarkers

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neurostimulation

treatment for treatment-resistant depression (TRD) that modulates functional connectivity in

cortical networks59. Although the left dorsolateral prefrontal cortex (DLPFC) is the most

common target for stimulation, recent studies have demonstrated efficacy for a dorsomedial

prefrontal (DMPFC) target, too. This raises the intriguing possibility that differences in

dysfunctional connectivity at the DMPFC target site may give rise to different treatment

outcomes. Drysdale et al. (2016) conducted an extensive study to differentiate the so-called

biotypes obtained from rs-fMRI and tested their utility for predicting the outcome of rTMS

treatment. Namely, by using rs-fMRI in a large multi-site sample, the authors were able to

differentiate four neurophysiological subtypes (‘biotypes’) defined by distinct patterns of

dysfunctional connectivity in limbic and frontostriatal networks. To select connectivity

features for clustering, they used canonical correlation analysis to define a low-dimensional

representation of these features and associated them with weighted combinations of clinical

symptoms, as quantified by the 17-item Hamilton Depression Rating Scale (HAMD)60. This

data-driven approach to feature selection and dimensionality reduction identified two sets of

functional connectivity features that were correlated with distinct clinical-symptom

combinations. The next step was using hierarchical clustering to discover clusters of patients,

by assigning them to nested subgroups with similar connectivity patterns. Clustering patients

on this basis enabled the development of diagnostic classifiers (biomarkers) with high

59 rTMS involves the repeated application of electromagnetic pulses delivered by a magnetic coil
placed on the scalp to depolarize cortical neurons and modulate neuronal activity. In large, real-world
studies, response rates in TRD ranging from 50% to 80% have been reported. The most common
stimulation protocol is 10 Hz stimulation applied to the left DLPFC, lasting for 20-40 minutes. (Chen et
al., 2023).
60 Hamilton Depression Rating Scale (HDRS or HAMD) is the most widely used clinician-administered
assessment scale. The original version (Hamilton, 1960) contains 17 items pertaining to symptoms of
depression experienced over the past week.
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sensitivity and specificity61 (82-93%) for depression subtypes in multisite validation and out-

of-sample replication datasets62.

The usefulness of the newly discovered biotypes was tested by assessing their

responsiveness to rTMS treatment. The protocol (repetitive high-frequency stimulation of

DMPFC for 5 weeks) was most effective for patients with biotype 1 (82.5% of whom

improved significantly with more than 25% HAMD score reduction). The authors compared

predictions based solely on clinical symptoms and on functional connectivity biotypes.

Classification according to connectivity features plus biotype diagnosis yielded the highest

predictive accuracy (89.6%).

Furthermore, the authors wanted to ascertain whether the newly discovered biotypes

correspond to any other disorders similar to depression. Namely, they studied whether patients

diagnosed with generalized anxiety disorder (GAD) shared similar patterns of abnormal

connectivity with one or more depression biotypes. They applied optimized classifiers to GAD

cohort (without overlapping clinical depression). Out of this sample, 69.2% of participants

were still classified as belonging to one of the depression biotypes, with the majority of these

(59.3%) assigned to anxiety-associated biotype 4. Interestingly, when applied to a group of

patients with schizophrenia, which is not considered close to depression (not primarily a mood

disorder), only 9.8% of patients tested positive for a depression biotype.

This pioneering study showed that computational approach can indeed bring

significant advancements both on theoretical and on the more practical, translational level. On

theoretical level, defining novel subtypes of an existing disorder that transcend current

diagnostic boundaries enhances the understanding of how various brain dysfunctions

contribute to the diverse clinical presentations of depression and discrimination from other

similar disorders. On the more practical, translational level, the utility of these findings can be

translated to optimization of treatment protocols.

61 Sensitivity measures how well a test can identify true positives and specificity measures how well a
test can identify true negatives.
62 The authors also tackled the problem of the capacity of classifiers trained on one data set at a
single site to generalize to data collected at multiple sites. They tested the most successful classifiers
in an independent replication data set collected from 13 sites.
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6.7 Looking ahead: predicting the transition to psychosis from recent onset depression

(ROD)

Another concern in psychiatric practice is determining the prognosis and implementing

prevention strategies for certain disorders, especially in young population. Koutsouleris et al.,

(2021) tried to predict transition to psychosis in patients with clinical high-risk states (CHR)63

and recent onset depression (ROD) using multimodal ML. To that end, they conducted a

multisite, longitudinal prognostic study that followed up patients with CHR, ROD and healthy

volunteers. Their models integrated clinical-neurocognitive data, structural MRI data, and

polygenic risk scores for schizophrenia (PRS)64.

Clinical implementation. To facilitate clinical implementation, a sequential prediction

model was developed that optimized the ordering and number of data modalities along with

prognostic uncertainty thresholds to decide whether a patient needed further testing, thus

lowering diagnostic burden. The initial condensed clinical-neurocognitive model was

streamlined from 141 variables to only 7 key variables.

Cybernetic model. The authors tested the performance of the clinical-neurocognitive,

sMRI-based, and PRS-based models separately, but also created a cybernetic model that

combined all algorithmic and human components. Human input consisted of clinician-rated

estimates on transition to psychosis, which showed a pronounced optimism bias toward risk

estimation. However, it provided valuable contextual insight. Therefore, because algorithms

showed exactly the inverted bias (high sensitivity and low specificity), the cybernetic model

presented a superior predictive system. The final model, optimizing the diagnostic workflow,

achieved accuracy of 85.9% (sensitivity, 84.6%; specificity, 87.3%).

Validation. Models were validated through internal and external data sets. As a part of

the PRONIA initiative (Personalized Prognostic Tools for Early Psychosis Management, EU),

data was available from 7 academic early recognition services in 5 European countries. The

63 The construct of a clinical high-risk (HR) state for psychosis has evolved to capture the prepsychotic
phase, describing people presenting with potentially prodromal symptoms (Fusar-Poli et al., 2013). In
DSM-5, Attenuated Psychosis Syndrome (APS) was recognized as a condition for further research.
64 A polygenic risk score (abbreviated PRS) uses genomic information alone to assess a person’s
chances of having or developing a particular medical condition. A person’s PRS is a statistical
calculation based on the presence or absence of multiple genomic variants, without taking
environmental or other factors into account (Polygenic Risk Score (PRS), 2024).
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study employed techniques such as nested cross-validation and label permutation testing to

assess the model’s performance and prevent overfitting.

Other findings – identification of risk factors and neuroanatomical biomarkers. The

study identified significant predictors of psychosis transition, i.e. clinical variables such as

APS, motor disturbances and non-supportive family environment during childhood out of total

number of variables. Based on available sMRI data, the researchers also identified specific

neuroanatomical biomarkers which differentiated participants at risk for psychosis from those

that were not. Namely, a psychosis predictive brain signature was discovered that generalized

well on independent cohorts. Interestingly, participants labeled as non-transitional showed

reversed temporo-occipital volume reductions compared to healthy controls, which might

point out to a compensatory mechanism of resilience to psychosis. Therefore, sMRI-based

models may have prognostic and observational utility in clinical settings. These findings

support the neurobiological proximity between the early-onset affective and psychotic

disorders.

The study results suggest that an individualized prognostic workflow integrating

artificial and human intelligence may facilitate personalized prevention of psychosis in young

patients with CHR or ROD. Considering the fact that transition to a more serious illness, i.e.

psychosis is debilitating, costly, harder to treat and potentially long-lasting, such prevention

measures are certainly worth exploring.

Additional note

Sample sizes

The majority of studies based on neuroimaging data have the problem of small sample sizes.

Obtaining reliable neuroimaging data is both costly and time-consuming. Small sample sizes

have implications for the statistical power of the findings, generalizability of the model and

introduction of bias (due to highly selective participant criteria). It is possible to pool

neuroimaging data from multiple sites by means of data sharing initiatives (e.g., 1000

Functional Connectomes Project International Data Sharing Initiative). However, uniformity

in respect to data acquisition and (pre)processing has to be taken into account. This can be

addressed by applying adequate pre-registration procedures.
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7 Challenges and limitations and future directions

7.1 Challenges and limitations in the field of computational psychiatry

Computational psychiatry, as an emerging, interdisciplinary field, certainly shows

considerable potential and promise for tackling current problems in psychiatric theory and

practice. However, it has been met with some challenges and limitations along the way. This

section will outline some major roadblocks and suggest which steps have been taken to

overcome them.

Translation of findings to clinical practice

Despite extensive research efforts, it seems that the field of CP is very slowly progressing

from validation of theoretical constructs to implementation of tools in psychiatric practice. In

general, translational research is a bidirectional concept in which the knowledge generated

from the “benches” of laboratory science can be translated to “bedside” (or the population)

and vice-versa. When applied to psychiatry, it involves the translation of (neuro)scientific

discoveries into clinically meaningful interventions (Weissman et al., 2011). Translational

efforts in psychiatry are mostly aimed at precision medicine, i.e. tailoring treatments and

interventions to individual patients based on their unique characteristics, including genetic

makeup, biomarkers, clinical symptoms, and personal preferences. The aim is to move from

“one-treatment-fits-all” to a more personalized treatment, rendering it more effective.

However, this process has been implemented very slowly so far.

Problems with data

This thesis has already outlined some challenges regarding the use of very diverse data in

computational models (see Chapter 4). For example, in neuroimaging studies, sample sizes are

usually small and biased. One possible solution is to pool data from multiple sites. However,

in order to ensure reproducibility and comparability of the results, it is necessary to adhere to

adequate preregistration protocols65, for example. These practices are also in accordance with

65 The key features of preregistration are: (1) a priori specification of the research design and analysis
plan; (2) posting the plan in discoverable repositories prior to observing the outcomes of the study,
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principles of open science and transparency in research. Another option is using data from

biobanks. The collected data and biosamples in biobanks are readily available for scientific

research. However, there have also been some concerns about the participation bias, i.e. that

the data submitted voluntarily by (mainly) healthy subjects does not adequately represent more

general population (including the underrepresentation of different ethnic groups)66. It is also

costly and time consuming to collect longitudinal data in clinical settings. However, they are

essential for monitoring or studying the progression of the disorder. One way to obtain

longitudinal data with minimal imposition and cost can be via (wearable) digital devices,

social media and data collection platforms.

Interpretability of computational models

As it has already been mentioned, ML models in CP are usually termed “black box” because

they offer no explanation as to how input variables relate to output of such models.

Explainable AI (XAI) provides a rationale that allows users to understand why a model has

produced a given output, which can then be interpreted in a given context based on user’s

expertise. Some XAI techniques include decision trees, SHapley additive explanation, i.e.

SHAP (enables observing how all model features collectively influence its output), various

data analytics and visualization tools. One area that is in great need of XAI is that of Clinical

Decision Support Systems (CDSSs), in medical field in general, but also in psychiatry. AI-

based clinical support tools (CST) can be divided into two groups: (1) those that assist in

establishing diagnosis (classification), prognosis or treatment selection (e.g., STAR*D for

choice of antidepressants); (2) AI-based services used as auxiliary treatment tools (e.g.,

therapy or telepsychiatry platforms (BetterHelp), mood or behavior/physiological data trackers

(MindStrong, MoodGym), etc.). Explainability or interpretability is particularly relevant for

the first group of tools. The absence of explainability may lead to issues of underreliance (or

e.g., Open Science Framework (OSF; https://osf.io/ ); and (3) reporting all of the planned analyses.
Preregistration practices should prevent ordinary confirmation, hindsight, and outcome biases that
affect human reasoning. Commonly used in clinical trials, the practice is now gaining popularity in
other fields, particularly the social and behavioral sciences like psychology (Bakker et al., 2020).
66 However, there are examples of databases specialised for mental health, such as the Munich
Mental Health Biobank (MMHB). It was established in 2019 and as of 2021, it contains a continuously
growing set of data from 578 patients and 104 healthy controls (46.37% women; median age, 38.31
years) (Kalman et al., 2022).

https://osf.io/
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more specifically untrustworthiness) or overreliance on computational models (Antoniadi et

al., 2021). Incorporating CSTs routinely in clinical workflows is still not too common. For

example, a recent study (Maslej et al., 2023) showed that summaries of clinical notes about a

patient with MDD were rated less favorably when psychiatrists believed the notes were

generated with AI as compared to another psychiatrist, regardless of whether the notes

provided correct or incorrect information.

One of the unintended adverse consequences of predictive algorithms (for prognosis) is

potential stigmatization or denial of services based on probabilistic assessments. Models need

to be validated and perform well on unseen data, which can be problematic if they were

trained on biased datasets. For instance, this may lead to underdiagnosis or misdiagnosis in

minority populations. Figure 8.1 illustrates how the differences in model interpretability affect

the users.

Figure 8.1 More interpretable models for better decision-making with XAI. Explainability helps
mental health care providers make better informed decisions regarding treatment selection, diagnosis or
prognosis. (Source: https://www.techtarget.com/whatis/definition/explainable-AI-XAI )

https://www.techtarget.com/whatis/definition/explainable-AI-XAI


61

Ethical considerations – data and patient confidentiality

Using healthcare data from biobanks, electronic health records (EHR)67 and other sources in

CP carries significant implications for data and patient confidentiality. Anonymizing,

controlling access and safely transferring healthcare data is usually a complex task. Although

these types of data do not ordinarily enable making direct inferences about the patient identity,

they are still deemed sensitive. For example, leaking of private information can affect personal

lives, including bullying, high insurance premiums, loss of jobs due to medical or psychiatric

history, and other forms of discrimination and stigmatization (Fusar-Poli et al., 2022).

Privacy-enhancing technologies (PET) aim to prevent data leaks while balancing

privacy and usability. Federated learning (FL) is one of the PETs with the primary concept of

protecting the privacy of clients’ data. FL is a machine learning approach that allows multiple

devices to train a shared model without exchanging raw data. Instead of centralizing the data

in one location, each device holds a portion of data and collaborates with other devices to

update the shared model. This enables training on more extensive and diverse datasets, while

preserving the privacy of individual data (Samar Samir Khalil et al., 2024). In this process,

similar challenges to collection of data from multiple sites may be encountered.

Ecological validity

Another significant limitation of current tasks in CP, as well as in more traditional

neuropsychological testing, is the fact that they are not (sufficiently) ecologically valid. For

instance, decisions aimed at maximizing small monetary rewards or minimizing small shocks

in the lab do not necessarily reflect prior expectations or decisions in more complex, real-

world contexts. Experimental tasks are designed to isolate certain behaviors or cognitive skills

so that they can be effectively measured, modeled, and interpreted. However, this necessity

sometimes ignores the fact that in real-world scenarios, people might employ multiple skills

for solving the task (either sequentially or in parallel), might be affected by the volatility of the

environment and similar factors.

67 An electronic health record includes information about a patient’s health history, such as diagnoses,
medicines, tests, allergies, immunizations, and treatment plans. Electronic health records can be seen
by all authorized health care providers who are taking care of a patient and can be used by them to
help make recommendations about the patient’s care.
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Gamification could possibly be seen as a solution to this problem. By creating a game

world, participants are able to make different choices, approach problems in various ways and

generally act with greater agency and flexibility compared to isolated computational tasks

(Benrimoh et al., 2023). Furthermore, digital tools, such as electronic games, are explicitly

designed to be easy to disseminate and require minimal training for the participants, thus

facilitating user engagement. Hosting these tools online can potentially reach out to much

greater and diverse pool of participants than lab-based studies. Additionally, costs of

implementing such tools are significantly lower.

7.2 Future research directions

Systematic review of data in CP

One possible direction in by which this thesis topic could be extended is by delving into a

more systematic overview of the data types used in CP, as well as problems in their collection,

implementation into CP models and validation. Majority of articles on CP provide descriptions

of the data that are needed for a particular experiment or research question at hand, while more

systematic reviews are lacking. This is one of the possible research gaps which have been

encountered while writing this thesis. In the light of the fact that various types of digital data

will likely continue to be collected and used more often in modeling (and might possibly

supplant or supplement more traditional data types)68, it would be interesting to follow-up on

this trend.

Adopting and interpreting computational models – building better understanding between

computational modelers and clinicians

Another, more practical future research direction would be establishing the degree openness

and susceptibility of mental health providers towards employing some practical solutions from

CP in their work. For example, a (pilot) questionnaire that would be aimed at therapists and

68 The use of some parameters obtained from wearable devices (e.g., movement patterns) could be
used as a proxy for light or DLMO parameter in modeling circadian rhythms (Huang et al., 2021).
DLMO indicates dim light melatonin onset. The authors assume that activity reaches a plateau at 500
lux and that there is no activity at less than 50 lux, so that would mean inferring a physiological
parameter from the recorded movement patterns.
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psychiatrists (in our particular ethnic and socioeconomic surroundings) could be designed and

implemented to assess their attitude towards computational approaches. In addition, or more

specifically, to assess their degree of trustworthiness towards AI-based clinical support tools

(CSTs), for diagnosis, treatment selection or prediction. Mental health care providers are

effectively the end-users of these tools, so their previous knowledge, training or general

familiarity with these approaches may provide useful insights into the feasibility of

incorporating such tools into the clinical workflow. The questions could also be used to probe

into the reasons for or against trustworthiness or utility of these tools in their work. The results

could potentially point out to gaps in knowledge or misconceptions that could be addressed

with additional education or training.

Other findings and directions

This extensive literature review enabled identification of some research gaps or understudied

phenomena, especially in the theory-driven computational approach (which was one of the

objectives of this thesis). Namely, various memory deficits, bodily or somatic symptoms and

social deficits are still largely underinvestigated with computational modeling.

However, some authors have begun to recognize the importance of interoceptive

processes in mental health and in maintaining the overall homeostasis (Petzschner et al., 2017;

Khalsa et al., 2018; Seth & Friston, 2016). Sometimes overlooked in diagnostics, bodily or

somatic symptoms expression across the spectrum of psychiatric disorders has helped to

motivate the extension of tools from computational psychiatry to address interoception and

body regulation via an approach termed computational psychosomatics. This implies a joint

computational approach to characterizing disease mechanisms in exteroceptive (psychiatry)

and interoceptive (psychosomatics) domains (Petzschner et al., 2017). For example, this

approach is important for establishing causality of symptoms such as fatigue (if it does not

have organic or neurological origin) in some mental health disorders, e.g., depression. Can

depression be caused by fatigue or is fatigue a symptom of depression? They are sometimes

difficult to disentangle because they form a closed loop. Findings about the interaction

between interoceptive states (brain-body interactions) and environment, i.e. brain-world
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interactions, could be valuable for understanding the mechanisms of achieving allostasis or

homeostasis69, which might be impaired in mental health disorders.

69 If it is conceptualized within the predictive coding framework, homeostasis can be described as
waiting for errors and correcting them, while allostasis uses prior knowledge, both innate and learned,
to prevent errors and minimize them. (Sterling, 2014).
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