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Abstract

The notion of causality has been tackled by philosophers for many centuries

but only recently, several attempts have appeared to formally define causal-

ity in physical systems. In this document we will take a look at the Wiener-

Granger method for statistical analysis of causal interactions. We provide a

theoretical introduction to this method defining its basic concepts and prop-

erties. Afterwards we first use this method to analyze artificially generated

time series, and later we apply this method to measure emergent behavior in

an artificial system of bird flocking.

keywords: Granger causality, time series, statistical analysis, autonomy,

emergence

Abstrakt

Pojem kauzality bol predmetom skúmania mysliteľov po stáročia, ale až

v dnešnej dobe boli predstavené postupy pre formálne popísanie kauzal-

ity vo fyzických systémoch. V tejto práci si priblížime metódu Wiener-

Grangerovej kauzality, pomocou ktorej pristupujeme k skúmaniu kauzálnych

vzťahov prostredníctvom štatistickej analýzy a predstavíme jej základné teo-

retické koncepty a vlastnosti. Ďalej aplikujeme túto metódu pre analýzu

simulovaných časových radov a neskôr túto metódu použijeme na kvantifiká-

ciu emergentných vlastností skúmaného systému.

kľúčové slová: Grangerova kauzalita, časové rady, štatistická analýza, au-

tonómia, emergencia
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Foreword

The topic of this document is the notion of causality applied in the context

of a statistical analysis of interdependent time series carried out by taking

advantage of the Wiener-Granger causality method. Using different experi-

mental artificially generated data we test the accuracy of the Wiener-Granger

causality and discuss a proposed measure for quantifying causal interactions

– causal density, which is derived from this method.

During our testing we will specify a number of different sets of stochastic

processes and analyze their behavior by both, the time-domain as well as

the frequency-domain versions of the Wiener-Granger causality. Drawing

from the ideas behind this method we will also describe and exemplify a

complementary measure, termed G-autonomy, which will serve as a tool for

assessing the independence of a process from the rest of a system.

We will also discuss the notion of different varieties of emergence and

attempt to analyze weakly emergent behavior in the simulated environment

of Boids, a textbook example of emergent behavior – flocking.
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1 Introduction

Causality, the notion which is defined as the principle of the cause and its

consequential effect, has been an important subject of study for philosophers,

physicists and other thinkers throughout the history of civilization (Pearl,

2000). It is viewed as the cornerstone and one of the most basic requirements

for determinism – the principle, which seems to govern the very laws of the

universe which we exist in. Causality, or rather the causal influence, can also

be interpreted as a rule by which a behavior of one entity is subject to and

dependent on the behavior, state, energy and so on of another entity. If the

temperature of the water in a pot reaches its boiling point, water changes

its phase from liquid to gaseous, or when a falling ball hits a solid surface, it

immediately bounces back.

One of the major aspects of determinism and, by proxy, of causality is

that it appears to directly contradict the notion of free will (Dennett, 2003).

Although this philosophical topic is not the subject of this particular thesis,

we will discuss a bit more down-to-earth idea, connected to consciousness,

that the causality in complex systems (such as the human brain) can be

approached scientifically (Farkaš, 2007) and observed, tested and measured

by the means of mathematical formalization and statistical analysis.

In this thesis we will draw upon the method of Wiener-Granger causal-

ity which has its roots in econometrics and has been first described by Clive

Granger (Granger, 1969) in 1969, but which has in recent years become one of

the favorite methods for analyzing the recorded neural activity observations

by a ever growing number of scientists in the field of neuro- and cognitive

sciences. This approach, based on the time-series inference, is becoming a

promising tool for exploring yet unknown interactions between the functional
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parts of the human brain. For the purpose of quantifying these causal inter-

action a new measure has been proposed – the causal density (Seth et al.,

2011) metric which is designed to capture the underlying structure of the

causal behavior sustained by a system.

The idea behind Granger causality (G-causality) is that if the prediction

of one variable becomes more accurate if we consider, together with its pre-

vious values, past values of another variable, the second variable contains

causal information about the first variable. In other words, the second vari-

able contains influential information about the first one – a variable is said

to Granger cause another. This idea is further extended for more realistic

scenarios where we analyze the behavior of multivariate sets of processes and

perform our analysis in the presence of latent (unmeasured) variables and

other noisy influences.

Another aspect of the causality in complex systems is the presence of

causal influences observed not only between the system’s smallest units but

also between groups of these units. These groups of variables form stand-

alone regions with a specific causal behavior and thus create a sense of causal-

ity at different levels of the system. With this property in mind, another

extension for G-causality, which operates at the multivariate level, has been

proposed and is discussed in latter sections of this thesis.

Finally, by incorporating the intuitions about the phenomenon of emer-

gence, we introduce the measure of G-emergence and elaborate on a rather

metaphysical notion of downward causation. Emergence is a property which

manifests itself as a macro-level property which becomes existent by the

virtue of interactions between the system’s micro-level elements (Bedau,

2003). These relationships, where micro-properties influence an emergent

macro-property and in turn the macro influences the micro, bring about the
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notion of quantifiable inter-level causation which is complementary to the

inter-level causation observed between variables at the same level (Farkaš,

2010).

In this thesis we test this method and its extensions by applying them in

the analysis of various artificially generated time series and simulated flocks

of bird-like agents.

With the advent of the computer era, providing extremely fast and reli-

able calculations, complemented by the advances in the study of the neuro-

biological processes in the mammalian brain (human brain included) we are

now able, provided that our G-causality analysis is useful, to shed new

light on what lies behind the processes inside our thinking brains. Using

vast amounts of data of neural activity obtained using functional magnetic

resonance imaging (fMRI), electro-/magnetoencephalography (EEG/MEG),

multielectrode arrays (MEA) and computational power of today’s computers

we can possibly broaden our insight and achieve a more detailed under-

standing of our own neurological processes and perhaps even understand the

relationship between the physical brain and the abstract consciousness.
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2 Measuring causality

In this section we will focus on the analysis of time series using the method

of Wiener-Granger causality – G-causality. We will discuss the usage of

time-domain and spectral analysis and introduce the causal density metric

which will serve as a measure for causal interactions. Finally, we describe an

extension of this method which finds its use in the scenarios when we analyze

processes which are under the influence of other unknown (latent) processes.

2.1 Wiener-Granger causality

The basic principle of WCG is quite simple: Let us assume that X is a

variable representing a stochastic process and, similarly, Y is a variable rep-

resenting a different process. Using past values of X we try to predict its

future values. If incorporating previous values of Y into our prediction model

of X helps predicting its future values, Y is said to Granger-cause X, i.e.

Y contains information about the future values of X (Granger, 1969). This

definition can further be extended to incorporate a third variable Z which

will serve as a conditioning variable.

With respect to this definition we formalize the idea behind G-causality

using auto-regressive (AR) modelling. First, let us describe the variables rep-

resenting stochastic processes: We describe the variable X as a (potentially

infinite) matrix of column vectors, where each vector xt represents the values

of variable X at a time t:

X = (x1,x2, . . . ,xn) ,xi ∈ Rd, d ∈ N
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analogously Y :

Y = (y1,y2, . . . ,yn) ,yi ∈ Rd, d ∈ N

With this description of variables we proceed to formalize our prediction

models. Note that since we intend to use linear auto-regressive models, we

assume that variables X and Y are:

1. stochastic

2. wide-sense stationary (i.e. its mean value and variance do not change

over time and/or space)

Let us defineX(m)
t−1 as a vector matrix containing the previous (lagged) values

of X, bounded by the model order (m), formally:

X
(m)
t−1 = (xt−1,xt−2, . . . ,xt−m)

where xt−i is a column vector with the values of X at time t− i, m is a fixed

number of lagged observations.

Now let us consider these two following AR models:

1. restricted:

X t = A ·X(m)
t−1 + εt

2. unrestricted:

X t = A′ ·
(
X

(m)
t−1 ⊕ Y

(m)
t−1

)
+ ε′t

Symbol ⊕ represents the concatenation of column vectors X(m)
t−1 and Y (m)

t−1.

We can view this operation as a means to extend the parameter space by

appending the lagged values of the variable Y to the values of X. Matrices

A and A′ represent regression coefficients, ε and ε′ are residuals (also called
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‘prediction errors’). Both are obtained by standard linear auto-regression

methods, these include ordinary least squares and Yule-Walker equations

(Kay, 1988).

If the variance of ε′ (the residual of the unrestricted model) is significantly

smaller than the variance of ε (the residual of the restricted model), there is

an improvement in the prediction of the future values of X by incorporating

the past values of Y .

2.2 Time-domain analysis

In this part we will focus on the time-domain analysis of stochastic variables.

First, we will describe the basic notion behind the comparison of the residuals

of restricted and unrestricted models. In order to proceed, let us first make

some adjustments to the previous definitions of variables and AR models. In

this case we assume that the variable X is scalar (denoted as X), i.e. the

value of observation at time t (Xt) is a single real number. Therefore, we

update the notation of restricted and unrestricted models respectively:

Xt = A ·X(m)
t−1 + εt

Xt = A′ ·
(
X

(m)
t−1 ⊕ Y

(m)
t−1

)
+ ε′t

X
(m)
t−1 now represents a vector of real numbers – the lagged observations from

t− 1 to t−m, analogously for Y (m)
t−1 . A and A′ are the regression coefficient

vectors and ε and ε′ are scalar values.

Using the following equation, we obtain the magnitude of the causal in-

fluence of Y on scalar X (Geweke, 1984):
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FY→X = ln
var(ε)
var(ε′)

The variance of ε (and ε′) is obtained from the set of every εt (and ε′t)

across all of the input data of the respective AR models. Thus, the following

can be inferred from this equation:

1. it is possible, for scalar X and Y , that Y is G-causal to X and, at the

same time, X is G-causal to Y – a feedback stochastic process (Geweke,

1984)

2. the G-causal magnitude will never be negative

3. the statistic significance can be determined using the F -statistic test

(Greene, 2002)

F =
RSSr−RSSur

m
RSSur

T−2m−1

where RSSr and RSSur are the Residual Sums of Squares of restricted and

unrestricted models

RSS =
T∑

t=m+1

ε2t

T is the total number of the observations used to create the unrestricted

AR model and m and (T − 2m − 1) are the degrees of freedom. With a

significant result of this F -statistic, it is safe to assume that the unrestricted

model provides better predictions than those obtained from the restricted

one and, therefore, Y exerts a G-causal influence on X.
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2.2.1 Conditional G-causality

It is possible to extend the original pairwise analysis of two variables to

contain a third, conditioning variable. Let us assume that this third variable

Z is also a wide-sense stationary stochastic process. Thus, we extend our

original description of the restricted and unrestricted models as follows:

Xt = A ·
(
X

(m)
t−1 ⊕ Z

(m)
t−1

)
+ εt

Xt = A′ ·
(
X

(m)
t−1 ⊕ Y

(m)
t−1 ⊕ Z

(m)
t−1

)
+ ε′t

The magnitude of causal interaction is then defined(Geweke, 1984) as:

FY→X|Z = ln
var(ε)
var(ε′)

This formulation can be interpreted as the magnitude of G-causal influence

of Y on X in the presence of Z.

2.3 Spectral analysis

Another important perspective on G-causality is the counterpart of the time-

domain analysis – the frequency-domain decomposition. In this spectral ana-

lysis, instead of focusing on each variable as a whole, we break down the

signals of each variable into frequencies and measure the G-causal influence

of these specific frequencies between variables. The sum of G-causalities of

all frequency components (from zero to Nyquist frequency1) of a variable is

equal to its total time-domain G-causality. We assume that X and Y are
1 Nyquist frequency is the half of the sampling frequency of a signal. Aliasing of a sam-

pled signal can be avoided if the Nyquist frequency is greater than the greatest component
frequency.
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both scalar and the magnitude of G-causal influence of frequency ω is given

by (Geweke, 1982, 1984):

FY→X(ω) = ln
SXX(ω)

H̃XX(ω) var(ε′t) H̃∗XX(ω)

where SXX(ω) is the autospectrum of Xt, H̃XX(ω) is the (X,X) element

of the normalized form of the transfer matrix H̃(ω) and H̃∗XX(ω) is the

complex conjugate of H̃XX(ω). On a side note, H̃XX(ω) is the inverse of the

normalized spectral coefficient matrix Ã(ω), which is obtained as the Fourier

transform of time-domain coefficient matrix of unrestricted models for X and

Y (Ding et al., 2006).

In contrast to the time-domain analysis (which uses F -statistic testing),

the statistical significance of frequency-domain interactions can be assessed

by surrogate statistical tests, such as bootstrapping or permutation testing

(Seth, 2010). For a more detailed description of these two methods, see

Appendix B.

Spectral G-causality proved important in neuroscience, where causal in-

teractions between neural populations often depend on the oscillatory syn-

chrony (Bressler and Seth, 2010). Also, spectral analysis has an ambition

to provide an insight into mediated causal interactions, as opposed to the

time-domain analysis (illustrated in Figure 1).

2.4 Causal density

Causal density serves as a means to quantify the overall causal interactivity

throughout a complex system. Using the magnitudes of G-causal interactions

(F) between the variables, it is possible to define the causal density as the
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Fig. 1: Example of a system of interdependent variables. Influence of variable X1

on variable X4 can be mediated by variable X3.

average of all pairwise G-causalities (Seth et al., 2011):

CD(X) =
1

n(n− 1)

∑
i 6=j

FXi→Xj |X[i,j]

whereX is the set of all the measured variables, Xi andXj are variables from

X and X[i,j] denotes a subset of X with Xi and Xj omitted. This measure

is also referred to as the weighted causal density, since every interaction is

weighted by its magnitude. An unweighted, normalized version of causal

density is defined as (Seth et al., 2011):

CDn(X) =
α

n(n− 1)

where α is the number of significant G-causal interactions.

Causal density provides such a measure of dynamical complexity of a sys-

tem, in which a zero value is achieved only when the elements are completely

independent from one another, or their behavior is completely integrated in

their dynamics. Therefore, a non-zero result can be interpreted so that the

behavior of elements is, to a certain degree, independent (so that novel in-

formation can be introduced into the predictions), but is, at the same time,

globally integrated, i.e. the behavior of one variable exerts an influence on
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another variable (Seth et al., 2011). An element with high causal density is

called a causal hub.

2.5 Causal flow

Causal flow is a straightforward measure for individual variables. It is sim-

ply the difference between outward in inward G-causal influences of a given

variable:

CF(Xn) = degout(X)− degin(X)

where Xn is the n-th variable and degout and degin are the numbers of out-

ward and inward interactions, respectively.

This measure is used to identify causal sources – the variables which have

a strong influence throughout the system (high positive causal flow) and

causal sinks – the variables which depend significantly on the other variables

in the system (low negative causal flow).

2.6 Partial G-causality

One of the greatest hurdles in analysis of real-life data is the fact that we are

not aware of the underlying structure of the analyzed system. Suppose we

try to analyze the data acquired from fMRI or multielectrode arrays (MEAs)

of a living brain during certain cognitive processes. In such a case, there

are two important aspects which must be accounted for in order to produce

relevant insights:

1. the underlying causal structure is generally unknown prior to our ana-

lysis, making our effort an exploratory one (in contrast with a confir-

matory one)
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2. in most cases we are bound to have only a partial record of the processes

we observe – e.g. using the MEA approach we are capable to record

only the behavior of a certain area of a brain

The problem which arises from the first issue is straightforward – if we

are unaware of the underlying structure, we are unable to verify our mea-

sured causality results against the real causality structure. But since we

are performing an exploratory analysis, such a lack of any previous knowl-

edge is expected. The second issue brings a rather complicated problem. As

stated earlier, we expect only partial information about the observed sys-

tem, therefore it is very likely that these processes are under the influence

of other parts of the system which we do not monitor – exogenous inputs

and/or under the influence of the processes that we are not aware of at all

– latent variables. The presence of such unaccounted variables may give

way for unreliable causality results. For example, if two observed variables

which are independent from one another are both influenced by a third, un-

known, variable, G-causality analysis may (falsely) conclude that there is a

causal relationship between these two variables, when there is only a cor-

relation (caused by the third variable). There is also a possibility that the

latent variables can create so much “noise” in our observed data that exist-

ing causal interactions (which would otherwise be correctly discovered) will

remain invisible for the G-causality analysis.

Because of these issues a method based on the conditional G-causality has

been proposed (Guo et al., 2008). It is based on the idea that the influences of

latent variables may be detectable as the correlations between the residuals of

AR models. This is analogous to the concept of partial correlation (Barnett

et al., 2009) as we attempt to dampen the distortive influence of exogenous

inputs by incorporating a third term. Note that this analogy is not quite
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accurate since prior knowledge of the variances of the latent variables (which

is not available in our case) is needed in order to use the partial correlation.

Now let us consider the definition of AR models used for conditional G-

causality. We define the regressions of the conditional variable Z as follows:

Zt = B ·
(
X

(m)
t−1 ⊕Z

(m)
t−1

)
+ ηt

Zt = B′ ·
(
X

(m)
t−1 ⊕ Y

(m)
t−1 ⊕Z

(m)
t−1

)
+ η′t

we can see that the roles of the ‘predictee’ and the conditioning variables

have been switched. The partial G-causality is defined as:

Fp
Y→X|Z = ln

∑
(εt|ηt)∑
(ε′t|η′t)

where
∑

represents the partial covariance:

∑
(ε|η) = cov (ε)− cov (ε,η) cov (η)−1 cov (ε,η)>

Using this equation we obtain the value of the G-causal influence of variable

Y on X in the context of Z. Here, the Z variable can be viewed as a

mediator by which we are able to capture the influences on the correlation

of other unknown variables.

In theory, since we observe the changes in the correlations of residuals,

partial G-causality will be useful only when the influence of exogenous and

latent variables is equal on all observed variables. As it turns out, partial

G-causality holds even in such cases when this exogenous influence differs

among the observed variables. This is demonstrated in Section 4.1.5 where

we analyze artificially generated data using this method. In the same section,

we provide a performance comparison of both the conditional and partial G-
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causality methods which clearly shows a superior performance of the partial

G-causality over the conditional version.

2.7 Multivariate G-causality

Up to this point, we have been focusing on the univariate version of G-

causality. One of the greatest shortcomings of this standard approach is that

it only permits an univariate pairwise analysis of interactions of elements in

a system.

Imagine the context of neuroanalysis in which we observe possibly a great

number of variables in various different brain regions. For example, we ob-

serve the behavior of the neurons responsible for vision and at the same

time the behavior of the neurons located in the prefrontal cortex (which has

the executive function). In such setting we are not only interested in the

causal influence of different neurons on one another, but also (and possibly

interested even more) in the influence of one region on the second one, thus

bringing a scale to our analysis. One of the possible approaches is to produce

univariate time series of every region of interest, for example by averaging of

all of the components (neurons), and then perform the standard G-causality

analysis on these “reduced” time series.

In this section we will focus on the multivariate approach of G-analysis for

obtaining causal interactions between multivariate groups of variables. Each

group variable will consist of values of its component sub-variables at given

time. For this purpose we extend the standard G-causality for evaluating
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multivariate variables. First, we revise the original AR models:

X t = A ·
(
X

(m)
t−1 ⊕Z

(m)
t−1

)
+ εt

X t = A′ ·
(
X

(m)
t−1 ⊕ Y

(m)
t−1 ⊕Z

(m)
t−1

)
+ ε′t

As we can see, the original concept remains intact as we are again com-

paring the restricted and unrestricted models. The difference here lies in

the variables and residuals. X,Y and Z now represent multivariate random

variables (random vectors) as so do the residuals ε and ε′.

To clarify this notation, X (and all the other variables) is a potentially

infinite matrix consisting of column vectors. Each of these column vectors

represents the state of the sub-variables of which X consists.

X = (X1,X2, . . . ,Xn) Xi ∈ Rd, d ∈ N

X t = (x1, x2, . . . , xn)> xi ∈ R

Residuals ε and ε′ are defined in the same fashion.

Before we proceed to the definition of the equation for the multivariate

version of G-causality, let us lay down a couple of notational conventions

about the statistical operations (covariance and its extensions) used in this

section. Suppose we have random vectors X and Y which represent mul-

tivariate random variables – matrices of column vectors, each representing

values of n sub-variables at time t, then:

• Σ (X,Y ) represents the n × m cross-covariance matrix (covariances

between sub-variables X i and Y j

• Σ (X) = Σ (X,X) represents the n×n covariance matrix (covariances

between sub-variables X i and Xj
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• Σ (X|Y ) represents the n×n partial-covariance matrix (Barrett et al.,

2010) – the covariance matrix of the residuals of a linear regression of

X on Y , if Σ (Y ) is invertible it is then defined as:

Σ (X|Y ) = Σ (X)− Σ (X,Y ) Σ (Y )−1 Σ (X,Y )>

• Σ (X,Y |Z) represents the n×m partial-cross covariance matrix (Bar-

rett et al., 2010), if Σ (Z) is invertible it is then defined as:

Σ (X,Y |Z) = Σ (X,Y )− Σ (X,Z) Σ (Z)−1 Σ (Y ,Z)>

2.7.1 Multivariate time-domain analysis

Building upon the previous definitions of G-causality we again try to measure

the magnitude of the influence of one variable on another by comparing the

changes in the accuracy of two prediction models:

X t = A ·
(
X

(p)
t−1 ⊕Z

(r)
t−1

)
+ εt

X t = A′ ·
(
X

(p)
t−1 ⊕ Y

(q)
t−1 ⊕Z

(r)
t−1

)
+ ε′t

Here the variable X is first regressed on the previous p lags of itself and r

lags of the conditioning variable Z and second also on the previous q lags of

Y .

Note that the notationX(p)
t = (X t⊕X t−1⊕· · ·⊕X t−p) again represents

the vertical concatenation of vectors X t . . .X t−p, thereforeX
(p)
t is a random

vector of dimension np.

In the multivariate case of G-causality we are unable to compare the dif-

ferences in the accuracy of the restricted and unrestricted models using simple
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variance, since it can be obtained only from univariate data. Thus we are

bound to make use of the covariance measure, which on the other hand pro-

duces covariance matrices (in contrast with variance which produces scalar

values) and therefore we need to modify our G-causality measure (Barrett

et al., 2010):

FY→X|Z = ln

(
var(εt)
var(ε′t)

)
= ln

(
Σ(X|X(p)

t−1 ⊕Z
(r)
t−1)

Σ(X|X(p)
t−1 ⊕ Y

(q)
t−1 ⊕Z

(r)
t−1)

)

note that X here is scalar.

Two approaches for handling of the covariance matrices of the residuals

have been proposed:

Total variance which is the trace of the covariance matrix – sum of values

on the main diagonal of a square matrix tr(X) =
∑n

i=1Xi,i.

The approach of total variance seems as a natural extension to the original

G-causality (Ladroue et al., 2009) since the total variance is a common choice

for assessing the fitness of a prediction model. At the same time, the total

variance approach smoothly reduces to the original G-causality measure if

the predictee variable is scalar. It is defined as follows (Barrett et al., 2010):

F tr
Y→X|Z = ln

 tr
[
Σ(X|X(p)

t−1 ⊕Z
(r)
t−1)
]

tr
[
Σ(X|X(p)

t−1 ⊕ Y
(q)
t−1 ⊕Z

(r)
t−1)

]


Generalized variance which is the determinant of the covariance matrix,

denoted as |Σ (εt)|. This measure quantifies the volume in which the residuals

lie (Barrett et al., 2010; Geweke, 1982). The generalized-variance approach

for measuring G-causality is defined as follows (Barrett et al., 2010):
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FY→X|Z = ln


∣∣∣Σ(X|X(p)

t−1 ⊕Z
(r)
t−1)
∣∣∣∣∣∣Σ(X|X(p)

t−1 ⊕ Y
(q)
t−1 ⊕Z

(r)
t−1)
∣∣∣


This measure, similarly as the total variance approach, will always be non-

negative and will smoothly reduce to the original G-causality measure when

the predictee variable is scalar. Barrett et al. (Barrett et al., 2010) concluded

that the generalized variance approach is more suitable for the multivariate

spectral G-causality compared to the total variance version, therefore this

approach will be preferred in our thesis.

2.7.2 Multivariate causal density

The causal density measure which has been described in Section 2.4 is strictly

univariate since it is the average of the pairwise G-causalities between the

elements of a system (in the context of all the other elements of the same

system). In the context of the multivariate G-causality a number of the

multivariate extensions of the original causal density have been proposed

(Barrett et al., 2010). These extensions provide a more detailed overview of

the causal density on various scales of a complex system.

Group causal density is an extension of causal density which quantifies

the causal density from size k to size r, in the context (conditioned on) of

the rest of the system

gCDk→r (X) =
1

nk,r

nk,r∑
k=1

FV k
i→Ur

i |W
n−k−r
i

where V k
i , U

r
i and W n−k−r

i are the ith tripartition of the system X, with

sizes k, r and n − k − r, respectively. The number nk,r ≡
(
n
k

)(
n−k
r

)
is the
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total number of all possible tripartitions of X.

Bipartition causal density Using the group causal density, we can define

another causal density measure which is defined as the average causal density

sustained by a system divided into (every possible) two partitions

bCD (X) =
1

n− 1

n−1∑
k=1

gCDk→(n−k)(X)

Scaled causal density Another interesting view on the causal density

would be a comparison at different scales of the predictor and the predictee

divisions

sCDs (X) =
1

s− 1

s−1∑
k=1

gCDk→(s−k)(X)

Note that sCD2 (X) would be the same as the original pairwise causal density

and sCDn (X) is equivalent to bCD (X).

Tripartition causal density Finally, the average of all the causal densities

at every scale of a system could provide an overall measure

tCD (X) =
1

n− 1

n∑
s=2

sCDs(X)

2.7.3 Partial multivariate G-causality

As described in Partial G-causality in our attempts to discover the causal

interactions in a system we may come across the issue of exogenous and la-

tent variables which could possibly render a correct analysis a rather difficult

task. For such cases a method of partial G-causality has been proposed.
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This method can be extended for multivariate data by combining the princi-

ple behind the original univariate case (based on the analogy with the partial

correlation) with the approach of the generalized variance used in the stan-

dard multivariate G-causality.

Thus, we again switch the roles of the predictee and the conditioning

variables in our AR models (Barrett et al., 2010)

Zt = B ·
(
X

(p)
t−1 ⊕Z

(r)
t−1

)
+ ηt

Zt = B′ ·
(
X

(p)
t−1 ⊕ Y

(q)
t−1 ⊕Z

(r)
t−1

)
+ η′t

with Z and η being random vectors and X(p)
t−1, Y

(q)
t−1 and Z(r)

t−1 being the

vertical concatenations of p, q and r lagged vector values, respectively.

Now we can extend the original partial G-causality measure based on the

partial covariance

Fp
Y→X|Z = ln

(
Σ (εt|ηt)

Σ (ε′t|η′t)

)
to the multivariate case using Geweke’s generalized variance (the determinant

of the covariance matrices) (Barrett et al., 2010)

Fp
Y→X|Z = ln

(
|Σ (εt|ηt)|
|Σ (ε′t|η′t)|

)
= ln


∣∣∣Σ(X|X(p)

t−1 ⊕Z
(r)
t−1)
∣∣∣∣∣∣Σ(X|X(p)

t−1 ⊕ Y
(q)
t−1 ⊕Z

(r)
t−1)
∣∣∣


This switching of the role of Z to the position of a predictee can be viewed

as using the Z variable as a sort of a “proxy” which helps us to capture the

exogenous influences of the unobserved variables.
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3 Emergence and downward causation

Emergence is a phenomenon by which a complex property arises from rel-

atively simple interactions between a (large) number of elements. Such a

macro-level property is not just a mere sum of its micro-level properties, it

exhibits a behavior somewhat independent from its micro-element substrate.

Examples of emergent processes can be found in the nature (snowflake form-

ing, termites building their colonies) as well as in the context of artificial

computer simulations (cyclic and repetitive behavior of the populations in

Conway’s game of life).

Depending on the conditions deemed necessary to be met such that a

process can be considered emergent, three definitions of emergence have been

proposed (Seth, 2008; Bedau, 2003)

Nominal emergence in the simplest terms, it is a property which can

be possessed only by the macro-level entities and not by its micro-level con-

stituents. For example a computer software system is emergent from the

lines of code from which it is composed. This is the most trivial ‘version’ of

emergence which is in principle fully predictable and therefore we will not

consider it any further.

Strong emergence is probably the most controversial variety of emer-

gence. It combines two crucial statements about the properties of a process.

First, a macro-level property is unidentifiable from the observations of the

micro-level properties alone. In consequence, a mechanistic reduction of a

emergent process would be a direct violation of this condition. Second, the

macro-level property exerts causal influences which are not explainable in

terms of the micro-level interactions.
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This brings forth a rather problematic notion of downward causation. Two

main issues connected to the downward causation have been raised: First,

such a causal influence of a macro-element on its micro-level constituents is

rather contradictory to the statement that the macro-level property is the

way it is due to those same micro-level elements which it influences. Second,

if we accept such a causal influence we then have to resolve the conflicting

nature of the macro- and micro-level causal influences in our analysis. An

example of the strong emergence could be the emergence of conscious states

(e.g. qualia) from neuro-biological processes, but this particular example can

rather be viewed as a result of our lack of understanding of the consciousness

as a whole rather than as a canonical demonstration of the strong emergence.

Weak emergence can be viewed as a “compromise” between the nominal

and strong variations of emergence. Compared to the nominal one, weakly

emergent properties cannot be inferred trivially from micro-level interactions.

In contrast with strong emergence, macro-level properties are in principle

identifiable from micro-level elements. In other words, the macro-level prop-

erty can be in fact derived from the interactions of its micro-components, but

these interactions are so complex that the macro-level property cannot be ex-

plained solely by the micro-level behavior. It has been postulated that the

weakly emergent macro-properties have to be epistemologically irreducible

(Bedau, 1997) – the macro-property is underivable from its micro properties

except by simulation (Seth, 2008).

In this section we will build upon the notion of weak emergence, namely

on the statement that a property is weakly emergent if it is not identifiable

from the observations of the micro-level interactions alone. We will also
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discuss a new measure which will, drawing from this intuition about weak

emergence, serve as a tool for quantifying emergent behavior.

Building upon the previous principles of G-causality, we introduce a com-

plementary measure – G-autonomy – and we will continue in this vein to

define the measure of G-emergence. This will be illustrated on a well-know

example of emergence: Boid flocking. Finally, we will discuss the metaphys-

ical notion of downward causation – the causal influence of a macroscopic

property on its microscopic elements.

3.1 G-autonomy

Autonomy can be viewed as a property of an element (of a complex sys-

tem), which describes how independent is such an element from the rest of

the system. That is, how little information about the behavior of such an

autonomous element is contained in the behavior of other elements.

Intuitively, we will define such a measure upon the definition of G-causality.

A process is G-autonomous if the introduction of its past values into predic-

tion model gives better predictions of its future values than the predictions

based solely on the past values of other processes (Seth, 2008). Thus, let is

revise our original restricted and unrestricted models:

Xt = A ·Z(m)
t−1 + εt

Xt = A′ ·
(
X

(m)
t−1 ⊕Z

(m)
t−1

)
+ ε′t

where Z is a set of all the variables in a system with X omitted. We can

see that the restricted model of X does not regress onto X itself. Then, the

G-autonomy of X is given by:
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AX|Z = ln
var(ε)
var(ε′)

With G-autonomy at hand, we proceed to define the crucial measure of G-

emergence.

3.2 G-emergence

As stated earlier, a property is G-emergent if its behavior is both dependent

and autonomous from its micro elements. Let us assume that M is a macro-

variable, emergent from a set of micro-variables m = {m1,m2, . . . ,mn}.

Using the concepts of G-causality and G-autonomy, the definition of G-

emergence is straightforward:

EM |m = AM |m

(
1

N

N∑
i=1

Fmi→M

)
It is noteworthy that this measure captures the basic requirements for

emergence: if M has no autonomy from its micro-properties (AM |m = 0), its

G-emergence will also be zero. Similarly, if there is no influence of the micro-

variables m on M (Fm→M = 0), G-emergence will again be zero. Thus, a

non-zero G-emergence hints at emergent property of M .

3.3 Downward causation

Finally, we elaborate on the notion of downward causation. The influ-

ence projected by a macro-level variable M on its micro-level constituents

m1,m2, . . . ,mn can be defined as a pairwise G-causal influence of M on one

(and possibly more) of the variables x (Seth, 2008; Bedau, 2003):

Fdw
M,mi

= FM→mi
,mi ∈m
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Two things should be noted. First, a G-emergent macro-variable, by the

definition of weak emergence, is in principle not required to have a detectable

G-causal influence on its micro-elements (although strong emergence does in

fact require such a downward influence) (Seth, 2008). Second, there is a on-

going discussion about the metaphysical admissibility of the notion of down-

ward causation, thus the Fdw
M,mi

measure is at this point rather hypothetical

and should be taken with caution (Seth, 2008).
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4 Data analysis and results

In this section, we will present direct experimental results of G-causality ana-

lysis. In the first part we will analyze various artificially generated time series

and examine differences between the time-domain and spectral versions of G-

causality analysis. We will start off with a formal definition of our system of

processes in which we will check whether the G-causality method discovered

its inter-element interactions correctly. Furthermore, we will systematically

investigate the effects of three parameters – level of noise, magnitude of the

lagged values and the number of time lags on G-causality detection.

In the second part we will focus on the partial extension of G-causality,

its application on a modified version of Baccala & Sameshima (Baccala and

Sameshima, 2001) time series which will include latent variables and exoge-

nous inputs. Again we will first describe these processes formally and then

proceed to the actual analysis. We will compare the results obtained from the

conditional and partial versions of G-causality analysis applied on different

variations of this system – the influences whose different magnitudes of the

exogenous and latent inputs exert on the overall correctness of the analysis.

Finally, we will proceed to the experimental application of the ideas and

measures described in Section 3. First, we will provide a short example of the

G-autonomy measure on a well-defined set of processes in a similar fashion

as the G-causality example. Second, we will provide an example of a G-

emergence measurement on a textbook example of an emergent behavior –

bird flocking.
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4.1 Time-series analysis

In this part, we will analyze the interactions in a system comprised of six

variables whose design has been inspired by the system proposed by Baccala

& Sameshima (Baccala and Sameshima, 2001). We will show that using the

method of G-causality and F-statistic testing of the statistical significance we

are able to obtain a correct overview of the interactions in the entire system

based solely on the observations of different processes.

4.1.1 Formal description of variables

Here we provide a formal definition of the six variables which will be the

subject of our experimental analysis:

x1(t) = 0.5025x1(t− 1) + 0.25x1(t− 3) + w1(t)

x2(t) = 0.35x1(t− 2) + w2(t)

x3(t) = −0.5x1(t− 1) + 0.95x3(t− 1)− 0.9025x6(t− 3) + w3(t)

x4(t) = 0.3x3(t− 3)− 0.9025x5(t− 4) + w4(t)

x5(t) = −0.3x4(t− 5) + 0.5x6(t− 1) + w5(t)

x6(t) = −0.4x5(t− 3) + 0.4x6(t− 2) + w6(t)

Note that wi is a white noise with a normal distribution (µ = 0 and σ2 = 1).

Figure 2 provides a visual overview of the dependence between these

signals. Figure 3 displays the raw observations of our variables. We can see

that x3 has a visible influence on certain variables (e.g.x4) by comparing

the amplitudes of x3 and other variables. There is a visible echoing (with a

certain lag) of the peaks of x3 by x4, this is a sign that x3 is very likely to

G-cause x4.



4 Data analysis and results 38

Fig. 2: Six variables representing interdependent processes. Different widths of the
oriented lines correspond to the approximate magnitude of causal influences
between processes.

Fig. 3: A raw visualization of 2500 observations of the six variables.
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4.1.2 Time-domain analysis

In order to analyze G-causality within our system we are first required to

build our restricted and unrestricted AR models. We will generate six time

series, each containing the values of our six processes at arbitrary time t. Each

of these time series will contain 2500 raw observations. For the purpose of

generating such data we provide our custom written MATLAB script on the

DVD supplement as well as the sample files containing values generated by

this script.

Before we proceed to build our actual AR models we need to specify the

model order for our models. The model order is a value which specifies how

many lagged observations are to be included in the prediction of a process’

value at a certain time. This value needs to be selected carefully and by hand

and its impact on the fitness of AR models will be extremely significant. If

the value is too low, the AR models will most likely generate unreliable

predictions of the values. This is due to the insufficient amount of the data

needed to capture the internal properties of a process – the so called problem

of underfitting. In contrast, if the model order value is too high the AR

models’ prediction capability will probably suffer by the virtue of the problem

of overfitting. That is, the AR model will “predict” the values upon which

it was generated almost perfectly but at the expense of failure to correctly

predict the future values from the input outside of the model’s training set.

Since the methods for assessing a perfectly fitting model order do not

exist we have to take a different approach to find an estimate for the best

model order. With an a priori knowledge of the analyzed system we can

choose model order directly (e.g. in our six variable example, the model or-

der corresponds to the highest time lag t − 5, the model order can thus be

specified as 5). Another approach, given the input data, is to systematically
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test the “correctness” of the AR models with a number of different model or-

ders. This can be done using the Akaike information criterion (AIC) (Akaike,

1974; Bressler and Seth, 2010) or the Bayesian information criterion (BIC)

(Schwartz, 1978; Bressler and Seth, 2010). Both of these methods attempt

to find a balanced model order value depending on the fitness of the model

together with the number of the parameters used in that model. For a more

detailed description of these two methods, see Appendix A.

Using our input data, both AIC and BIC return an estimate of the best

model order equal to 5, which can be deemed as the correct one.

With the input data and the desired model order at hand, we proceed to

obtain the G-causalities using our method.

Fig. 4: Time-domain analysis in MATLAB toolbox. The graph represents the G-
causal interactions identified by our method (green lines represent oriented
one-way interaction, red lines represent two-way interactions). The width
of these lines corresponds to the G-causal magnitudes. The matrix on the
right represents pairwise interactions (a column G-causes a row), the darker
is the color, the stronger is the influence.

We can see that the G-causality method identified both the unidirectional

and bidirectional G-causal relations correctly (left). Green lines represent

oriented one-way influences, red lines represent two-way influences. The line
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width corresponds to the magnitude of the interaction (the width of the

two-way lines corresponds to the greater magnitude of the two interactions).

Matrix on the right visualizes the influences between the processes (a column

causes a row) – darker color means a stronger influence, lighter color means

a weaker influence. Again, we can see that the magnitudes as well as the

orientations of the G-causal interactions are identified correctly.

In Table 1 we present the numerical results for every significant G-causal

interaction. The statistical significance of a interaction is assessed by the

F -test described in Section 2. Using the F -test evaluation we obtain the

G-causality probability – denoted as the p-value (using the cumulative dis-

tribution function). The closer is the p-value to 0, the more significant is

the respective G-causal interaction. In our analysis we use p < 0.01 as a

threshold for identifying the significant G-causal interactions.

interaction G-causality F -test p
x1 → x2 0.0902 46.51 0
x1 → x3 0.3340 195.53 0
x3 → x4 0.4430 274.82 0
x4 → x5 0.1761 94.94 0
x5 → x4 0.6751 475.38 0
x5 → x6 0.1866 101.15 0
x6 → x3 0.6286 431.40 0
x6 → x5 0.2521 141.37 0

Tab. 1: The properties of significant causal interactions between
the processes (significance p < 0.01)

For a complete numerical overview of all the interactions in our system, see

Table 7 on page 66.

We now proceed to the assessment of the causal density which describes

the causal complexity sustained by our example system. Note that here we
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differentiate between the unit causal density (unit cd), which is simply a ratio

between the significant causal interactions and all the other interactions of

a process, and weighted unit causal density (w-unit cd) which represents the

unit causal density of the same process weighted by the magnitudes of the

significant causal interactions.

variable unit cd w-unit cd in-deg out-deg c. flow
x1 0.3333 0.0707 0 2 2
x2 0.1667 0.0150 1 0 -1
x3 0.5000 0.2343 2 1 -1
x4 0.5000 0.2157 2 1 -1
x5 0.6667 0.2150 2 2 0
x6 0.5000 0.1779 1 2 1
total 0.2667 0.0929 – – –

Tab. 2: G-causal properties of the processes

In Table 2 we provide the causal density as well as the causal flow prop-

erties of every variable. As stated in Section 2.5, the causal flow is the

difference between outward and inward G-causal interactions of a given pro-

cess. In our example, process x1 has been correctly identified as the system’s

causal source (the highest positive causal flow) and process x2 as a causal

sink (the process does not exert any causal interactions whatsoever).

Figure 5 shows causal density (left) and causal flow (right) distribution be-

tween variables. Bars represent unweighted causal density and flow, blue

lines show their weighted counterparts.

4.1.3 Spectral analysis

Continuing from the previous section, we now proceed to the spectral variety

of G-causality analysis on the same data set used in Section 4.1.2. We analyze

2500 observations of our six variables’ G-causalities in a frequency range of

0–150 Hz, with the sampling rate of 500 Hz and using the bootstrapping
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Fig. 5: Causal density (left) and causal flow (right) of the system. The unit causal
density graph shows two sets of values: the bars represent the normalized
causal densities of every variable; the blue line represents the weighted va-
riety of causal density. The causal flow graph displays the causal flow of
each variable, weighted and normalized varieties are displayed in the same
fashion as in the causal density graph.

method (repeated 1000 times) to assess the statistical significance of the G-

causal influence at every frequency. Our threshold for statistical significance

will again be set to p < 0.01.

Figure 7 shows the average spectral G-causal influence of all variables in

the system (peak at ≈ 5 Hz). And finally, Figure 8 shows G-causalities

matrix where a column G-causes a row. G-causalities are again distributed

among the frequencies in the range 0–150 Hz. Note that G-causalities of

some frequencies seem to be “cut off”. This is due to the fact that these

particular frequencies and their influences were identified as not significant

enough (p ≥ 0.01).

Two interesting aspects of the spectral analysis of can be observed here:

First, we can see that all the variables (except x2) exhibit an influential

behavior on processes to which they are not directly connected (if we consider
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Fig. 6: Spectral decomposition of variables and causal densities/flows of frequen-
cies. Top row displays the power spectrum of every variable (column rep-
resents variable) obtained using Fast Fourier Transform with sampling rate
of 500 Hz. Center row contains per variable G-causalities of frequencies
in range of 0–150 Hz. Bottom row contains causal flows distributed by
frequencies, again, from 0 to 150 Hz.

Fig. 7: The mean spectral G-causality of the system.

the formal description of variables). For example, take the x6 variable. The

influence of the frequencies at ≈ 50 Hz seem to “leak” through the variables x3

and x5 (to which x6 is connected) on the variable x4. Similar situation arises
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Fig. 8: Spectral G-causalities divided between variables (a column causes a row).
The magnitudes of G-causal interactions are divided among the frequencies
in the range 0–150 Hz.

in the case of the variable x1 which seems to influence the variable x4 (the

frequencies at ≈ 5 Hz) by the virtue of a connection to the variable x3. This

can possibly be interpreted as an example of a mediated G-causal influence –

an influence of one process through another on a third one. This assumption

is also backed by the actual structure of our system. If we consider our

system as an oriented graph whose vertices are our processes and edges are

(oriented) causal influences, we can identify these mediated connections as

paths consisting of more than two vertices.

A second, less favorable aspect is the presence of what seems as spurious
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G-causal influences. An example of such an erroneous influence can be seen in

the case of x3 → x2. Although not strong at any of the 150 frequencies (with a

portion of frequencies giving statistically insignificant influences altogether),

we can safely conclude that this result does not reflect the actual causal

substrate of our system. In order to exert a mediated influence on x2, x3

would need to influence x1 (which is the only actual contributor to x2). This

is clearly not the case since x1 is an autonomous process (its values are based

solely on its previous values and white noise). Thus we can conclude that

the notion of the mediated G-causality should be taken with caution when

assessing possibly unforeseen interactions between the processes.

4.1.4 Impact of noise and time lags

In this section we modify our model in order to be able to adjust certain

properties of the inter-variable interactions. Three properties will be subject

to our testing:

1. the strength of white noise

2. the strength of lagged values

3. the length of time lags

We will observe the impact of these properties on the overall (weighted)

causal density of the system. We first proceed to modify the formal definition
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of our system:

x1(t) = α 0.5025x1(t− 1− tc) + α 0.25x1(t− 3− tc) + β w1(t)

x2(t) = α 0.35x1(t− 2− tc) + β w2(t)

x3(t) = − α 0.5x1(t− 1− tc) + α 0.95x3(t− 1− tc)

− α 0.9025x6(t− 3− tc) + β w3(t)

x4(t) = α 0.3x3(t− 3− tc)− α 0.9025x5(t− 4− tc) + β w4(t)

x5(t) = − α 0.3x4(t− 5− tc) + α 0.5x6(t− 1− tc) + β w5(t)

x6(t) = − α 0.4x5(t− 3− tc) + α 0.4x6(t− 2− tc) + β w6(t)

where α is the coefficient modulating the strength of the lagged values, β

is the coefficient of the strength of white noise and tc is a positive natural

number specifying an additional lag to the original one.

In our modification we observe the influence of α, β and tc values set

globally for the whole network in ranges [0.5, 1.1], [1.0, 2.0] and [0, 10], re-

spectively.

Figure 9 shows the change of the global weighted causal density (the

darker the color, the higher the causal density) depending on the strength of

the white noise and the strength of lagged values (left), and causal density’s

dependence on the noise and additional time lag (right). It is clear that noise

has a strong distortive influence on the accuracy of the G-causality analysis,

since in both left and right graphs, the causal density rapidly drops with the

increasing interference of noise. The influence of the strength of lagged values

is on the other hand the exact opposite – with an ascending α coefficient the

overall causal density also rises. However, our experimental measurements

point at a certain positive “indifference” of the G-causality analysis towards

the increasing additional time lag, i.e. causal density remains steady even



4 Data analysis and results 48

Fig. 9: The influence of the white noise and the strength of lagged values (left) on
the overall causal density in the system and the influence of the white noise
and additional time lags (right) on the overall causal density.

with different (longer) additional time lags. Note that during our analysis

each time series underwent the assessment of the most fitting model order

using AIC and BIC and therefore, AR models were generated with these

additional time lags taken into account. Nonetheless, it is visible that G-

causality holds even in the case of greater distances in time and is able to

mitigate its influence.

4.1.5 Partial G-causality

We conclude the time-series analysis section by demonstrating the partial

G-analysis, which can be potentially used to reduce the distortive effects of

exogenous inputs and latent variables (Guo et al., 2008), by comparing its

performance with the conditional G-causality. In our experiment we will an-

alyze a simpler system (compared to the one described in Formal description
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of variables), its formal definition is as follows:

x1(t) = 0.3 x1(t− 2) + 0.85 x3(t− 1) + w1(t) + α1e1 + β1e2

x2(t) = 0.7 x2(t− 1)− 0.15 x2(t− 3) + w2(t) + α2e1 + β2e2

x3(t) = −0.75 x2(t− 3) + 0.15 x4(t− 2) + w3(t) + α3e1 + β3e2

x4(t) = 0.5 x3(t− 2) + 0.5 x4(t− 1) + w4(t) + α4e1 + β4e2

where the additional terms e1 and e2 represent exogenous and latent inputs

respectively, and αi and βi represent the magnitude coefficients of these ad-

ditional influences. Note that in our experiment the e1 variable is treated as

an exogenous input and e2 as a latent variable. In every test we will use 3σ

as the confidence interval.

During our testing of both versions of G-causality, we are going to com-

pare their performances on a set of three different configurations of αi and βi

coefficients. The first configuration, with αi = 0 and βi = 0 for all the vari-

ables, serves as a reference point for the rest of the coefficient configurations.

Thus by excluding the influences of e1 and e2 altogether, we test whether

these methods are able to correctly infer the underlying G-causal network

in the most permissive of the cases. In the second configuration, we modify

αi = 2, the same for all four variables while keeping βi = 0 at its original

value. In the third configuration, we modify both αi and βi coefficients. The

coefficient αi is now set to contain random values, selected from the range

[0, 1] with a different value for every variable while βi = 1 for each of these

variables.

Our results, visualized in Figure 10, can be interpreted as follows. The

first referential case (αi = 0, βi = 0) shows that both methods correctly re-

duce to the standard G-causality analysis and the underlying network of the



4 Data analysis and results 50

Fig. 10: Comparison of the partial and conditional versions of G-causality. Left side
contains G-causal network models inferred by both versions, right side G-
causality matrices (a column causes a row) of significant (p < 0.003) inter-
actions with scales of their magnitudes. Each of the three rows represents
a different configuration of αi and βi coefficients for e1 and e2.

causal influences is captured appropriately. Thus we proceed to the second

case with the configuration αi = 2, βi = 0. In this case we see a minor

shift between these two versions of G-causality – although both versions

have discovered the network correctly, the G-causal magnitudes measured by

the conditional G-causality are comparatively lower, compared to those mea-

sured by the partial variety. In the third case, we can see that the conditional

version failed to accurately capture the underlying network of causal interac-

tions in our system by acquiring three additional spurious (false) influences
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(as shown in the third row of Figure 10). However, the result from the partial

G-causality, although containing one spurious influence of x3 → x2 with a

relatively small magnitude, fared quite well and discovered the main causal

structure in the system.

4.2 G-autonomy

In this section, which will serve as an “interlude” between the G-causality and

G-emergence measures’ demonstrations, we will briefly demonstrate the be-

havior of the G-autonomy measure (see Section G-autonomy). G-autonomy

is a complementary measure to the G-causality one in the sense that it quan-

tifies the independence of a process from the rest of the system rather than

its dependence on any other process.

To demonstrate this measure we will analyze a simple set of four variables,

defined as follows:

x1(t) = w1(t)

x2(t) = 0.5x1(t− 2) + 0.65x2(t− 2) + w2(t)

x3(t) = 0.5x2(t− 3) + w3(t)

x4(t) = 0.9025x1(t− 2)− 0.3x4(t− 2) + w4(t)

where wi is a normally distributed white noise.

From this definition we can see that only x2 and x4 are autonomous

processes since they contain auto-regressive components (the lagged values

of themselves). The x3 process contains the lagged values of another process

(x2) and thus is not autonomous. Finally, x1 is completely random (and

therefore cannot be predicted) and thus, it is not autonomous.

We now proceed to the actual results obtained by our G-autonomy ana-
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lysis. In Table 3, we can clearly see that x2 and x4 were correctly identified

as G-autonomous processes with a strong F -test significance of this prop-

erty. Note that the significance threshold p ≤ 0.01. x1, a completely random

process, is not G-autonomous because we are unable to build an appropriate

AR model for its predictions. This is backed by the F -test result which gives

an extremely low significance of its (very low) G-autonomy. A similar result

has been obtained for the process x3 since it contains only noise and lagged

values of process x2 and therefore is not G-autonomous.

variable G-autonomy F -test p-value signif.
x1 0.0009 0.574 0.8 no
x2 0.4757 377.67 0 yes
x3 0.0021 1.28 0.25 no
x4 0.0992 64.64 0 yes

Tab. 3: Properties of G-autonomy analysis of four processes (significance p ≤ 0.01)
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4.3 G-emergence of Boid flocking

In this final section, we demonstrate the usefulness of the G-emergence for

analyzing emergent macro-properties of a complex system. Working under

the constraint of weak emergence that a macro-property is underivable from

its micro-properties except by simulation (Bedau, 1997, 2003) we simulate the

behavior of a set of agents of a textbook example of the emergent behavior

– flocking. The design of our simulation has been inspired by Reynolds’

description of Boids (Reynolds, 1987) which names three rules guiding the

behavior of each boid:

1. grouping – each boid tends to fly towards its relative (perceived) center

of flock,

2. avoidance – during its flight, each boids tries to avoid collisions with

nearby boids,

3. matching – each boid tries to align its velocity, both orientation and

magnitude, with the velocity of other nearby boids.

In this example, the absolute center of flock (a sort of a center of mass) can

be viewed as our potential macro-variable.

Our implementation of this simulation (in a 2D space) uses vector defini-

tions of both velocity – x, y coordinates relative to the given agent describing

its orientation and speed (magnitude), and position – absolute x and y values.

These vectors’ values are updated after every time step.

In order to comply with the aforementioned rules, we divide the update

of the velocity vectors to three steps, afterwards we “move” the given boid’s

position by its updated velocity vector. Note that the velocities and positions

of the boids are updated at a given time as a set – that means that all the
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positions are changed only after all the velocities have been updated. This

ensures the deterministic nature of the simulation.

Furthermore, we also introduce four variables α1, α2, α3, α4 ∈ [0, 1] which

will adjust the individual influence of these three rules on the behavior of a

given boid. This enables us to perform a systematic analysis of a number of

different configurations of the system and compare the results of G-emergence

and its influence on the flocking behavior.

Before we proceed to the simulation itself, let us first describe the three

rules, in terms of a pseudocode, for changing boid velocities.

Algorithm 4.1 Update of position and velocity of every boid at a given
time step

for each boid do
Vector r1 = rule1(boid);
Vector r2 = rule2(boid);
Vector r3 = rule3(boid);
boid.velocity = boid.velocity + r1 + r2 + r3;
boid.position = boid.position + boid.velocity;

end for

Algorithm 4.1 describes the operations performed at every time step

where we first update given boid’s velocity and then change its current posi-

tion.

The first rule for updating velocities is based on moving the boid towards

its perceived (relative) center of mass. The position of the relative center of

mass is obtained by averaging the positions of other boids except the one

whose velocity we are updating. From this position we obtain the relative

orientation of a boid towards the center of mass by subtracting boids posi-

tion from the position of the perceived center of mass. Note that the first

coefficient α1 modifies the magnitude of the resulting vector which will be

added to the velocity vector. This operation is described in Algorithm 4.2.
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Algorithm 4.2 Rule 1 - grouping
function rule1(boid)

Vector centerOfMass;
for each Boid b do

if boid 6= b then
centerOfMass = centerOfMass + b.position;

end if
end for
centerOfMass = centerOfMass / N - 1;
return (centerOfMass - boid.position) * α1;

end function

Algorithm 4.3 Rule 2 - avoidance
function rule2(boid)

Vector displacement;
float maxDistance = (maxDimension / 10) * α2;
for each Boid nearest do

if boid 6= nearest and distance(boid, nearest) ≤ maxDistance then
orientation = nearest.position - boid.position;
displacement = displacement - orientation;

end if
end for
return displacement * α3;

end function

The second rule – the avoidance of nearby boids, operates by selecting ev-

ery boid whose distance is within a specified arbitrary distance from the cur-

rent boid, then obtaining the relative orientation towards the nearest boids

and subtracting it from the displacement vector which will consequently be

used to modify the given boid’s velocity vector. This operation is described

in Algorithm 4.3. The influence of this rule is managed by two coefficients:

α2 modifies the range within which are the other boids considered as ‘near’.

Note that the maximum value for this range (α2 = 1) is the tenth of the

dimension of the 2D space in which the simulation takes place. The second

coefficient α3 (as in the case of α1) modifies the magnitude of the displace-
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ment vector and thus its influence on the resulting velocity vector of a boid.

Algorithm 4.4 Rule 3 - matching
function rule3(boid)

Vector meanVelocity;
for each Boid b do

if boid 6= b then
meanVelocity = meanVelocity + b.velocity;

end if
end for
meanVelocity = meanVelocity / N - 1;
return (meanVelocity - boid.velocity) * α4;

end function

The final rule, as shown in Algorithm 4.4, modifies the velocity vector of a

boid to align with the perceived velocity of other boids. We proceed similarly

as in the first rule by averaging the velocities of every boid except the one

whose velocity is updated and then by obtaining the orientation towards

this perceived velocity. Again, the strength of the influence of this rule is

managed by α4.

With the implementation of these rules at hand, we proceed to the actual

simulation of the flocking behavior. First, we randomly place N = 10 boids

in a toroidal continuous 2D space with dimensions 500 × 500. Each boid

will possess its current position (x, y coordinates) and its current velocity (a

vector with relative orientation and absolute magnitude). On a side note,

in order to keep the model stable, we limit the speed (the length of the

velocity vector) to the range [3, 9]. The simulation runs at arbitrary discrete

time steps. After each step, the velocity and position of each boid is updated

according to the three rules. During our experiment we analyze 4×4×4×4 =

256 different configurations of αi coefficients:
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coeff. values
α1 0.01 0.05 0.07 0.1
α2 0.1 0.3 0.5 1.0
α3 0.2 0.3 0.5 0.8
α4 0.1 0.125 0.25 0.5

Tab. 4: Tested values for αi coefficients

4.3.1 G-emergence results

For each of the 256 test cases we analyzed 5000 observations (time steps) of

the simulated flocking behavior of modified boids. Our analysis contains 10 +

1 observed processes, i.e. 10 boids plus the center of mass. Each observation

(for boids and center of mass alike) is the distance from the absolute center

of the simulation space. We use this reduction of dimensionality in order

to avoid over-complicating of the AR models. The model order m = 6 was

selected using the Akaike information criterion.

Three configurations for αi were tested. Configuration cR (random) which

produced almost completely random behavior of the boids, configuration cL

(low) which created inadequate flocking behavior due to the strong influence

of the matching of the perceived velocity, and configuration cH (high) which

produced a compelling flocking behavior.

config. α1 α2 α3 α4

cH 0.01 0.3 0.8 0.1
cL 0.01 0.5 0.5 0.5
cR 0.01 1.0 0.8 0.25

Tab. 5: Three configurations of αi coefficients; cH (high) produced a compelling
flocking behavior, cL evoked poor flocking and cR produced a near-random
flight of the boids.

Figure 11 shows the trajectories of boids under the given configuration

of αi coefficients. The top left part of this figure shows the comparison of
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Fig. 11: G-emergence of the center of mass (top left). Example traces of the boids
(dotted gray lines) and flock’s center of mass (red line) under different
coefficient configurations (cH , cL and cR).

the G-emergence measurements for these three configurations. We can see

that the cH configuration provided both high G-emergence value and also a

visually compelling flocking behavior.

Figure 12 represents the cross-sections through the four-dimensional coef-

ficient space. Each cross-section contains the cH configuration (the intersec-

tions of green lines). Gray scale shows G-emergence of flock’s center of mass.

Two aspects of the above visualizations should be noted. First, the “depth” of

G-emergence changes smoothly in most regions of the parameter space, hint-

ing at the robust nature of the G-emergence measure. Second, some regions

exhibit steep transitions, for example in the top left cross-section we can see
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Fig. 12: Parameter space of the simulation model. Each of the four maps contains
the G-emergence values (the darker the color, the higher the G-emergence
value) for different combinations of αi configurations. The intersection of
green lines indicates the cH configuration.

two “islands” of stronger G-emergence. The sensitivity of the G-emergence

measure towards these sharp transitions hints at a possibility of its usefulness

for identifying configuration regions in which a non-trivial weak emergence

is present (Seth, 2008).

Finally, we elaborate on the notion of downward causation. Table 6 shows

different values of G-causality of the flock’s center of mass on the individ-

ual boids. Although we can see that the mean G-causality drops between

the three configurations, it should be noted that these results show a rela-
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boid cH cL cR
1 0.0030 0.0018 0.0003
2 0.0034 0.0008 0.0003
3 0.0020 0.0028 0.0009
4 0.0018 0.0012 0.0006
5 0.0011 0.0005 0.0015
6 0.0048 0.0025 0.0018
7 0.0069 0.0075 0.0025
8 0.0046 0.0010 0.0019
9 0.0041 0.0013 0.0033
10 0.0041 0.0027 0.0026

mean 0.0036 0.0022 0.0016

Tab. 6: G-causalities of the center of mass on the individual boids under configu-
rations cH , cL and cR.

tively small magnitude of these interactions. Also, our results showed little

statistical significance of these magnitudes. It should be noted that these

results differ from those reported by Seth (Seth, 2008). Two facts should be

mentioned. First, our experiment involved a different simulation model than

the model used in Seth’s article. Second, weak emergence does not require

downward causation of the macro-property to be present (but it is necessary

for strong emergence) (Seth, 2008).

We thus can conclude that although our downward causation experiment

did not produce expected results, the G-emergence measure served well in

the case of the analysis of the flocking behavior of boids. Since the measured

values were consistent with our expectations about flock’s movements we

recommend a further investigation of the G-emergence measure.
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5 Conclusion

The measure of Wiener-Granger causality was first described in 1956 in

econometrics with the intention to help the analysis of time series of eco-

nomic processes. However, in recent years it has been proposed to put this

measure to use for the analysis of time series recordings of neural activity.

This was motivated by the idea that the understanding of the underlying

causal interactions in neural systems (such as the human brain) can lead to

the fundamental understanding of the set of phenomena commonly known

as consciousness (Dennett, 1991).

In this thesis we discussed the G-causality analysis and its various exten-

sions which we then put to the test by applying it to a number of experimental

data. Our tests first confirmed the usefulness of this measure for discovering

the causal interactions of processes solely based on the examination of time

series representing the individual variables. We also confirmed that the spec-

tral counterpart of this time-domain analysis produced satisfactory results

consistent with the time-domain version, but also hinted at the possibility to

discover mediated G-causal influences. Furthermore, the partial G-causality

extension met out expectations about analysis in the context when latent and

exogenous influences are present but not observed in terms of individual time

series – which prevented direct knowledge of their behavior. This extension

is especially useful in real life application for example in the case of analysis

of data obtained by multielectrode array (MEA) equipment (used to directly

measure neural activity of living brains).

In the later part we described a measure which combines G-causality ana-

lysis with the notion of weak emergence to formalize a means to quantify and

measure emergent properties of complex systems. This measure was termed
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G-emergence. We then constructed a simulation of a textbook example of

emergence behavior – flocking, and tried to obtain results from the simulated

data. G-emergence proved useful for identifying emergent behavior and its

results were consistent with the visual aspect of the flocking behavior. How-

ever, we were unable to produce satisfactory results in the case of measuring

the downward causation (influence of the flock on its members).

We conclude that the method of Wiener-Granger causality provides sub-

stantially useful results and has a valid potential to serve as tool for both

exploratory and confirmatory analysis of time series in terms of causal inter-

actions. The G-emergence measure, although not meeting all of our expecta-

tions, fared quite well and we conclude that this method, should it be further

investigated, could serve as a meaningful method for discovering emergent

behavior in complex systems.
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A Determining AR Model Order

One of the most significant factors, which determine the effectiveness of an

AR model, is its model order. The value of the model order denotes the

number of lagged observations from which the AR model is built. Model

order which is too low is likely to cause poor estimation performance of the

AR model due to insufficient input for regression. Similarly, a too large

model order value can render the AR model unusable due to the problem of

overfitting.

Therefore, a method for evaluating model order’s suitability is required to

find a well-balanced value. Here, we will briefly describe two criteria capable

of such evaluation.

Akaike Information Criterion (AIC)

AIC = 2k − 2 ln (L)

where k represents the number of model parameters, L is the maximized

value of the likelihood function for the estimated model (Akaike, 1974).

Bayesian Information Criterion (BIC)

−2 · lnP (x|k) ≈ BIC = −2 · lnL+ k ln(n)

where x are the observed values, n is the sample size of x, k is the number

of regressors, P (x|k) is the probability of the observed data with respect to

the number of parameters k and L is the maximized value of the likelihood

function (Schwartz, 1978).
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For selection of the best model order, we proceed as follows:

1. we specify the range of tested model orders mi ∈ N

2. for each mi we produce a respective AR model and evaluate it with

AIC or BIC (or both)

3. AR model (and its model order), which scored the lowest AIC or BIC

value, is the most suitable
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B Surrogate statistical methods

Certain qualities (such as the probability distribution of the estimators)

which are needed for assessing the statistical significance are in some cases

not available by analytical means. This is the case, for example, of the spec-

tral G-causality and the partial G-causality analysis (Seth, 2010). Thus, in

order to obtain the statistical significance and confidence intervals of dif-

ferent G-causal interactions we need to employ certain surrogate statistical

methods. This approach requires rather extensive and repeated calculations

(up to a couple of thousands of repetitions). In this section we will shortly

discuss two surrogate methods: bootstrap and permutation resampling. It

should be noted that these methods preserve the G-causal interactions in

observed data.

Bootstrap resampling The idea behind bootstrapping is that a single

observation can stand for a distribution if it is resampled with replacement

(Efron and Tibshirani, 1994). In our case of time-series analysis, it means

that the input data which is to be analyzed is subdivided into multiple “win-

dows” which are then repeatedly sampled and analyzed. The confidence

intervals are then obtained by examining the empirical quantiles of the boot-

strap distribution (Seth, 2010).

Permutation resampling The permutation resampling operates similarly

as the bootstrap variety. Again we divide the input data into a number of

windows but these windows are also rearranged for each of the analyzed vari-

ables. This creates matrices of input data which consist of different “parts”

of the inputs. This contrasts with the bootstrapping approach in which the

data windows remain internally unrearranged (Seth, 2010).
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C Data analysis supplement

interaction G-causality F-test p signif.
x1 → x2 0.0902 46.51 0 yes
x1 → x3 0.3340 195.52 0 yes
x1 → x4 0.0012 0.58 0.71 no
x1 → x5 0.0014 0.68 0.64 no
x1 → x6 0.0027 1.32 0.25 no
x2 → x1 0.0029 1.44 0.21 no
x2 → x3 0.0029 1.44 0.21 no
x2 → x4 0.0012 0.58 0.71 no
x2 → x5 0.0040 1.98 0.08 no
x2 → x6 0.0047 2.30 0.04 no
x3 → x1 0.0027 1.33 0.25 no
x3 → x2 0.0047 2.31 0.04 no
x3 → x4 0.4430 274.82 0 yes
x3 → x5 0.0013 0.63 0.68 no
x3 → x6 0.0039 1.93 0.09 no
x4 → x1 0.0029 1.43 0.21 no
x4 → x2 0.0006 0.31 0.91 no
x4 → x3 0.0010 0.47 0.80 no
x4 → x5 0.1761 94.94 0 yes
x4 → x6 0.0008 0.38 0.86 no
x5 → x1 0.0014 0.70 0.62 no
x5 → x2 0.0008 0.39 0.86 no
x5 → x3 0.0009 0.45 0.81 no
x5 → x4 0.6751 475.38 0 yes
x5 → x6 0.1866 101.15 0 yes
x6 → x1 0.0025 1.21 0.30 no
x6 → x2 0.0015 0.74 0.59 no
x6 → x3 0.6286 431.40 0 yes
x6 → x4 0.0032 1.59 0.16 no
x6 → x5 0.2521 141.37 0 yes

Tab. 7: Complete overview of G-causal interactions in the system described in
Time-series analysis
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D DVD Supplement

All the actual numerical results presented in this thesis have been obtained ei-

ther using the G-causality MATLAB toolbox developed by Seth (Seth, 2010)

or our custom-made MATLAB software designed specifically for these oper-

ations. All of these scripts and other software, as well as digital versions of

results presented here, are available on the DVD supplement of this thesis.

The directories contained on the DVD:

thesis/ contains the original LaTeX version of this document

thesis/images contains all the images, graphs and visualizations presented

in this thesis

matlab/gcca contains the original GCCA toolbox for MATLAB developed

by Seth (Seth, 2010)

matlab/causality contains our custom-made MATLAB tools for G-emergence

assessment, generating time-series data, data visualization, etc.

emergence/ contains our implementation of Boids written in Java 1.6
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