
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Robot reading human head pose
and gaze direction

Bachelor’s Thesis

2023
Dmytro Herashchenko

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Robot reading human head pose
and gaze direction

Bachelor’s Thesis

Study Programme: Applied Informatics
Field of Study: Informatics
Department: Department of Computer Science
Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2023
Dmytro Herashchenko

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Dmytro Herashchenko
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Robot reading human head pose and gaze direction
Robotická predikcia pozície hlavy a zamerania pohľadu človeka

Anotácia: Interakcia medzi človekom a robotom (HRI) výrazne závisí od schopnosti
robota sledovať ľudské správanie, aby ho robot mohol predpovedať a podľa
toho konať. Túto schopnosť možno uľahčiť použitím dodatočného hardvéru,
ako je napríklad sledovač očí namontovaný na hlave.

Cieľ: 1. Preštudujte si literatúru o existujúcich modeloch odhadu polohy hlavy
a extrakcie oka a trénujte hlbokú neurónovú sieť na predpovedanie smeru
pohľadu.
2. Na trénovanie modelu použite reálne aj syntetické dáta a porovnajte výsledky
presnosti.

Literatúra: Kerzel M. et al. (2017). NICO — Neuro-inspired companion: A developmental
humanoid robot platform for multimodal interaction. In IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN),
doi:10.1109/ROMAN.2017.8172289
Palinko O. et al. (2016) A Robot Reading Human Gaze: Why Eye Tracking
Is Better Than Head Tracking for Human-Robot Collaboration. IROS, pp.
5048-5054.

Vedúci: prof. Ing. Igor Farkaš, Dr.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 05.09.2022

Dátum schválenia: 05.09.2022 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Dmytro Herashchenko
Study programme: Applied Computer Science (Single degree study, bachelor I.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Robot reading human head pose and gaze direction

Annotation: Human-robot interaction (HRI) depends significantly on robot's ability to track
human behavior in order to allow the robot to make predictions and act
accordingly. This ability can be facilitated by using additional hardware, such
as head-mounted eye tracker.

Aim: 1. Study the literature on existing models of head pose estimation and eye
extraction, and train a deep neural network for predicting human eye gaze.
2. For training the model use real as well as synthetic data and compare the
accuracy results.

Literature: Kerzel M. et al. (2017). NICO — Neuro-inspired companion: A developmental
humanoid robot platform for multimodal interaction. In IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN),
doi:10.1109/ROMAN.2017.8172289
Palinko O. et al. (2016) A Robot Reading Human Gaze: Why Eye Tracking
Is Better Than Head Tracking for Human-Robot Collaboration. IROS, pp.
5048-5054.

Supervisor: prof. Ing. Igor Farkaš, Dr.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. RNDr. Tatiana Jajcayová, PhD.

Assigned: 05.09.2022

Approved: 05.09.2022 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

v

Acknowledgments: I would like to thank my supervisor prof. Ing. Igor Farkaš, Dr.,
for all the invaluable help and guidance, that paved the way to successful completion of
the thesis.

vi

Abstrakt

Táto práca sa zaoberá využitím neurónových sietí na odhadovanie pohľadu očí s cieľom
vytvoriť spoľahlivý systém, ktorý možno použiť na interakciu človeka a robota. Ukázalo
sa, že pohľad očí je kľúčovým podnetom pre akúkoľvek sociálnu interakciu, takže
poskytnutie schopnosti odhadovať ho robotom by im umožnilo viac sa podobať ľuďom.
Navrhovaná metóda si nevyžaduje žiadny špeciálny hardvér ani infračervené filtre;
namiesto toho využíva štandardnú RGB kameru. Táto prispôsobivosť umožňuje širšiu
škálu aplikácií, a to aj pri rôznej orientácii hlavy, očí a kamery. To tiež umožňuje
komukoľvek integrovať systém do svojho robota alebo nejakého iného softvéru a nebude
musieť vynaložiť žiadne ďalšie peniaze na to, aby využil výhody odhadu pohľadu očí. V
tomto výskume sme tiež vytvorili rôznorodý súbor údajov na odhadovanie pohľadu očí
pomocou technológií Unreal Engine a Metahuman. Vďaka výkonu týchto technológií sme
mohli získať prístup k modelom ľudí s vysokým rozlíšením a dokonca vytvoriť vlastné.
To umožňuje meniť aj parametre, ako je vek, rasa, farba očí, tvar tváre, a vytvoriť
tak rôznorodý súbor údajov na lepšiu generalizáciu modelu. Aj systém dynamického
osvetlenia nám umožnil meniť svetelné podmienky, aby bol model odolnejší voči rôznym
situáciám. Celkovo tieto technológie otvárajú dvere na vytváranie súborov údajov pre
rôzne ďalšie problémy v oblasti strojového učenia a počítačového videnia. Použili sme
aj ďalšie pretrénovane modely na úlohy, ako je segmentácia tváre a očí a odhad polohy
hlavy. To nám umožnilo sústrediť sa na úlohu odhadu pohľadu očí a získať ďalšie
vstupné údaje na zlepšenie výkonnosti modelov. Model však možno vylepšiť, aby sa
lepšie vyrovnal s náročnými okolnosťami, ako je napríklad zlé osvetlenie alebo ľudia,
ktorí nosia okuliare. Odhad pohľadu očí len pomocou kamery sa stáva náročným aj
vtedy, keď sa osoba pozerá dole a kamera je nad úrovňou jej očí. Výkonnosť modelov
sa hodnotila aj na rôznych datasetoch a pri testovaní v reálnom svete.

Kľúčové slová: odhad pohľadu očí, počítačové videnie, syntetický dataset, konvo-
lučná neurónová sieť

vii

Abstract

This thesis explores the usage of artificial neural networks for eye-gaze estimation to
build a reliable eye-gaze estimation system that can be used for human-robot interaction.
It has been shown that eye gaze is a crucial cue for any social interactions, so giving
the ability to estimate it to the robots would allow them to be more human-like. The
proposed method does not require any special hardware or infrared filters; instead, it
uses a standard RGB camera. This adaptability enables a wider range of applications,
even with various head, eye, and camera orientations. This, also, allows anybody to
integrate the system into their robot, or some other software, and they won’t have to
spend any additional money to take advantage of eye gaze estimation. In this research,
we have also generated a diverse dataset for eye gaze estimation using Unreal Engine and
Metahuman technologies. With the power of these technologies we were able to access
high resolution human models and even create our own. This also allows to change
parameters like age, race, eye color, face shape to create a diverse set of data for better
generalization of the model. Also the dynamic lighting system allowed us to change
the lighting conditions to make the model more resistant different situations. Overall
these technologies open a door to generate datasets for a variety of other problems in
machine learning and computer vision. We also used other pre-trained models for tasks
like face and eye segmentation, and head pose estimation. This allowed us to focus on
the task of eye gaze estimation and get some additional input data to improve models
performance. However, the model can be improved to better deal with challenging
circumstances such as poor lighting or people wearing glasses. Estimating eye gaze just
with a camera also becomes challenging when a person is looking down and the camera
is above their eye level. Models performance was also evaluated on different datasets
and in the real-world testing.

Keywords: eye gaze estimation, computer vision, synthetic dataset, convolutional
neural network

Contents

Introduction 1

1 Theoretical background 3
1.1 Eye gaze estimation methods . 3

1.1.1 Artificial neural networks for eye gaze estimation 3
1.1.2 Cross-validation . 4

1.2 Review of similar systems . 5
1.2.1 Feature-based estimation system 5
1.2.2 Model-based estimation system 5

1.3 Existing datasets for eye gaze estimation 6
1.3.1 Columbia Gaze Data Set . 6

1.4 The technologies used . 8
1.4.1 Pytorch . 8
1.4.2 OpenCV . 8
1.4.3 RetinaFace . 9
1.4.4 6DRepNet . 9
1.4.5 Unreal Engine and Metahumans 10
1.4.6 Blueprints . 11

2 Methodology 13
2.1 Architecture . 13

2.1.1 General architecture . 13
2.1.2 CNN architecture . 14

2.2 Metahuman dataset . 15
2.2.1 Characters . 15
2.2.2 Setting up the scene . 16
2.2.3 Generation blueprint . 16

3 Implementation and testing 19
3.1 Model iterations . 19

3.1.1 Iterative improvements . 19

ix

x CONTENTS

3.1.2 Final model . 21
3.2 Dataset testing and comparison . 22

3.2.1 Fighting overfitting . 22
3.2.2 Combined dataset . 23
3.2.3 Dataset comparison . 23

3.3 Real world testing . 24

Conclusion 27

List of Figures

1.1 Basic convolutional neural network architecture [1]. 4
1.2 Sample of Columbia gaze dataset [2]. 7
1.3 Sample of MPIIGaze dataset [3]. 7
1.4 Sample of Unity Eyes dataset [4]. 8
1.5 Example of RetinaFace library used on world’s largest selfie [5]. 9
1.6 Example of 6DRepNet library used on a real image [6]. 10
1.7 Example of characters generated with MetaHuman tool [7]. 11
1.8 Blueprint editor screenshot [8]. 12

2.1 General architecture of eye gaze estimation system. 13
2.2 Architecture of the eye gaze estimation CNN. 15
2.3 The scene from Unreal Engine where the dataset was generated. 16
2.4 Sample of pictures from the generated dataset. 17

3.1 Training and validation loss comparison graph for the Metahuman Dataset 22
3.2 Training and validation loss comparison graph for the Columbia Gaze

Dataset . 23
3.3 Comparison matrix of cross-validated results between the three datasets 24
3.4 Example images from real-world testing with a webcam. 25
3.5 Example images from real-world testing with the NICO robot. 26

xi

Introduction

Human-Robot Interaction (HRI) is a rapidly growing field with numerous applications
in various fields such as manufacturing, healthcare, education, and entertainment. One
of the most important aspects of HRI is the ability of robots to understand and respond
to human behavior and intentions. Eye gaze is a key signal that people use in social
interactions to convey their attention, interest, and emotions. Thus, accurate gaze
estimation by robots is essential for successful HRI. Several approaches have been
proposed for gaze estimation, including model-based, appearance-based, and hybrid
methods. However, due to the high variability of gaze directions and head position,
gaze estimation remains a challenging task.

Today, head pose estimation is often used as an approximation for eye gaze, but
according to "We find that the possibility to exploit the richer information carried
by eye gaze has a significant impact on the interaction. As a result, our eye tracking
system allows for a more efficient human-robot collaboration than a comparable head
tracking approach, according to both quantitative measures and subjective evaluation
by the human participants." [9] eye gaze estimation is a better communication cue and
can not be completely substituted by the head pose estimation approach.

In this paper, we are proposing the use of ANNs (Artificial Neural Networks) for
predicting human eye gaze, since they have been showing spectacular results in other
computer vision scenarios, outperforming all the different techniques by a mile. The
proposed model is relying on other pre-trained models for finding the faces on the image
and predicting head pose and then uses compiled data to make its own estimation of
the eye gaze.

The aim of this thesis is to research the current eye and head pose estimation models,
and implement a robust system for eye gaze estimation that can be used in robots and
other applications. One of the main differences of this system from others should be the
ability to work only using a normal RGB camera without any special IR filters and any
additional hardware. It should also work from different positions relative to the head of
the person whose eye gaze it is predicting and should work reliably despite different
head positions.

1

Chapter 1

Theoretical background

1.1 Eye gaze estimation methods

There are two main methods of eye gaze estimation: feature-based estimation and model-
based estimation. The model-based methodology relies on machine learning algorithms,
including artificial neural networks, to study input features such as eye images and
provide an accurate estimate of gaze direction. Effective use of model-based machine
learning methods can provide significant benefits. However, this approach requires
a significant amount of labeled data to train effectively and can be computationally
demanding to implement, especially at the training stage. In contrast, feature-oriented
methods rely on intuitive, hand-crafted features such as pupil position, and generally
have lower requirements for structured data and computational power. Nevertheless,
they often work best with IR cameras and lighting where the pupil becomes very bright
and easy to distinguish, and become a lot less accurate when using normal RGB cameras,
especially in different lighting conditions.

1.1.1 Artificial neural networks for eye gaze estimation

Artificial neural networks (ANNs) are a widely employed technique in the realm of
computer vision, because of their ability to find relationships between the input and
output features. They were first inspired by the human brain and the way it processes
information. They are comprised of a series of neurons, that are organized into layers.
The input layer of the neural network receives data that can be anything including text,
images, numbers, or even binary data. The output layer of the same neural network can
output completely different types of data, for example in my case the network is getting
images of the eyes as inputs and then outputs numbers that correspond to angles of
eyes in 3D space. The neural network architecture may consist of one or more hidden
layers positioned between the input and output layers.

Various types of neural network layers exist fully connected, convolutional, recurrent,

3

4 CHAPTER 1. THEORETICAL BACKGROUND

Figure 1.1: Basic convolutional neural network architecture [1].

LSTM, etc. Also, these layers can be connected in different architectures, for example,
feed-forward neural networks, encoder/decoder networks, and transformers. But for
computer vision-related tasks, one of the most successful architectures is a convolutional
neural network. This type of network uses convolutional layers, which use utilize filters
like smaller networks that go around the image and look for some specific features.
Then it aggregates these features to make some more general assumptions about the
image, for example, classify what object is on that image.

The most common architecture for a convolutional neural network is shown on the
fig. 1.1. It is constructed from multiple convolutional layers, each of which is often
followed by a pooling layer. After that, the output of the last convolutional layer is
flattened out and connected to multiple fully connected layers. They are the ones
responsible for using features, found by convolutional layers, to calculate the final
output.

1.1.2 Cross-validation

Cross-validation is used to evaluate model performance and generalization in machine
learning. Cross-validation involves partitioning the dataset into multiple subsets, or
"folds", and iteratively training and assessing the model on different combinations of
said folds. Cross-validation becomes more complicated when working with multiple
datasets.

K-fold cross-validation randomly divides the dataset into k equal-sized folds. To
validate each fold once, the model is trained on k-1 folds and tested on the remaining
folds k times. Averaged values of losses are used to evaluate performance.

When using multiple datasets, the goal is to evaluate the performance of the model
across these different datasets. In this case, the datasets are once again split up into k
folds and then the model is trained on the same subset of folds for each dataset and
each model is then tested on each training data (leftover fold from each dataset). This

1.2. REVIEW OF SIMILAR SYSTEMS 5

allows us to construct a matrix of model evaluation results, with the model trained on
each of the datasets and then tested on all of them. We can assess the generality and
robustness of the model by testing it on multiple datasets this way. Also, this allows us
to compare the datasets with one another and evaluate how performing each of them is
when testing on others.

We will use different types of k-fold cross-validation throughout the paper to both
validate different models and compare different datasets against one another.

1.2 Review of similar systems

The study of such systems is an important part of any work, as it provides an overview
of the existing literature and technologies related to the topic. In this section, we will
discuss previous work done in the area of robotic gaze assessment, including methods,
techniques, and models that have been developed.

1.2.1 Feature-based estimation system

An example of using a feature-based estimation method for eye gaze estimation, a study
[10] can be used. It was proposed as an alternative to appearance-based methods. The
authors emphasized the drawbacks of appearance-based techniques, especially on low-
resolution and noisy photographs taken in difficult real-world situations, such as rapid
lighting changes. The proposed strategy, which competes with recent appearance-based
approaches, concentrates on recognizing eye area landmarks through a single eye image
to overcome these problems.

Similar to previous feature-based approaches, the strategy proposed by the authors
is intended to extract rich information by including more landmarks and considering
features such as iris and eye borders. The HRNet backbone network is used to learn
image representations at low resolution to improve robustness to low-resolution inputs.

Our model-based approach is trying to fight the aforementioned issues while it still
is an appearance-based technique

1.2.2 Model-based estimation system

As for a model-based system, one of the examples would be the network proposed in the
[11] paper. Authors addressed the difficult problem of assessing human eye gaze from
real-world eye images in their work. They pointed out that the unobservable nature
of the center of the eyeball in 2D images makes it difficult to accurately determine
the gaze direction from only eye images. As a result, it is hard to obtain a highly
accurate estimation of eye gaze. The authors suggest a novel artificial neural network

6 CHAPTER 1. THEORETICAL BACKGROUND

architecture specifically created for the task of eye gaze estimation from a single eye
input to overcome this difficulty.

In their network architecture, they incorporate an intermediate graphical represen-
tation rather than directly regressing the pitch and yaw angles of the eyeball. The 3D
gaze direction estimation process becomes easier with this intermediate representation.
By utilizing this strategy, the authors demonstrate higher accuracy in quantitative
and qualitative evaluation when compared to existing approaches. In addition, their
approach shows robustness to changes in eye gaze, head posture, and image quality.

So this paper is trying to fight the exact same problem of real-world eye gaze
estimation with changing lighting conditions, head position, and noisy images that
make it more difficult and unreliable. While all of these papers are trying to make the
model architecture more adapted to these problems, in this paper we will try out a
different approach to overcome these challenges.

1.3 Existing datasets for eye gaze estimation

There is a variety of different eye gaze datasets which are both real-life and synthe-
sized. In this section, we will explore different datasets, their differences, and the
advantages/disadvantages of each.

1.3.1 Columbia Gaze Data Set

One of the most diverse datasets that were taken in a controlled environment and are
using degrees to represent pitch and yaw is the Columbia gaze dataset [2]. The 5,880
photos of 56 people that make up the dataset provide a comprehensive set of eye gaze
data with different gaze directions and very importantly different head poses. In terms
of the number of people, this dataset is superior to other eye gaze datasets that were
publicly accessible at the time of its release. The individuals in the sample came from
various ethnic backgrounds, and it is important to note that almost half of them wore
glasses.

Each high-quality image in this dataset has a resolution of 5,184 × 3,456 pixels,
which is great for predicting the dataset itself, but is not representative of the average
camera used for these purposes, so it doesn’t really help with the training model to
better predict data in varying conditions. Another problem with it is that the lighting
conditions are pretty much the same every time, which doesn’t add any diversity as
well. On the fig. 1.2 we can see a sample from the dataset with different eye and head
positions.

1.3. EXISTING DATASETS FOR EYE GAZE ESTIMATION 7

Figure 1.2: Sample of Columbia gaze dataset [2].

Figure 1.3: Sample of MPIIGaze dataset [3].

This is the dataset that has been chosen as the main one at first because it has
a more extensive variety of people and what is critical head positions. For example,
there is an MPIIGaze dataset [3] which contains nearly, 214,000 images it is only of 15
people, and they are a lot less varied in terms of head and eye positions. You can see
an example of images from it in fig. 1.3. There is also a Unity eye dataset [4] which also
provides the Unity eyes tool to generate different images of eyes from a high-resolution
3d model and one million images generated with the tool as a dataset. It lacks the
possibility of adding accessories such as glasses, does not let us control the lighting
conditions of the scene, and does not provide images of the full face since it does not
exist. You can see an example of images from the dataset in fig. 1.4.

8 CHAPTER 1. THEORETICAL BACKGROUND

Figure 1.4: Sample of Unity Eyes dataset [4].

We will also generate our own dataset with modern game engine technology later in
the paper.

1.4 The technologies used

1.4.1 Pytorch

The open-source deep learning framework, PyTorch, has become really popular in the
research and business world. PyTorch, created by Facebook’s AI Research team, offers
a customizable and simple interface for creating and training neural networks. The
framework combines automatic differentiation with dynamic computational graphics to
enable fast and versatile model building. One of the key advantages of PyTorch is its
ecosystem of libraries, tools, and pre-trained models that can customize and enhance
its functionality. For example, Torchaudio offers audio processing capabilities, while
Torchvision offers pre-trained models and tools for computer vision work. In addition,
NumPy and other Python libraries for scientific computing, are easily integrated with
PyTorch, further enhancing its ease of use and versatility.

PyTorch’s appeal among researchers could be credited to its flexibility, which makes
it easy for them to experiment with cutting-edge concepts and designs and change
things on the fly. It is easier for developers to get started and get support when needed
thanks to comprehensive documentation and a strong community.

1.4.2 OpenCV

OpenCV (Open Source Computer Vision software) is one of the most popular libraries
for computer vision that offers a comprehensive collection of tools and functions for
image processing. It has a wide range of capabilities, including the ability to edit images
and videos, identify objects, and recognize features. The wide range of algorithms and
methods in OpenCV makes it a great tool for computer vision tasks.

OpenCV is an essential tool for using PyTorch with images and video. Artificial
neural networks can be trained and deployed using PyTorch’s powerful ecosystem, and

1.4. THE TECHNOLOGIES USED 9

OpenCV’s effective image preprocessing and data augmentation methods are useful
additions. With the help of OpenCV, you can load and prepare photos, apply filters,
apply geometric transformations, and extract image features. In the deep learning
process, these activities are essential.

In addition, it allows for easy real-time video processing right from the webcam and
can be used to run PyTorch applications on that real-time feed. This is made possible
by OpenCV’s extensive support for camera interfaces, and this is what makes it perfect
for our use case of real-time eye gaze estimation.

1.4.3 RetinaFace

Retina face [5] is a well-known pre-trained PyTorch model for face detection and
localization in the real world with different that has shown robust performance on a
variety of datasets. It provides accurate position tracking of multiple faces on the image
and also finds some important locations on the faces, such as the positions of the eyes
and nose. These can then be used to extract images of the eyes for eye tracking.

Figure 1.5: Example of RetinaFace library used on world’s largest selfie [5].

We are using an implementation from [12] GitHub repository. You can see an
example of this library’s usage on the fig. 1.5.

1.4.4 6DRepNet

6DRepNet [6] is a state-of-the-art pre-trained PyTorch model for head pose estimation.
It holds first place on a couple of popular head pose datasets and reliably gets to the

10 CHAPTER 1. THEORETICAL BACKGROUND

Figure 1.6: Example of 6DRepNet library used on a real image [6].

top 5 on others, as of writing this paper. It shows an advantage of up to 20% when
compared to other state-of-the-art models.

The ability of 6DRepNet to learn and predict head positions beyond the narrow-angle
constraints of most other models is one of its key advantages. The proposed network
breaks this limitation by capturing the entire rotational view of the head, whereas
previous approaches limited head pose estimation to a short range of angles to produce
good results.

In our case, it was used for providing additional data to our main eye gaze estimation
model for better accuracy. On the fig. 1.6 you can see it in action.

1.4.5 Unreal Engine and Metahumans

Epic Games created a powerful and popular game engine known as the Unreal Engine.
It is known for its powerful ability to produce highly realistic and immersive experiences
and has not only been used in traditional computer games but also in virtual reality,
augmented reality, and even movie production. It is a popular choice for developers and
designers who want to build realistic virtual environments due to its adaptability and
easy-to-use interface. It also supports ray tracing for very realistic dynamic lighting,
which is a key to real-looking computer graphics.

Unreal Engine’s ability to interact easily with a wide array of technologies, allowing
the production of lifelike characters and realistic animations, is one of its standout
features. One such innovative technology is MetaHumans, an innovative suite of tools
launched by Epic Games. With unprecedented detail and quality, MetaHumans enables

1.4. THE TECHNOLOGIES USED 11

Figure 1.7: Example of characters generated with MetaHuman tool [7].

the creation of highly realistic and flexible digital human models. It offers realistic
character creation tools, allowing developers to create lifelike virtual humans faster.

Developers can choose from a wide selection of ready-made digital humans with
MetaHumans, representing a variety of ages, nationalities, and looks. These ready-made
models can be easily adapted and customized, or even completely redone to meet specific
project requirements. These characters look much more realistic due to MetaHumans’
high level of realism, which includes facial emotions, hair, and clothing.

We are going to use these powerful tools for generating another dataset with varying
head and eye positions, and lighting conditions. Examples of these realistic humans
can be seen on fig. 1.7.

1.4.6 Blueprints

Blueprints, in the context of Unreal Engine, are a visual scripting system that allows
users to develop interactive and dynamic behaviors for their games or applications
without using conventional programming. By visually connecting nodes that represent
various functions and actions, developers and designers can create intricate gameplay
mechanics, user interfaces, and interactions using Blueprint.

By placing and connecting nodes in a graph-like setting, users of the Blueprints
system can build and change game logic using an intuitive interface. Users can change
the actions, functions, or conditions represented by each node by changing parameters
and defining properties. The adaptability and flexibility of Blueprints is one of its
main benefits. They allowed us to quickly and easily prototype and create "code" that

12 CHAPTER 1. THEORETICAL BACKGROUND

generates datasets without prior Unreal Engine experience. It has been an excellent
tool for rapid prototyping and iteration since it doesn’t have syntax errors, and when
the blueprint is not that big, it is easy to read and understand.

In addition, blueprints provide a high degree of ecosystem connectivity with various
components of the Unreal Engine platform. Characters and animations are some of
the game assets that can be easily accessed and changed within the Blueprint editor.
This made the task of manipulating Metahumans easy and intuitive. It did leave an
impression, that if the code had to be bigger and more complicated it would not have
been as good as traditional code, though, since the blocks of "code" that would represent
each line of code anywhere else are quite a bit bigger on the screen and especially with
the connections between them, they can take up a lot of screen space for a pretty basic
program.

Figure 1.8: Blueprint editor screenshot [8].

On the fig. 1.8 you can see a blueprint editor window open with a basic character
control blueprint. As you can see, even without any experience using them before, you
can probably figure out what it does and how it does it. They also provide easy-to-
understand and use debugging capabilities, which are always appreciated, especially since
this was our first time working with them. Extensive documentation and community
were also big help whenever we encountered any problems.

Chapter 2

Methodology

In this chapter, we will describe in detail the proposed eye gaze estimation system and
the steps involved in its development. We will also describe the process of generating
our own dataset using Metahuman technology.

2.1 Architecture

2.1.1 General architecture

To achieve precise eye gaze estimation in the context of human-robot interaction (HRI),
the proposed eye gaze estimation system architecture is built by utilizing the capabilities
of artificial neural networks (ANNs) and combining various components. The system
architecture adopts a modular design strategy, including pre-trained models that are
already in use and adding new components to address the problem of eye gaze estimation.

Figure 2.1: General architecture of eye gaze estimation system.

The overall layout of the architecture and several steps that make up the eye gaze
estimation procedure are shown in fig. 2.1. Each step is thoroughly explained in the
following subsections.

13

14 CHAPTER 2. METHODOLOGY

• Camera RGB image: Image is taken from webcam using OpenCV and rescaled to
match input sizes for the models used.

• Face Segmentation: This step is for the separation of the human face from the
source image. A pre-trained model, RetinaFace, is used to precisely locate and
identify face regions. This step is essential for separating the face region for
further processing since besides the bounding box of the face it also provides facial
landmarks like positions of the eyes and nose. This data is then used to cut out
the face and each eye.

• Head Pose Estimation: Using the pre-trained 6DRepNet model, the system
calculates the pose or direction of the head in the second stage. The predicted
data is used as an additional input to the eye gaze estimation model, which as we
will show later is beneficial for its overall performance. Also, this data is used
as an approximation of eye gaze when the head is at such an angle that the eyes
cannot be seen properly. This is aimed at combating edge case scenarios since eye
gaze estimation models outputs seem to be random when it can’t see the eyes.

• Eye Gaze Estimation: The final step involves estimating eye gaze using a custom-
built convolutional neural network (CNN) model. It takes two cropped eyes that
are then concatenated together as shown on the fig. 2.1 as the input, and outputs
two values in degrees. These are the predicted pitch and roll of the eyes.

2.1.2 CNN architecture

The basic ideas of the CNN architecture discussed in section 1.1 form the basis of our
models architecture. You can see its architecture in fig. 2.2. To meet the unique needs
and difficulties of better eye gaze estimation in the context of human-robot interaction,
this architecture has undergone a number of enhancements and adaptations.

The amounts of parameters are not specified for each layer, since the model has
been trained in a lot of different variations to get the best results. We will provide
comparisons of these different models in the following chapters. In this architecture,
the convolutional layers are responsible for figuring out different features (e.g. pupils,
eyelids, edges of the eye, and so on) and then data about these features is processed by
fully connected layers. We need to clarify that the mentioned features are just examples,
and we don’t know which exact features the model is using. Since convolutional layers
work with 2D input, data is flattened before fully connected layers take it in, they use
the information about those features and attempt to determine the gaze direction of
the eyes and output the final values in degrees.

The estimated head position is provided only to the last fully connected layer since
it has the smallest amount of inputs, so it is more probable to actually consider those

2.2. METAHUMAN DATASET 15

Figure 2.2: Architecture of the eye gaze estimation CNN.

values when calculating the final result.

2.2 Metahuman dataset

Metahuman tool for Unreal Engine was used to generate a dataset of over 57,000 images
with 15 characters in different eye and head positions.

2.2.1 Characters

First, we used the Epic Games MetaHuman Creator program, which provides an easy-
to-use interface for creating and customizing virtual humans. In our case, we did
not customize any of them manually because there is already a database of premade
humans, which was more than enough for us. That said, if for some reason we wanted
to generate more data with more characters it would allow us to create a practically
limitless amount of them with varying physical attributes like race, gender, age, eye
color, and other physical characteristics. In our case, 15 diverse characters were chosen
so that models trained on the dataset work equally well on everybody.

Also, it is important to point out that it would be possible to add attributes such as
glasses to the characters, though it won’t be as trivial since you will need third-party
3D modeling software and basic modeling skills.

16 CHAPTER 2. METHODOLOGY

Figure 2.3: The scene from Unreal Engine where the dataset was generated.

2.2.2 Setting up the scene

We used Unreal Engine, with its powerful real-time rendering engine, to create high-
quality photos of MetaHumans in a virtual environment set up after the virtual human
characters were created. You can see the scene created on fig. 2.3. Lighting conditions
were changed throughout the generation process to make the models trained on it more
resistant to those changes in the real world. We’ve changed the positioning of lights,
their amount, and brightness. Real-time ray-traced lighting, provided by Unreal Engine
5 lumen technology, allowed us to do this dynamically without the need to bake lighting.

2.2.3 Generation blueprint

The generation algorithm for the photos is pretty basic. First, we generate a list of
different values for both eye and head positions. Then we iterate over them and use the
animation controller, that we’ve created, to change those positions and take a screenshot
using the camera. This way, every character goes through 153 eye positions in each
of the 25 head positions. This results in 3825 images generated per character. On the
fig. 2.4 you can see a sample of the images generated this way.

This sort of generation can be expanded to use accessories such as glasses, different
types of clothing, and different backgrounds. And it is not limited only to eye gaze
estimation, it can be used to generate dataset visual datasets for everything that can be
imagined. For example, it can be used to generate a dataset for head pose estimation
or to generate cars on the street for driving automation. Basically, its possibilities are
limitless and this is a lot cheaper and less time-consuming than creating such datasets
in the real world. It also can generate more images than any real dataset could ever

2.2. METAHUMAN DATASET 17

Figure 2.4: Sample of pictures from the generated dataset.

have, and it doesn’t need manual labeling, since the game engine already has all the
positional and rotational data for all the objects in the scene.

Chapter 3

Implementation and testing

In this chapter, we will train, tune and test different eye gaze estimation models. We
will also compare the results from some of these models on the Columbia Gaze Dataset
and Metahuman Dataset. In doing so, we can evaluate the effectiveness of generating a
dataset in real-world scenarios and evaluate its capacity to replace real datasets that
are so much harder and more expensive to produce. We will also be able to pick the
best model to use with a robot for real-life human-robot interaction.

3.1 Model iterations

3.1.1 Iterative improvements

The accuracy and robustness of the eye gaze estimation system were improved by a lot
of tuning of hyperparameters and model architecture to achieve the final version. To
evaluate iterative improvement, we’ve used a four-fold cross-validation on the Columbia
Gaze Dataset. While for training the model mean squared error (MSE) was used to
reduce deviation, for evaluating its performance on the testing data we’ve used mean
absolute error (MAE). All the error values are averaged out between both output values
(pitch and yaw). Also, it has to be noted that the input image is normalized so that
RGB values are within the [0, 1] range. The following is a breakdown of the key steps
taken during the model refinement process:

• The neural network input was initially created by extracting the eyes from the
photos and resizing their concatenated form to a uniform size of 300x900 pixels.
With a maximum error of 20, the first neural network training resulted in a mean
absolute error (MAE) of 3.4.

• Next, the crop size was dramatically changed to reflect the actual situation after
it was discovered that the resolution of the cropped-out eyes from the photos
taken by the robot camera was much lower than the photos on the data set. Now

19

20 CHAPTER 3. IMPLEMENTATION AND TESTING

the cropped-out eyes were 100x300 and this resulted in a significant reduction in
model training and inference time. At the same time, the error metrics did not
go up, so this did not affect the models’ performance in testing. As for real-world
testing, when using a lower-resolution webcam performance actually seemed to
have improved, probably because crops from the camera were previously upscaled,
to match the input size, while the new model was already working with these
lower-quality images.

• A lot of experimentation was done with the amount and configuration of model
layers. The configuration that you have seen on fig. 2.2 has been found to be the
most optimal.

• To improve the performance of the model, the learning rate, batch size, activation
functions, and dimensions of each layer were iteratively optimized. After all
mentioned changes, we’ve reached an MAE of 2.6. (with a maximum error of 14)
indicating an improvement in model accuracy.

• Another technique that we’ve tried was dynamic learning rate optimization when
reaching the end of the model training process. But we’ve found no tangible effect
since it was just trying to optimize the local peak performance instead of finding
a new better peak.

• Different optimization algorithms were tried out including Adam, RMS Prop,
SGD, and so on. Adam was found to be the best performer, so it was used from
this point on.

• Another thing that has been really successful and improved the MAE by around
0.2 degrees was using the head pose, estimated by 6DRepNet, as an additional
input into the last linear layer. At first, we tried to add this data to previous
linear layers, but it did not have the desired effect. We think that the amount of
input parameters was too big because of all the data from convolutional layers,
and these values just got lost within all of it. But when moved to the last one,
which has only around 50 inputs, it has shown great improvement in the model’s
accuracy. Also, subjectively, it seemed like the model was more robust when
turning the head in different directions.

Interestingly, when we tried to normalize the data to be within the [−1, 1] range
the positive change disappeared, so in this case having normalized deteriorated
the performance, defying the common expectation.

• To reduce models’ training time and find the best compromise between accuracy
and computational efficiency, we’ve trained a couple more models with different

3.1. MODEL ITERATIONS 21

input image dimensions. The lowest one we’ve tried was 40x120, but the MAE did
not go below 3.5, so after some experimentation, we’ve found 70x210 resolution to
be the most optimal. At this point, we’ve reached an MAE of 2.1 and a maximum
value of 11.

• We’ve also tried to turn images into black and white, hoping to improve perfor-
mance in different lighting conditions, since the images would have been more
similar. But it actually decreased the accuracy of the model and when trying it
out in the real world no improvement was found when trying out different lighting
scenarios.

• The last improvement to the MAE we were able to get was from expanding the
data, which is not really model optimization but is still important to acknowledge.
And we are not talking about generating datasets yet, this is actually a lot more
basic data augmentation technique since all we did was mirroring all the images
from the initial dataset. This works because our faces are not symmetrical, and
the lighting conditions are also not perfect, so the images are a little different.
Also, the segmentation of the eyes did not just return mirrored copies of eye
images since it is a machine learning model and its performance is not symmetrical
as well. This way, we were able to double the dataset size and improve our models’
performance to around 1.9 MAE. The maximum error did not change, though.

3.1.2 Final model

After all the improvements described earlier, we’ve arrived at an architecture that you
can see on table 3.1.

Layer (type) Output Shape Parameter #
Conv2d-1 [-1, 9, 68, 208] 252

MaxPool2d-2 [-1, 9, 22, 69] 0
Conv2d-3 [-1, 26, 20, 67] 2,132

MaxPool2d-4 [-1, 26, 6, 22] 0
Linear-5 [-1, 600] 2,059,800
Linear-6 [-1, 53] 30,050
Linear-7 [-1, 2] 108

Table 3.1: Summary of the network architecture

In total, the model has 2,092,342 parameters, and all of them are trainable.

22 CHAPTER 3. IMPLEMENTATION AND TESTING

3.2 Dataset testing and comparison

We conducted our testing on three separate datasets: the Columbia dataset, the Metahu-
man dataset, and a combination of both to assess the performance and generalizability
of our approach. To avoid overfitting, we also used a comparison of validation loss
against training loss.

3.2.1 Fighting overfitting

We use a technique based on comparing validation loss against training loss on a graph
to avoid overfitting and ensure the capacity of the model to generalize. We track the
loss values on the training and validation sets during the training process and plot them
against the number of epochs. You can see the graph for these losses for Metahuman
Dataset and Columbia Gaze Dataset on the fig. 3.1 and on the fig. 3.2 respectively

Figure 3.1: Training and validation loss comparison graph for the Metahuman Dataset

We can determine the time at which the model’s performance on the validation set
starts to degrade, compared to the training loss, or flatten out, indicating a potential
overfitting scenario, by looking at the loss pattern on the loss graphs. We can find the
best time to stop the training process using this data as a guide. Values extracted from
these graphs were used for all future comparisons.

3.2. DATASET TESTING AND COMPARISON 23

Figure 3.2: Training and validation loss comparison graph for the Columbia Gaze
Dataset

3.2.2 Combined dataset

We integrated the Columbia Gaze and Metahuman datasets into one to improve the
generalization ability of the model. With the combination of real-world and generated
data, a more diverse and varied training set is expected. We aim to utilize the advantages
of both datasets and improve the pose estimation performance over a wider range of
parameters like lighting scenarios, head poses, and wearing or not wearing glasses.

3.2.3 Dataset comparison

After running four-fold cross-validation across Columbia Gaze Dataset, Metahuman
Dataset and the combined dataset, we’ve got a result that you can see at fig. 3.3

As you can see, the most stable model across all three datasets is the one trained
on the combined dataset, which is expected, but what this means is that by combining
the two datasets we get the most diverse and generalized model. This model is the one
we’ve chosen to be the main model that will be published as the pre-trained version.

If we just look at the results of the model when only trained on the Columbia Gaze
Dataset, we can compare it to other models that were trained in other papers. For
example, in one of the best models presented in [11] paper, their model achieves an

24 CHAPTER 3. IMPLEMENTATION AND TESTING

Figure 3.3: Comparison matrix of cross-validated results between the three datasets

MAE of around 3.8 on the Columbia Gaze Dataset across five-fold cross-validation. We
outperform this result, almost cutting the loss in half. But we have to mention that the
model has a problem with stability in harder lighting scenarios, and that is exactly why
the model trained on the combined dataset is superior.

3.3 Real world testing

It was also very important to evaluate the model in real-world scenarios. In our research,
we used a computer webcam and a NICO [13] robot to conduct real-world testing.
As a result, we were able to subjectively evaluate the accuracy and robustness of the
model in real-world situations and confirm that it can be later used in the context of
human-robot interaction.

While our testing did not include a wide variety of people, we are sure that it would
perform just as well on everybody else, since the datasets used were very diverse, and
testing on said datasets has shown very high accuracy. Throughout the real-world
testing, we’ve used the model under varied environmental circumstances, such as various
lighting settings and backgrounds. You can see example photos of the model predicting
eye gaze direction in different head positions and light conditions on the fig. 3.4, the
blue line represents the predicted eye direction. Our subjective opinion is that the
model trained on the combined dataset performed better in worse lighting scenarios
than the one trained only on the Columbia Gaze Dataset, so we think that adding
generated images to improve the performance of the model in those scenarios was a
success.

In addition, we tried the eye gaze estimation model with the NICO humanoid robot,
a platform created to study human-robot interaction. As a result, we were able to
assess the effectiveness of the model using the inbuilt eye camera. The model performed
pretty well in this type of testing, and we think that performance can be improved
even further by calibrating a lens correcting algorithm on the camera since its lens is
fish-eye. This would make the geometry on the pictures closer to reality and probably

3.3. REAL WORLD TESTING 25

Figure 3.4: Example images from real-world testing with a webcam.

make the gaze estimation process easier for the model. You can see examples of the
model predicting eye direction on fig. 3.5.

Also, after testing out the model that was only trained on the Metahuman dataset
in the real world, we’ve found it to successfully predict the eye gaze of real people, so
we think that generating datasets with modern game engine technologies like Unreal
Engine has a promising future. Especially, since it allows creating a dataset of visual or
3D data for a wide variety of tasks at significantly lower costs and time compared to
doing so in the real world. The code, pre-trained model, and the Metahuman project
will be published and available through a GitHub repository for anybody else to use
for their own research. Also, the model is planned to be used for further human-robot
interaction research at our university.

https://github.com/flakeua/BachelorsThesis

26 CHAPTER 3. IMPLEMENTATION AND TESTING

Figure 3.5: Example images from real-world testing with the NICO robot.

Conclusion

In this thesis, we explore the exciting field of eye gaze estimation for human-robot
interaction, focusing on the important contribution of estimation to improving the
effectiveness of these interactions. We are leveraging the capabilities of Artificial Neural
Networks (ANNs) to address this problem, as we recognize the inherent difficulties in
the field of eye gaze estimation caused by significant variability in eye gaze direction
and head location.

Investigating current eye and head position estimation models and developing a
reliable eye gaze estimation system using various pre-trained models, and our own
model, was our primary goal. This technology is intended to work with a wide range of
applications, including robots. The flexibility of our suggested solution, to operate with
standard RGB cameras without the need for additional hardware or IR filters, is one of
its distinctive features. The system was created to function effectively in varying head
and eye positions, with the camera position independent of the head position.

Using the potential of Unreal Engine and Metahumans tools in the creation of
diverse and high-quality datasets was really beneficial to our research. Using this
technology, we can create customized datasets that take into account different head and
eye orientations and lighting conditions. These datasets can be a very useful resource
for further research in this area, to improve the performance of our models. There is
also potential to leverage the cutting-edge capabilities of Unreal Engine to generate
more complicated data sets that are more diverse, have harder lighting scenarios, and
have characters wearing glasses, possibly creating opportunities for the creation of more
sophisticated and precise eye gaze estimation models.

After combining some pre-trained models with our custom one, we see encouraging
findings, with our system showing great results predicting eye gaze on different datasets
and in the real world. This supports our hypothesis about ANN’s potential for eye gaze
estimation tasks. While the results are encouraging, we realize that there is always
room for improvement with both expanding the dataset and optimizing the model, for
better results in bad light conditions, or for example for people wearing glasses. Another
weak point, that any system using a standard RGB camera will have, is problems
with predicting eye gaze directions when a person is looking down and the camera is
positioned above their eye level. This happens because eyelids are almost completely

27

28 Conclusion

obscuring pupils. The easiest way to fix this is just to have the camera below the
person’s eye level, which is pretty common for robots.

In conclusion, the presented pre-trained models and generated dataset will be
available and will probably be used for further research in the field of human-robot
interaction. The code and all other resources are accessible through the GitHub
repository.

https://github.com/flakeua/BachelorsThesis

Bibliography

[1] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep
learning. arXiv preprint arXiv:2106.11342, 2021.

[2] B.A. Smith, Q. Yin, S.K. Feiner, and S.K. Nayar. Gaze locking: Passive eye contact
detection for human-object interaction. In ACM Symposium on User Interface
Software and Technology, 2013.

[3] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-
based gaze estimation in the wild. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4511–4520, June 2015.

[4] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and
Andreas Bulling. Learning an appearance-based gaze estimator from one million
synthesised images. In Proceedings of the Ninth Biennial ACM Symposium on Eye
Tracking Research Applications, pages 131–138, 2016.

[5] Jiankang Deng et al. RetinaFace: Single-stage dense face localisation in the wild.
In arXiv:1905.00641v2, 2019.

[6] Thorsten Hempel, Ahmed A. Abdelrahman, and Ayoub Al-Hamadi. 6D rotation
representation for unconstrained head pose estimation. In 2022 IEEE International
Conference on Image Processing, 2022.

[7] MetaHuman high-fidelity digital humans made easy. https://www.unrealengine.
com/en-US/metahuman, 2021.

[8] Introduction to blueprints. https://docs.unrealengine.com/4.27/en-US/

ProgrammingAndScripting/Blueprints/GettingStarted/.

[9] Oskar Palinko, Francesco Rea, Giulio Sandini, and Alessandra Sciutti. Robot
reading human gaze: Why eye tracking is better than head tracking for human-
robot collaboration. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5048–5054, 2016.

29

https://www.unrealengine.com/en-US/metahuman
https://www.unrealengine.com/en-US/metahuman
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/

30 BIBLIOGRAPHY

[10] Jaekwang Oh, Youngkeun Lee, Jisang Yoo, and Soonchul Kwon. Improved feature-
based gaze estimation using self-attention module and synthetic eye images. Sensors,
22(11), 2022.

[11] Seonwook Park, Adrian Spurr, and Otmar Hilliges. Deep pictorial gaze estimation.
In European Conference on Computer Vision, pages 741–757, 2018.

[12] Face detection. https://github.com/elliottzheng/face-detection.

[13] Matthias Kerzel et al. NICO – Neuro-Inspired COmpanion: A developmental
humanoid robot platform for multimodal interaction. In IEEE International
Symposium on Robot and Human Interactive Communication, 2017.

https://github.com/elliottzheng/face-detection

	Introduction
	Theoretical background
	Eye gaze estimation methods
	Artificial neural networks for eye gaze estimation
	Cross-validation

	Review of similar systems
	Feature-based estimation system
	Model-based estimation system

	Existing datasets for eye gaze estimation
	Columbia Gaze Data Set

	The technologies used
	Pytorch
	OpenCV
	RetinaFace
	6DRepNet
	Unreal Engine and Metahumans
	Blueprints

	Methodology
	Architecture
	General architecture
	CNN architecture

	Metahuman dataset
	Characters
	Setting up the scene
	Generation blueprint

	Implementation and testing
	Model iterations
	Iterative improvements
	Final model

	Dataset testing and comparison
	Fighting overfitting
	Combined dataset
	Dataset comparison

	Real world testing

	Conclusion

