
Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

Adversarial Attacks and Their Effect
on Neural Networks in Classification

Tasks
Dissertation thesis

2024 Mgr. Iveta Bečková

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

Adversarial Attacks and Their Effect
on Neural Networks in Classification

Tasks
Dissertation thesis

Study program: Informatics
Field of study: 2508 Informatics
Department: Department of Applied Informatics
Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2024 Mgr. Iveta Bečková

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Mgr. Iveta Bečková
Study programme: Computer Science (Single degree study, Ph.D. III. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Dissertation thesis
Language of Thesis: English
Secondary language: Slovak

Title: Adversarial attacks and their effect on neural networks in classification tasks

Annotation: Even though adversarial examples were first discovered in 2013, and have been
an object of intense research ever since, a definite solution has not been found
yet. As elimination of adversarial examples seems to be out of reach, the focus of
research is shifting towards analysing the effect they have on neural networks.

Aim: 1. Compose an overview of existing literature on adversarial examples.
2. Analyse inherent robustness of various neural network classifier
architectures.
3. Propose and test a method for analysing the effect of adversarial examples
on a trained neural network.

Literature: Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy (SP), 39–57
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018).
Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2014). Intriguing properties of neural networks. In International
Conference on Learning Representations.

Tutor: prof. Ing. Igor Farkaš, Dr.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. RNDr. Tatiana Jajcayová, PhD.

Assigned: 27.01.2020

Approved: 27.01.2020 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Tutor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Mgr. Iveta Bečková
Študijný program: informatika (Jednoodborové štúdium, doktorandské III. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: dizertačná
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Adversarial attacks and their effect on neural networks in classification tasks
Adverzariálne útoky a ich vplyv na neurónové siete v klasifikačných úlohách

Anotácia: Napriek tomu, že adverzariálne príklady boli prvýkrát objavené v roku 2013
a odvtedy sú predmetom intenzívneho výskumu, definitívne riešenie sa zatiaľ
nenašlo. Keďže sa zdá, že elimináciu adverzariálnych príkladov sa nepodarilo
zatiaľ vyriešiť, ťažisko výskumu sa presúva smerom k analýze ich vplyvu
na neurónové siete.

Cieľ: 1. Urobte prehľad existujúcej literatúry o adverzariálnych príkladoch.
2. Analyzujte inherentnú robustnosť rôznych architektúr neurónových sietí
v klasifikačných úlohách.
3. Navrhnite a otestujte metódu analýzy vplyvu adverzariálnych príkladov
na natrénovanú neurónovú sieť.

Literatúra: Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy (SP), 39–57
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018).
Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2014). Intriguing properties of neural networks. In International
Conference on Learning Representations.

Školiteľ: prof. Ing. Igor Farkaš, Dr.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 27.01.2020

Dátum schválenia: 27.01.2020 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent školiteľ

I hereby declare that I wrote this work by myself, only with the help of the refer-
enced literature.

Bratislava, 2024 .
Mgr. Iveta Bečková

I would like to express my gratitude to my thesis supervisor, prof. Ing. Igor Farkaš,
Dr., for his patience, guidance, and flexibility. Next, I want to thank Mgr. Štefan Pócoš
for supporting me and always being there for me, and to all my awesome colleagues
who made my doctoral study a very pleasant experience, especially during the last few
months when I needed it the most.

Abstract

In the past few years, it has been shown that most Deep Neural Networks (DNNs) ex-
hibit inherent vulnerability to maliciously crafted inputs, called Adversarial Examples
(AEs). These are usually created using inputs from the dataset by adding a small but
very specific noise, which causes large errors on the DNN output.

Despite intense research in this area, the problem still pertains and has not yet been
satisfactorily solved. Numerous defence mechanisms against AEs, as well as methods
for detecting such modified inputs, have been suggested, yet, none of them provides
complete robustness against adversarial attacks. Due to that, the focus of research has
slowly shifted towards analysing the AEs and searching for the exact reason why and
how they cause DNNs to fail.

In our work, we perform numerous experiments within the image classification do-
main with the aim of better understanding the properties of adversarial examples and
various ways in which they cause faulty outputs. More specifically, our main con-
tributions concern two parts: 1) we analyse the inherent robustness of networks with
sigmoidal activations, and how it relates to saturating of the individual neurons. More-
over, we examine the robustness of the newly proposed Recurrent Vision Transformer
(RecViT) architecture and explore the possibilities of different training strategies to
make RecViT more robust; and 2) we assess the manifold disentanglement theorem
using multiple methods and follow with the proposal of a novel algorithm for inves-
tigating the hidden-layer representations. This algorithm is based on analysing the
proximity of certain inputs to the original data manifolds, and in our experiments, we
use it to compare the behaviour of multiple distinct types of AEs.

Keywords: adversarial attacks, robustness, deep neural networks, image classifica-
tion, explainability

Abstrakt

V priebehu ostatných pár rokov sa ukázalo, že väčšina hlbokých neurónových sietí
vykazuje citlivosť voči zákerne vygenerovaným vstupom, zvaným adverzariálne. Tieto
vstupy sú zvyčajne vytvorené z originálnych dát pridaním malého, no veľmi špecifického
šumu, ktorý spôsobuje veľkú chybu na výstupe siete.

Napriek intenzívnemu výskumu v tejto oblasti, problém stále pretrváva a nie je
uspokojivo vyriešený. Početné obrany proti adverzariálnym vstupom, ako aj metódy
ich detekcie, boli navrhnuté, nanešťastie, žiadna z nich neposkytuje úplnú robustnosť
voči adverzariálnym útokom. Z toho dôvodu sa ťažisko výskumu pomaly presúva k
analýze adverzariálnych vstupov a skúmaniu dôvodov prečo a ako spôsobujú chybovosť
hlbokých neurónových sietí.

V našej práci sa venujeme viacerým experimentom v doméne klasifikácie obrázkov,
za cieľom lepšieho pochopenia vlastností adverzariálnych vstupov a mechanizmov,
ktorými spôsobujú chybné výstupy. Konkrétnejšie sa náš prínos dá rozdeliť do dvoch
hlavných oblastí: 1) analyzujeme inherentnú robustnosť sietí so sigmoidálnou aktivá-
ciou, a ako súvisí so saturáciou jednotlivých neurónov. Navyše vyšetrujeme robust-
nosť novo navrhnutej architektúry RecViT (Recurrent Vision Transformer) a skú-
mame rôzne trénovacie stratégie na zvýšenie jej robustnosti; a 2) vyhodnocujeme
teóriu rozbaľovania manifoldov (manifold disentanglement theorem) viacerými metó-
dami, následne nadväzujeme návrhom nového algoritmu na analýzu skrytých reprezen-
tácií siete. Tento algoritmus je založený na analýze blízkosti konkrétnych vstupov k
manifoldom originálnych dát, a v našich experimentoch ho používame na porovnanie
správania viacerých rôznych typov adverzariálnych vstupov.

Kľúčové slová: adverzariálne útoky, robustnosť, hlboké neurónové siete, klasifikácia
obrázkov, vysvetliteľnosť

List of Symbols

x input vector
l label
Z(x) logits — pre-softmax output
y(x)i = softmax(Z(x))i post-softmax probability of class i

f(x) = argmax
i

y(x)i output class

θ vector of model parameters
J(x, l; θ) loss function
ϵ maximal allowed magnitude of a perturbation
δ perturbation
x′ = x + δ perturbed input
t target class (in targeted attack)

List of Abbreviations

NN Neural Network

AE Adversarial Example

DNN Deep Neural Network

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

MNIST Modified National Institute of Standards and Technology

FMNIST Fashion MNIST

SVHN Street View House Numbers

CIFAR Canadian Institute For Advanced Research

ILSVRC ImageNet Large Scale Visual Recognition Challenge

CNN Convolutional Neural Network

VGG Visual Geometry Group

ViT Vision Transformer

RC Rubbish Class

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

FGSM Fast Gradient Sign Method

kNN k-Nearest Neighbours

BIM Basic Iterative Method

PGD Projected Gradient Descent

CW Carlini & Wagner

EOT Expectation Over Transformation

UAP Universal Adversarial Perturbation

ZOO Zeroth Order Optimization

BA Boundary Attack

JSMA Jacobian-based Saliency Map Attack

EAD Elastic-net Attack to DNN

AT Adversarial Training

ALP Adversarial Logit Pairing

BPDA Backward Pass Differentiable Approximation

PCA Principal Component Analysis

RecViT Recurrent Vision Transformer

t-SNE t-distributed Stochastic Neighbourhood Embedding

KL divergence Kullback–Leibler divergence

UMAP Uniform Manifold Approximation and Projection

SNN loss Soft Nearest Neighbour loss

List of Figures

1.1 Examples of 10-class dataset samples 5
1.2 Examples of data contained in the Oxford-IIIT Pet dataset 6
1.3 Sample branch from ImageNet hierarchy 7
1.4 LeNet-5 architecture . 8
1.5 Residual (skip) connection . 10
1.6 Vision transformer architecture . 11

2.1 Fooling images . 14
2.2 L-BFGS-generated AEs . 15
2.3 Adversarial 3D-printed turtle . 20
2.4 Adversarial stop sign . 20
2.5 One pixel attack AEs . 24
2.6 Elastic-net attack AEs . 25
2.7 Loss function of a FGSM-based adversarially trained network 27
2.8 Loss of network trained with adversarial logit pairing 29
2.9 Certifiably robust AE created by the shadow attack 36
2.10 Invariance-based AEs . 36
2.11 On-manifold and off-manifold AEs . 39

3.1 CNN architecture used for SVHN and CIFAR-10 42
3.2 Logistic sigmoid with various values of temperature 43
3.3 AEs with 2 modified pixels . 43
3.4 Development of saturation during training 44
3.5 Development of network robustness during training 45
3.6 Development of robustness for various ϵ 45
3.7 Success rates of our L0-constrained attack 46
3.8 Median of the average absolute values of the gradient of loss w.r.t. input 47
3.9 Images with large value of G(xi) . 48
3.10 RecViT architecture . 49
3.11 Correlation between clean and robust accuracy 53
3.12 Comparison of attention maps of an original image and its AE 53

4.1 Comparison of manifold disentanglement on MNIST and SVHN 56
4.2 Effect of network depth on the last hidden-layer representations 57
4.3 PCA analysis of manifold unfolding of MNIST and SVHN 58
4.4 Intra-class distances, inter-class distances, and their ratio 58
4.5 Examples of the studied malicious inputs 61
4.6 Number of AEs per original–predicted class pair 61
4.7 Projection reconstructions in the input space 63
4.8 UMAP visualisation of various types of data 64
4.9 Comparison of proximity scores across different networks and attacks . 65
4.10 SNN loss across network layers . 66

List of Tables

3.1 Robustness of InvBlur and ViT Blur on PET 52
3.2 Performance of the top 3 runs according to clean accuracy 52

4.1 Comparison of adversarial perturbation magnitudes in different norms . 62

Contents

Introduction 1

1 Introduction to deep neural networks 3
1.1 Notation and training of neural network classifiers 3
1.2 Popular image classification datasets 5

1.2.1 10-class datasets . 6
1.2.2 Larger-scale datasets . 7

1.3 Development of the state-of-the-art . 7
1.3.1 Convolutional neural networks 7
1.3.2 CNNs on ImageNet . 9
1.3.3 Vision transformer . 10

2 Adversarial examples 13
2.1 Fooling images . 13
2.2 Properties of adversarial examples . 14

2.2.1 Computational complexity of adversarial attacks 15
2.2.2 Transferability . 16
2.2.3 Optimising AEs with stronger attacks 17
2.2.4 Physical adversarial examples 19
2.2.5 Universal adversarial perturbations 20
2.2.6 AEs outside the scope of this work 21

2.3 Other noteworthy attacks . 21
2.3.1 Non-transfer black-box attacks 21
2.3.2 Attacks using non-standard Lp norms 23

2.4 Mitigating adversarial attacks . 26
2.4.1 Adversarial training . 26
2.4.2 Other defences . 30
2.4.3 Detecting adversarial examples 31
2.4.4 Certified defences . 34

2.5 Analysing and explaining adversarial examples 36
2.5.1 Explaining the existence of AEs 37

2.5.2 AEs and clean data manifolds 38

3 Inherent robustness of neural networks 41
3.1 Robustness of networks with logistic sigmoid 41

3.1.1 Models and data . 42
3.1.2 Results . 44

3.2 Robustness of RecViT . 48
3.2.1 RecViT architecture . 48
3.2.2 RecViT variants and data . 49
3.2.3 Results . 51

4 Examining proximity of adversarial examples to data manifolds 55
4.1 Manifold disentanglement hypothesis 55
4.2 Relationship between data manifolds and AEs 59

4.2.1 Experimental setup . 59
4.2.2 Manifold projection method . 62
4.2.3 Assessment of data entanglement 64
4.2.4 Results . 65

Bibliography 67

Introduction

The vulnerability of Neural Networks (NNs) to Adversarial Examples (AEs) was first
identified in the domain of image classification by Szegedy et al. (2014), who showed
that it is often possible to find a tiny, in many cases imperceptible, perturbation of a
given input, causing misclassification. Since then, the research has advanced greatly.
More efficient ways of generating AEs were proposed, from simple one-step methods
(Goodfellow et al., 2015) to strong optimisation-based attacks (Carlini and Wagner,
2017c). Alongside the novel attacks, researchers also devised numerous defence and
detection strategies that would protect NNs from all known attack methods. However,
with the development of stronger attacks, almost all empiric defences were broken
(Carlini and Wagner, 2017a; Athalye et al., 2018a; Tramèr et al., 2020b). One of the
last promising methods that remain unbroken is adversarial training, as proposed by
Madry et al. (2018).

It is a different story for certified defences, that cannot be broken, as they are prov-
ably robust. However, the guaranteed level of robustness is not nearly sufficient enough
(Gowal et al., 2019; Cohen et al., 2019). Due to these difficulties with defending NNs,
multiple researchers turned to analysing the AEs and proposing numerous hypotheses
as to why even such a vulnerability of Deep Neural Networks (DNNs) exists (Tsipras
et al., 2019; Ilyas et al., 2019). We follow this line of research in two ways: studying
the inherent robustness of different NN architectures and analysing the hidden layer
activations of AEs with respect to the clean data manifolds.

We begin this work in Chapter 1 with an introduction to deep learning, a short
description of a few benchmark datasets, and the most influential state-of-the-art works
of the last few years. Then, we continue the theoretical part in Chapter 2, which is
dedicated to the research of adversarial examples — their properties, the methods of
generating them, as well as a number of proposed defence and detection mechanisms,
including several certified defences. We also discuss a few hypotheses trying to explain
the existence of adversarial examples.

In Chapter 3, we begin the practical part by describing a number of our experiments,
focused on quantifying the inherent robustness of various classifier architectures. In the
first part, we analyse saturating logistic sigmoid-based networks and the relationship
between neuron saturation and robustness, published in Bečková et al. (2020); in the

1

second part, we present a pilot robustness analysis of a novel NN architecture —
recurrent vision transformer, published in Pócoš et al. (2024b,a). Chapter 4 follows
with a summary of the experiments from Pócoš et al. (2021); Bečková et al. (2022);
Pócoš et al. (2022), aimed at analysing the hidden layer activations of adversarial
examples and how they progress throughout the network with respect to clean data
manifolds. We especially focus on analysing the differences between AEs produced by
attacks constrained in different Lp norms. Both practical chapters provide some ideas
regarding possible future work.

2

Chapter 1

Introduction to deep neural
networks

1.1 Notation and training of neural network classi-
fiers

Research of artificial neural networks began with the first model of perceptron, a com-
putational approximation of a neuron, described by Rosenblatt (1958). A single discrete
perceptron takes a vector of n inputs x = (x1, . . . , xn) and produces output y according
to the formula:

y = Θ
(n∑

i=1
wixi + b

)
, (1.1)

where Θ is the Heaviside step function defined as: Θ(x) = 1 if x ≥ 0, and Θ(x) = 0
otherwise. Trainable parameters wi are called weights, and b is bias. In a binary
classification task, input vectors with an output equal to 1 are considered as being from
one class, and inputs with an output equal to 0 are from the other class. The hyperplane
defined by w and b splits the input space into regions (half spaces) corresponding to the
two classes. Therefore, it can be interpreted as the decision boundary. This idea can
be generalised into a Multilayer Perceptron (MLP): let’s have a number of perceptrons,
each with different weights but taking the same input, then we can consider outputs
of these perceptrons as inputs to another “layer” of perceptrons. Moreover, the step
function can be replaced with any activation function g, resulting in a more general
formula:

y =
m∑

i=1

(
wout

i g
(n∑

j=1
(win

ij xj + bj)
))

, (1.2)

where win
ij are weights connecting inputs x with the first layer of neurons (referred to as

hidden, since they are neither inputs nor outputs), bj are biases, and wout
i are weights

connecting the hidden layer with the output neuron. However, multilayer perceptrons

3

were not very popular at first, as it was not clear how to train them. As a computa-
tional breakthrough, Rumelhart et al. (1986) proposed the so-called back-propagation
algorithm, based on the idea of using the chain rule to analytically compute the partial
derivatives of complicated nested functions. Another remarkable contribution came
from Hornik et al. (1989), who proved that MLPs with a single hidden layer (described
by Eq. 1.2) were universal approximators. Given a sufficient number of neurons m and
a continuous, monotonically increasing function g, they can approximate any continu-
ous function with an arbitrary precision on a finite set of input data points. Common
choices of activation functions are:

• Logistic sigmoid: σ(x) = 1
1 + e−x

• Hyperbolic tangent: tanh(x) = ex − e−x

ex + e−x

• Rectified Linear Unit: ReLU(x) = max(0, x)

A very specific activation function is softmax:

softmax(x)i = exi∑
j exj

, (1.3)

which is commonly used on the output layer of a classifier, where the number of neurons
equals the number of classes. Pre-softmax activations Z(x) are usually referred to as
logits. Softmax has a nice property, that it always produces a vector of the same length
as input, which sums up to 1, and all its elements are from the interval [0,1]. Softmax
of logits can then be interpreted as probabilities of individual classes:

y(x) = softmax(Z(x)), (1.4)

while the final output class is just the argmax, i.e., the class with the highest output
probability:

f(x) = argmax
i

y(x)i. (1.5)

To train a NN classifier that classifies inputs into k classes, a surrogate, differentiable
loss function is used. For that, each label l is transformed into a one-hot vector el of
length k, which is the standard basis vector with 1 at the l-th position and 0 elsewhere.
Then, we can use the mean squared error between one-hot encoded label and output
probabilities, or, in classification more common, the cross-entropy loss to measure the
network performance. This ensures that standard gradient optimisation methods, such
as Stochastic Gradient Descent (SGD), can be used to optimise the NN parameters.
Using the back-propagation algorithm, each weight is trained iteratively according to
the update rule:

w(t + 1) = w(t)− α∇wJ(x, l; θ), (1.6)

4

where J(x, l; θ) is the loss function for a given input x, its respective class l, and the
current network parameters θ (i.e., the weights and biases). ∇w denotes the partial
derivative with respect to w, and α is the learning rate. There has been some effort to
modify the optimisation to achieve faster convergence. Various ideas included second-
order methods, adaptive learning rate, or using a momentum (adding the “copy” of the
previous update to the current update). Currently, one of the most popular methods
is Adam (Kingma and Ba, 2014). It uses leaky averaging to keep estimates of the
momentum and the second moments of derivatives for each weight:

vw(t) = β1vw(t− 1) + (1− β1)∇wJ(t), v′
w(t) = vw(t)

(1− βt
1)

,

sw(t) = β2sw(t− 1) + (1− β2)∇2
wJ(t), s′

w(t) = sw(t)
(1− βt

2)
.

(1.7)

Then the weight update is computed according to:

w(t + 1) = w(t)− α√
s′

w(t) + γ
v′

w(t), (1.8)

to simplify notation, we use J(t) as the loss function in iteration t. The stabilising
term γ is some small constant, β1 and β2 are adjustable hyperparameters, and their
commonly used values are β1 = 0.9 and β2 = 0.999.

1.2 Popular image classification datasets

In this section, we briefly introduce a couple of the most popular image classification
datasets, some of which were also used in our experiments. An illustration of inputs
from four of the used datasets is in Fig. 1.1.

Figure 1.1: Sample input images for each class of the 10-class datasets. The rows
contain from top to bottom: MNIST, FMNIST, SVHN, and CIFAR-10 images.

5

1.2.1 10-class datasets

MNIST (Modified National Institute of Standards and Technology) dataset by LeCun
et al. (1998b) is one of the first and most used image classification datasets. It con-
sists of 28×28 px grayscale (single channel) images split into classes 0–9 representing
individual digits. Each image contains a single centred handwritten digit. The dataset
comes with 60 000 training and 10 000 testing samples.

Being one of the most popular image classification datasets of all times, MNIST
inspired a number of other similar datasets. One of them, which we also chose to use
in our work, is the FMNIST (Fashion MNIST) dataset (Xiao et al., 2017). Same as
MNIST, the dataset contains 28×28 px grayscale images forming ten classes. However,
since FMNIST was proposed as a slightly more challenging replacement for MNIST,
each image has one centred photo of a type of clothing or accessory. The dataset
provides 50 000 training and 10 000 testing images.

Another dataset very similar to MNIST is the SVHN (Street View House Numbers)
dataset (Netzer et al., 2011). The task is also to classify digits into classes 0–9, however,
the data contains RGB images with a resolution of 32×32, which is slightly higher than
the resolution of MNIST. Moreover, as these are real-world images of house numbers
taken from Google street view, some may contain more than one digit, in which case
the goal is to classify the one in the centre. The dataset contains over 73 000 training
and more than 26 000 testing samples.

CIFAR-10 (Canadian Institute For Advanced Research) by Krizhevsky and Hinton
(2009) is another popular choice for image classification. The dataset is made of RGB
images with the same resolution as for SVHN, i.e., 32×32 px, which are also split into
ten classes, representing various animals and vehicles. The dataset has 50 000 training
and 10 000 testing images.

Figure 1.2: Examples of data contained in the Oxford-IIIT Pet dataset. Alongside class
labels, head bounding box (middle) and trimap segmentation (right) are provided for
each input image (left). Image adapted from Parkhi et al. (2012).

6

Figure 1.3: A sample branch from ImageNet hierarchy with examples of contained
images. Image adapted from Deng et al. (2009).

1.2.2 Larger-scale datasets

A more challenging classification task is offered by the Oxford-IIIT Pet dataset (Parkhi
et al., 2012). It contains RGB images of various sizes, partitioned into 37 classes of
cat and dog breeds. The dataset has ≈ 200 samples per class. One of the advantages
is that it also provides head bounding boxes and trimap segmentations, as seen in
Fig. 1.2.

One of the most popular large-scale image classification datasets is the ImageNet
(Deng et al., 2009). It is a hierarchical database with over 14 million sample images
split into more than 21 thousand classes. An example of a class branch with respective
images is shown in Fig. 1.3. ImageNet became popular mostly due to the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015), which
features a 1 000-class subset of the ImageNet dataset, usually referred to as ImageNet-
1k, while the full dataset is denoted ImageNet-21k.

1.3 Development of the state-of-the-art

Research in computer vision has evolved greatly, from using hand-crafted features as
inputs for simple classifiers to end-to-end trained DNNs that often surpass even human
performance. In this section, we summarise a few of the most influential concepts
leading to breakthroughs in image classification.

1.3.1 Convolutional neural networks

The first big breakthrough of DNNs on visual data came with the rise of Convolutional
Neural Networks (CNNs). While there were some earlier efforts, the idea was popu-
larised mainly due to the development of LeNet-5 by LeCun et al. (1998a) (architecture
depicted in Fig. 1.4), a CNN trained to recognise handwritten characters that outper-
formed other types of classifiers which were, at that time, considered state-of-the-art.
CNNs employ convolutional layers to extract features from an input image, resulting in
end-to-end training. This is in contrast with the more “traditional” approach in com-

7

Figure 1.4: The architecture of the LeNet-5 network, one of the first CNNs, successfully
applied to the task of recognising handwritten characters. Image adapted from LeCun
et al. (1998a).

puter vision, using simple classifiers on outputs from hand-crafted feature extractors
such as edge detectors. A single output of the convolutional layer is computed as the
dot product between a convolution kernel (filter) and a small contiguous part of the
input of the same size. The entire layer is comprised of outputs from such dot products
with convolution kernels centred in different parts of the input (in a sliding window
manner), arranged to maintain the spatial information (i.e., outputs from neighbour-
ing input patches are also adjacent). Besides preserving information about the input
structure, convolutional layers have more advantageous properties:

• Translation invariance: thanks to the dot product with the convolution kernel
being computed over different parts of the input, the same feature can be detected
regardless of its exact position.

• Sparse connectivity: as each output is connected to only a small part of the
input (its receptive field), convolutional layers have fewer trainable parameters
than fully connected layers (where each input is connected with each output).

• Shared weights: the fact that the same convolution kernel is used to compute
dot products with different parts of the image further reduces the number of
trainable parameters of convolutional layers. Therefore, CNNs can be trained
more efficiently, using fewer samples.

In practice, multiple convolution kernels are used simultaneously to detect the presence
of different features. These result in multiple output channels, forming an additional
third dimension in the neuron layer.

To further reduce the dimensionality of hidden layers, sub-sampling (also called
pooling) is usually used. Pooling works in the same way as convolution, except that
instead of the dot product of input parts and a convolution kernel, the output is
computed as either the average or the maximum of the features. Also, the receptive

8

fields of individual output neurons are usually non-overlapping, while in convolutional
layers, they mostly are. While LeNet-5 used weighted averages, nowadays, max pooling
is more popular. It can be interpreted as a logical OR, i.e., detecting whether a feature
is present somewhere in the receptive field. Pooling layers are usually followed by some
non-linear activation function.

A typical CNN architecture consists of a number of repetitions of convolutional
layers, pooling layers, and non-linearities, which are then followed by a couple of fully
connected layers. In that case, the convolutional part is usually considered a trained
feature extractor, which is then followed by a simple MLP performing classification on
the extracted features.

1.3.2 CNNs on ImageNet

Since LeNet-5, employment of CNNs slowly grew, with a great leap in popularity in
2012, when AlexNet (Krizhevsky et al., 2012) won the ILSVRC with a huge margin
(15.3% error rate, while the second best competitor achieved 26.2%). AlexNet is a
CNN trained on ImageNet, though much larger than the LeNet-5. The authors state
that the successful training of such a big model was only possible thanks to a couple
of smart design choices. One of them is the use of ReLU. Commonly used activation
functions logistic sigmoid and hyperbolic tangent have derivatives with zero limits in
±∞. Therefore, if a neuron activation gets too big (in absolute value), the deriva-
tive in the backward pass gets close to zero. Longer training of networks with these
activation functions leads to saturating neurons and slow weight adjustment. This
problem is commonly known as vanishing gradients. ReLU activation function pre-
vents such problems by having a constant derivative (for all inputs greater than 0),
so even very long training (which is required for more complicated tasks) does not
lead to saturation. Another crucial component is dropout (Srivastava et al., 2014). It
is a regularisation technique based on randomly zeroing neurons in the forward and
backward pass. During training, each neuron is zeroed with probability p. In testing,
the neuron activations are kept but scaled by p. This promotes networks learning more
distributed knowledge instead of strongly relying on some specific neurons.

Another improvement and a possibility of even deeper networks were brought by Si-
monyan and Zisserman (2015). They proposed a number of models collectively referred
to as VGG (Visual Geometry Group). Thanks to using smaller convolution kernels, the
networks have manageable numbers of trainable parameters despite reaching depths up
to 16 convolutional layers. Moreover, the experiments clearly showed the potential of
improving the network performance by increasing its depth. However, training even
deeper networks remained a great challenge up till ResNet (He et al., 2016) was pro-
posed. It is based on the observation that if a network is too deep, its performance may

9

Figure 1.5: An illustration of a residual connection, which connects a layer of neurons
with another, not directly the next one, therefore skipping a couple of layers. Image
taken from He et al. (2016).

be lower than that of a more shallow network due to difficult optimisation. Theoreti-
cally, it should be sufficient to set the additional layers to perform identity to maintain
accuracy. The observed drop in performance of deep networks hints that learning the
identity mapping might be difficult for NNs. The authors decided to provide help in
the form of the so-called “skip” or residual connection, which adds a copy of activations
from a few layers earlier, as illustrated in Fig. 1.5. In that case, to perform identity,
the learned weights just need to be zero. As shown in the results, this is a much easier
task since, using this approach, it is possible to train an exceptionally well-performing
(the first place in ILSVRC 2015) network with as many as 152 layers.

1.3.3 Vision transformer

The latest revolution in deep learning came with the transformer networks (Vaswani
et al., 2017), originally proposed as a replacement for recurrent neural networks in
natural language processing tasks. Only a couple of years later, they were success-
fully adapted to the computer vision domain in the form of Vision Transformer (ViT)
(Dosovitskiy et al., 2021). The transformer architecture, as well as the ViT architec-
ture, is based mainly on the self-attention mechanism, which takes a number of input
vectors, linearly projects them to queries Q, keys K, and values V , and then computes
the output according to:

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V , (1.9)

where dk is the dimensionality of the keys and queries, and it is a tunable hyper-
parameter. In transformers, inputs are usually word embeddings. For ViT, it works
as follows (also illustrated in Fig. 1.6): first, the input image is sliced into smaller
patches that are flattened, projected, and added to their respective position embeddings
(encoding from which part of the image the patches come). These are the inputs in the
self-attention. However, one extra vector is used — the class token. Its initial value

10

Figure 1.6: Visualisation of the vision transformer architecture (left) along with its
most crucial component, the transformer encoder (right). Image reproduced from
Dosovitskiy et al. (2021).

is learned, while its output from the transformer encoder is used in a simple MLP to
produce the final classification.

Similar to transformers, ViTs also heavily depend on extensive pre-training (train-
ing on a larger, more universal dataset), and subsequent fine-tuning to perform a
given, specific task. Without pre-training, the performance of ViT on ImageNet-1k
is comparable to that of ResNet. But with pre-training on a large dataset (such as
ImageNet-21k), ViT becomes superior and sets the new state-of-the-art.

11

12

Chapter 2

Adversarial examples

In the classification task, adversarial examples are inputs that are very similar to cor-
rectly classified samples from the input distribution, yet are misclassified by a trained
model. Such inputs exist even for deep neural networks which have high testing accu-
racy (and are therefore expected to generalise well). However, AEs are hard to find just
by randomly sampling the vicinity of the clean data. For that reason, their existence
is quite counter-intuitive and has only first been revealed by Szegedy et al. (2014).

It should be noted that the idea of modifying inputs with the intention of causing
misclassification was already suggested by other authors, for example, Biggio et al.
(2013). However, they focused on simple machine learning models such as support vec-
tor machines or linear classifiers and their resulting images cannot really be considered
AEs as they diverged too far from the original inputs.

2.1 Fooling images

Around the same time, another class of problematic inputs — fooling images, also
referred to as Rubbish Class (RC) examples, was described by Nguyen et al. (2015).
RC examples are meaningless inputs that are not recognisable by humans, but are
classified with very high confidence (≥ 99%) as belonging to one of the classes by a
deep learning model. By definition, these are not AEs, because they are not similar to
the original data. However, they are often studied alongside the AEs or in the same
context.

The original paper described multiple ways of generating RC examples in a targeted
way, i.e., picking a certain target class and searching for an input that is classified as
such. Methods based on genetic algorithms found regular images with symmetries or
repeating patterns. Some of the images were initially not recognisable by humans, but
after seeing the output class of the network, they were able to find some “correct”
features in them. A few samples are shown in Fig. 2.1. Notice, for example, the red

13

Figure 2.1: Image taken from Nguyen et al. (2015). The top row shows fooling images
(along with the classes outputted by the used model) generated by gradient ascent.
The bottom row depicts images generated by genetic algorithm.

lines resembling stitches in a baseball.
Another set of inputs was produced by gradient ascent in the input space, max-

imising the output of the target class, starting from a randomly perturbed mean of
the ImageNet-1k dataset inputs. The resulting images were completely unrecognis-
able. The gradient approach was more extensively studied by Goodfellow et al. (2015)
with the slight modification that the starting point for the gradient ascent was random
noise. Therefore, the resulting images also resembled just noise. The authors further
noted that using genetic algorithms to generate these images is an “overkill”, as the
gradient method produces images classified as a desired class with high success, the
exact percentage dependent on the target class.

There was some effort to tackle the problem by adding an extra output neuron
representing the rubbish class and fine-tuning the network by training on these exam-
ples. However, both Nguyen et al. (2015) and Goodfellow et al. (2015) showed this
procedure to be highly ineffective and unable to “fix” the model.

2.2 Properties of adversarial examples

Since the first mention of AEs in 2013, there has been much effort in the deep learning
community to explore and understand this phenomenon. Despite the immense amount
of the work done in this field, the current state-of-the-art does not seem to be much
closer to solving the problem of AEs. Quite the opposite, they were found to have cer-
tain unpleasant properties, revealing fundamental flaws of deep learning. This section
summarises the most important findings yet.

14

Figure 2.2: A sample of AEs by Szegedy et al. (2014). The left column contains original
images, the middle shows their respective adversarial perturbations (scaled for better
visibility). The resulting AEs are in the right column. Both AEs are classified as
ostrich by AlexNet.

2.2.1 Computational complexity of adversarial attacks

Szegedy et al. (2014) formalised the problem of AEs in the domain of image classifica-
tion as a constrained optimisation. Following the notation from Sec. 1.1, let’s denote
f : Rn → {1, . . . , k} a classifier classifying n-dimensional vectors into k classes, and
x a given input image, then the goal of an adversary (or an adversarial attack) is to
find an adversarial perturbation δ, such that ∥δ∥2 is minimal and f(x + δ) = t, where
t is the target output class (different from the correct label l from the dataset) and
x + δ ∈ [0, 1]n to ensure that x + δ is a valid image. This means the goal is to find
the closest image to x, which is classified by f as belonging to class t. In practice,
the authors used the box-constrained L-BFGS (Limited-memory Broyden–Fletcher–
Goldfarb–Shanno) optimisation (Liu and Nocedal, 1989). Their results (some of them
depicted in Fig. 2.2) included images almost indistinguishable from the original cor-
rectly classified ones, that were misclassified by the network, often with surprisingly
high confidence. However, the optimisation procedure was computationally costly, and
for some time, it was believed that the generation of AEs may not be an easy task.
The authors even hypothesised that the AEs might be located only in extremely rare,
hard to find “pockets” in the input space.

Shortly after, this assumption was proven wrong by Goodfellow et al. (2015), who
proposed a simple, computationally cheap algorithm for generating AEs — the Fast
Gradient Sign Method (FGSM). This attack computes the gradient of the loss func-

15

tion with respect to the input to find the direction in which to shift the given input
so as to maximise the locally linearised cost (and, therefore, lower the output prob-
ability of the correct class). Note that in contrast to Szegedy et al. (2014), FGSM
was originally proposed as an untargeted attack. Instead of modifying the input to be
classified as belonging to the target class, the target is not specified, and the only goal
is misclassification. Their approach differs from Szegedy et al. (2014) also in the norm
used to measure the magnitude of the perturbation. FGSM uses the max-norm L∞,
while Szegedy et al. (2014) opted for the Euclidean L2 norm to constrain the attacker.
Another thing to note is that FGSM does not actually try to minimise the adversarial
perturbation, just to keep it within a specified distance from the original input. The
resulting optimal perturbation is

δ = ϵ sign(∇xJ(x, l; θ)), (2.1)

where θ are the network parameters, l is the correct class, ϵ is the maximal allowed
perturbation magnitude, and J(x, l; θ) is the cost function.

The reasoning behind FGSM is the hypothesis that AEs are actually caused by
the linearity in the models. The authors showed that considering the L∞ norm, the
vulnerability of a linear network (the possible magnitude of error that the attacker can
cause) grows with the dimensionality of the input as follows: given a dot product wT x′

of a modified input vector x′ = x + δ and a weight vector w, using a perturbation
δ = ϵ sign(w) results in a change of magnitude ϵmn, where n is the dimensionality
of x and m is the average magnitude of elements of w. As deep neural networks are
a cascade of multiple linear and non-linear transformations, they are probably just as
vulnerable, if not more.

2.2.2 Transferability

Another important finding of Szegedy et al. (2014) was that AEs exhibit a non-
negligible level of transferability across different models. In their experiments, some
AEs generated on a certain model were misclassified also by other models (with differ-
ent hyperparameters and architecture) trained on the same dataset. Moreover, after
splitting the training data into two halves and training two different models, each on
one of the halves, a small percentage of generated AEs still transferred across the
models. This suggests that AEs are neither model-dependent, nor data-dependent.

To make matters worse, Papernot et al. (2017) showed that it is possible to find
adversarial examples for a target model even without any knowledge of its architecture
or the data it was trained on. The only information needed is the target model output
class for any given input (therefore, the target model is referred to as an oracle).
To craft the AEs, the authors used a substitute model and a substitute synthetic

16

dataset. The entire attack works in the following steps: the substitute dataset is created
iteratively, starting with a small initial set of inputs representing the task performed by
the oracle (for example, images of digits in the case of digit classification). Then, the
substitute model is trained on these inputs to output the same class as the attacked
model, while the dataset is continually augmented during training with new inputs
chosen based on the Jacobian of the substitute model in some of the inputs from the
previous iterations. After the substitute model is sufficiently trained, a gradient-based
attack is employed to craft AEs fooling it. These are then used to attack the oracle.
The authors showed that using this approach, it is possible to craft AEs even for non-
differentiable classifiers, such as decision trees or k-Nearest Neighbours (kNN). Attacks
exploiting the transferability property (using a different model to craft the AEs than
the one that is actually being attacked) are referred to as transfer attacks. Transfer
attacks are the most simple type of black-box attacks — attacks that treat the target
network as a black-box without assuming any knowledge of it. The opposite is white-
box attacks, which use some knowledge about the attacked model to craft AEs, for
example, its gradients, architecture, etc.

Shortly after the introduction of transfer attacks, Liu et al. (2017) performed an
extensive study of transferability, especially in the context of the targeted attacks.
Their results showed that only a very small percentage of AEs constructed with targeted
attacks are still misclassified as the target class when evaluated on different models.
Many of them were still misclassified, though (just not as the target class). As a
solution, the authors suggested the idea of using an ensemble of models to craft AEs.
Their hypothesis was that if an AE can successfully fool multiple models, then it is
more likely to also transfer to another model. Such AEs can be crafted by computing
adversarial perturbations for a given image over multiple models and aggregating them
into a single perturbation. It turns out that AEs created in this fashion have much
higher transferability rates than standard AEs (evaluated on a model that was not
used to craft them). This is most prominent in targeted attacks, where it significantly
increases the fraction of AEs that transfer along with the target class. Therefore, the
authors showed that it was possible to craft targeted AEs using transfer attacks.

2.2.3 Optimising AEs with stronger attacks

The first iterative approach was proposed by Moosavi-Dezfooli et al. (2016). Their at-
tack, called DeepFool, was the first computationally effective method that tried to find
the minimal adversarial perturbation (instead of just keeping it within a fixed ϵ-ball
around the original input). DeepFool is based on splitting the input space according to
the learned decision boundaries. In the case of a linear model, these decision bound-
aries are hyperplanes, and they define polyhedral regions that are classified as a certain

17

class. Then, considering a given input image that is classified correctly, the minimal
adversarial (untargeted) perturbation can be computed analytically as an orthogonal
projection onto the complement of the polyhedron classified as the correct class. By
locally linearising the decision boundaries (i.e., computing partial derivatives of the
output probabilities y for individual classes in the given input), this method can be
used to approximate the optimal perturbation even for general, non-linear classifiers.
However, in that case, the computed perturbation may not actually cause misclassi-
fication. Therefore, the linearisation and projection are repeated iteratively until the
attack succeeds. The authors reported that usually, in practice, not more than three
iterations are needed. This results in an attack that is much faster to compute than the
previously used L-BFGS while producing much smaller perturbations than the FGSM.

Kurakin et al. (2018) formulated a different iterative attack for generating AEs,
the Basic Iterative Method (BIM). It works like FGSM but runs in iterations. In
each iteration, the image is modified just by a fraction of the admissible perturbation
magnitude ϵ, and if the total magnitude exceeds the threshold, it is clipped to stay
within ϵ distance from the original input. Using the same value for ϵ, BIM produces
AEs that are perceived as more similar to the original images than FGSM.

Next, Madry et al. (2018) proposed the Projected Gradient Descent (PGD) attack,
an extension of BIM. It works exactly the same, but instead of starting in the clean
input x, it starts from a random point within the ϵ-ball around the original image.
Such randomisation of the starting point makes the attack more general. By running
the attack multiple times and choosing the AE which causes misclassification with the
highest output confidence, PGD can find better AEs than BIM.

A quite different, very strong method of generating AEs, referred to as the Carlini
& Wagner (CW) attack, was proposed by Carlini and Wagner (2017c). The attack
works by employing the Adam optimiser to solve the following problem:

argmin
w

(
∥12(tanh(w) + 1)− x∥2

2 + c · F (1
2(tanh(w) + 1), t)

)
, where

F (x′, t) = max(max{Z(x′)i : i ̸= t} − Z(x′)t,−κ).
(2.2)

Here, t is the target class, and Z(x) are the network logits. Binary search is used
to find the optimal value of the constant c. The resulting AE is then given by x′ =
1
2(tanh(w) + 1). This smart reparametrisation trick is used to ensure that the AE
satisfies the box-constraint x′ ∈ [0, 1]n, while not constraining the optimisation itself.
Parameter κ ≥ 0 can be varied, with greater values resulting in AEs classified with
higher confidence, though also greater magnitudes of adversarial perturbations. These
“high confidence” AEs were shown to have better transferability, and thus, higher
values of κ should be considered when CW is used for a transfer attack. The authors
also proposed simple modifications to this attack so that it can be used to find AEs
constrained in the L0 norm or the L∞ norm. All versions of CW attack were shown

18

to produce AEs better than or equal to (in terms of the perturbation magnitude) the
previous state-of-the-art attacks.

2.2.4 Physical adversarial examples

Deep learning is often used in computer vision, but in most cases, it seems unlikely
that an attacker could directly modify the captured image. However, they might be
able to modify the object that is being captured. With this idea in mind, Kurakin
et al. (2018) studied the possibility of crafting adversarial images in the physical world.
In their experiments, they created AEs in a standard manner and then printed them
on paper. These were then captured by a camera. A non-trivial number of AEs were
still misclassified. The authors also assessed the effect of standard data augmentation
transformations (such as changes of contrast or blurring) on the AEs. Even though
these transformations significantly reduced the misclassification rate, none of them was
able to reduce it to zero. Comparing FGSM and BIM attacks, despite the fact that
BIM is considered a stronger attack (due to being iterative), the misclassification rate
of the printed BIM AEs was lower than that of the printed FGSM AEs.

Athalye et al. (2018b) took AEs to an even higher level. They proposed the Expec-
tation Over Transformation (EOT) attack, which optimises the adversarial example x′

for a given input x over a distribution T of admissible transformations τ ∈ T , resulting
in a Lagrangian-form maximisation:

argmax
x′

(
Eτ∼T [log y(τ(x′))t]− λEτ∼T [d(τ(x′), τ(x))]

)
, (2.3)

where y is the vector of output probabilities, t is the target class, and d is a chosen
metric. The optimisation is solved by the projected gradient ascent, randomly sampling
a transformation τ in each iteration and clipping the result into a valid image range
[0, 1]n. Then, the authors used EOT with a specific set of transformations consisting of
rendering transformations (from texture to 3D object), different camera angles, various
lighting conditions, printing inaccuracies, and more, to find adversarial textures for
multiple 3D objects. To prove the validity of this approach, they used a 3D printer to
print two objects with adversarial textures, one of them being the turtle depicted in
Fig. 2.3.

Also in pursuit of the physical AEs, Eykholt et al. (2018) proposed an attack
specifically tailored to the problem of modifying real-world objects by applying posters
or stickers to them. This is achieved by using a pixel-wise mask when computing the
attack, to only consider those parts of the image that belong to the target object.
The optimisation problem is modified by adding a special loss term accounting for
possible printing errors, and, similarly to Athalye et al. (2018b), considering multiple
transformations of the target object. After the perturbation is computed, it is printed

19

Figure 2.3: 3D-printed turtle with texture
computed using EOT by Athalye et al.
(2018b). The turtle is classified as a rifle
from 82% of evaluated viewpoints.

Figure 2.4: Adversarial stop sign by
Eykholt et al. (2018). Viewed from differ-
ent distances and angles, it is consistently
misclassified as a speed limit 45 sign.

and applied to the physical object. As a proof of concept, the authors modified a couple
of objects in this way, for example, the stop sign, which can be seen in Fig. 2.4. By
using a few black and white stickers on the sign, they managed to make it consistently
misclassified when viewed from various distances and angles.

2.2.5 Universal adversarial perturbations

As if the problem of AEs was not hard enough, Moosavi-Dezfooli et al. (2017) found
that it is possible to create an adversarial perturbation, which is universal in the
sense of being input-agnostic. There is a high probability that such a perturbation
will cause misclassification when added to any of the original inputs. The authors
proposed an algorithm to craft these untargeted Universal Adversarial Perturbations
(UAPs). Considering X = {x1, . . . , xm} the set of inputs, the initial perturbation v(1)
is computed using DeepFool on input x1. In subsequent iterations, v(i) = v(i−1)+δi,
where δi is the perturbation found by DeepFool on input xi+v(i−1). It is also possible
to constrain the maximal perturbation norm to a chosen ϵ by projecting the v(i) in
each iteration onto an L2-ball with radius ϵ centred around zero. The algorithm stops
if the perturbation reaches the desired success rate, i.e., a sufficient fraction of the set
X is misclassified after adding this perturbation.

Empirical evaluation showed that the set X of considered inputs need not be very
large to achieve high rates of misclassification on the entire dataset. Moreover, as the
algorithm is stochastic, by permuting inputs in X, it is possible to find multiple diverse

20

UAPs. Similar to the standard (input-specific) adversarial examples, images modified
by UAPs also transfer across different models.

In their subsequent study, Moosavi-Dezfooli et al. (2018) tried to explain the UAPs
geometrically by assuming the existence of a subspace S in the input space, containing
directions along which the curvature of the decision boundary is positive. They empir-
ically showed this assumption to be true. They also proposed an efficient algorithm for
generating UAPs using this knowledge, based on approximating S by estimating the
average hessian of the decision boundary and taking the first few of its eigenvectors as
the base of S. UAPs can then be found by randomly sampling directions in S.

2.2.6 AEs outside the scope of this work

In this work, we are only interested in AEs in image classification, but there is also a
significant amount of work on AEs in other domains. For example, Carlini et al. (2016)
created imperceptible voice commands (even though they were not AEs in the sense
of being similar to clean examples, but more like the audio analogy of fooling images).
Even more disturbingly, it is possible to craft AEs for deepfake-image detectors (Carlini
and Farid, 2020) and malware detection systems (Grosse et al., 2017b). Especially
interesting are AEs in deep reinforcement learning (Huang et al., 2017), where time can
be considered as another variable to optimise (i.e., minimising the attacking frequency
to keep the attacks hard to detect).

All attacks considered in this work are performed at the test-time (i.e., attacking
a classifier that is already fully trained). These are usually referred to as evasion
attacks. The opposite class of attacks that deals with imperceptibly modifying data
during training is called data poisoning (Chen et al., 2017b).

2.3 Other noteworthy attacks

In this section, we present other attacks that we think are worth mentioning. They
are either black-box, and therefore practical and easy to use, or use some non-standard
norms to measure the magnitude of the adversarial perturbation, which results in
unique and qualitatively different AEs.

2.3.1 Non-transfer black-box attacks

Chen et al. (2017a) proposed an attack that, instead of training a substitute model,
tries to directly approximate the target model gradients. They called it the Zeroth
Order Optimization (ZOO) method. It assumes knowledge of the target model output
probabilities for any given input, which is a slightly stronger assumption than in Pa-

21

pernot et al. (2017), but the attack is usually still considered black-box. The authors
took inspiration from the CW attack and, taking a clean input x and the target class t,
they used the Adam optimiser to solve a slightly modified optimisation given in Eq. 2.2,
with F (x′, t) defined as

F (x′, t) = max{max
i ̸=t

log y(x′)i − log y(x′)t,−κ}, (2.4)

where y(x′)i is the probability of input x′ belonging to class i. Therefore, ZOO replaces
the difference of logits used in the CW attack with the difference of logarithms of proba-
bilities. To ensure the box constraint x′ ∈ [0, 1]n, ZOO uses the same reparametrisation
trick as is in Eq. 2.2. Next, to approximate the gradient of y needed for optimisation,
ZOO computes finite differences:

∂F (x, t)
∂xj

≈ F (x + ejh, t)− F (x− ejh, t)
2h

, (2.5)

where h is a small constant and ej is the standard basis (one hot) vector with 1 at the
j-th place and 0 elsewhere. This means that to approximate a single partial derivative,
two forward passes need to be computed. This is an issue for tasks with high input
dimensionalities. For that reason, the authors used mini-batch coordinate descent,
updating only a mini-batch of coordinates in each iteration of optimisation (therefore
reducing the number of needed forward passes). To ensure faster convergence, they used
importance sampling to choose the coordinates, assigning probabilities based on the
magnitude of the adversarial perturbation in the current iteration (pixels with a higher
magnitude having higher importance). Lastly, the authors proposed a hierarchical
attack. In the first couple of iterations, the attack searches for adversarial perturbations
in a lower-dimensional space, upsampling the perturbation to fit the input dimension.
When the value of the optimised objective does not change much any more, the search
space is refined, and the optimisation continues with the same perturbation. The
refinement and optimisation might be repeated a couple of times. Especially in tasks
with high input dimensionalities, the hierarchical approach helps to speed up the attack.

The same idea of directly estimating the attacked model gradient from output
probabilities was explored by Ilyas et al. (2018). In contrast to the ZOO method, their
query-limited attack works with the L∞ norm and, instead of finite differences, uses a
variant of NES (Salimans et al., 2017) to efficiently estimate the gradient. Moreover,
it provides a specific attacking strategy in case the number of queries to the target
model is strictly limited. Testing the attack on ImageNet-1k, the authors showed that
in most cases, less than 50 000 queries are required to craft a targeted AE.

A purely decision-based non-transfer attack, assuming no more knowledge than the
output class for any given input, was proposed by Brendel et al. (2018). They called
it the Boundary Attack (BA), as it tries to move along the model decision boundary.

22

The AE generation process is inverted, it starts from a point x′(0) in the input space
that is classified as desired (either the target class in case of targeted attack or any
incorrect class in case of untargeted). x′(0) is usually very far from the original image,
thus, it is iteratively modified to get gradually closer to the original image x. Each
iteration consists of two steps. In the first step, a random perturbation of magnitude
β is added to x′(i), which is then projected onto an L2-ball around x with radius
∥x′(i) − x∥2. This step is orthogonal to the direction from x to x′(i), keeping the
distance between the original and the adversarial image constant. The second step
is along the direction toward the original input, scaled by γ. If any of these steps
results in an undesirable classification, a different random step is sampled (basically
performing rejection sampling). The orthogonal step size β is adaptively modified so
that ≈ 50% of orthogonal (random direction) steps are accepted. If the overall success
rate of both steps added together is too low, γ is decreased. If it gets close enough to 0,
the attack stops. Magnitudes of the resulting adversarial perturbations are comparable
to those produced by white-box attacks (FGSM, CW, and DeepFool), but the required
number of computations is much higher, sacrificing time in favour of making the attack
black-box.

2.3.2 Attacks using non-standard Lp norms

Adversarial attacks usually use Lp norms to measure the magnitude of the perturbation.
The general formula is

∥δ∥p = (
n∑

i=1
δp

i)
1
p , (2.6)

where n is the dimensionality of δ. However, all of the previously mentioned attacks
use specifically either the L∞ norm, defined as ∥δ∥∞ = max

i
(δi), or the L2 norm, which

is the standard Euclidean norm ∥δ∥2 =
√∑n

1 δ2
i . But this is not a necessity.

Papernot et al. (2016a) were the first to minimise the number of perturbed features,
i.e., pixels, during the computation of the attack. This corresponds to the minimisation
of the L0 norm. In their attack, usually referred to as the Jacobian-based Saliency Map
Attack (JSMA), they computed saliency maps to decide which pixels to modify. The
saliency of each pixel is based on the Jacobian of the classifier output probabilities y. If
modifying a certain pixel results in a decrease of yt or an increase in any yi with i ̸= t,
where t is the target class of the attack, then the saliency of that pixel is 0. Otherwise,
it is computed as the product of the amount of probability increase in the correct class
and the sum of probability decreases in all other classes. The attack then picks the
top pixel and changes its value by some predefined constant c. It works iteratively, in
each iteration re-computing the Jacobian and modifying a single pixel until the input
is classified as the target class or the maximum number of iterations (which is equal to

23

Figure 2.5: AEs created by one pixel attack along with their output class and proba-
bility (in blue) and the output class and probability of the original image. The single
modified pixel is highlighted by red circle (Su et al., 2019).

the maximum allowed distortion) is reached.
This attack can be easily extended to a more efficient version, modifying multiple

pixels in each iteration. The saliency is then computed for each combination of pixels
analogically, but the effect on output probabilities is summed across considered pixels.

Another method considering the L0 norm is the one pixel attack by Su et al. (2019).
As the name suggests, it searches the space of perturbations, that modify only a single
pixel of a given image. The method is black-box, requiring only output probabilities of
individual classes for any given input, and can be made both targeted and untargeted.

The adversarial perturbation is found by differential evolution. Evolutionary al-
gorithms, in general, follow the same scheme of running in iterations, each iteration
consisting of a set of individuals (population). These produce another set of individuals
(children). All of them are evaluated according to a fitness function, and the best of
them are kept for the next iteration.

In this specific case, each individual represents a perturbation encoded as a 5-
dimensional vector consisting of the x and y coordinates of the perturbed pixel, and
the RGB values of the perturbation. The initial population is generated randomly,
x and y coordinates are from a uniform distribution, RGB values are from Gaussian
distribution. Each population has 400 individuals {a1, . . . , a400} and for each individual
ai, one child is produced according to the formula

ci(g) = ar1(g) + 0.5(ar2(g)− ar3(g)), (2.7)

where r1 ̸= r2 ̸= r3 are random indices, and g is the index of the current generation
(iteration). Each parent–child pair is evaluated against each other, and the one with a
higher fitness survives and proceeds to the next generation:

ai(g + 1) = argmax{F (ci(g)), F (ai(g))}. (2.8)

24

In the targeted attack, the fitness function F is defined as the output probability of
the target class for the image modified by the given perturbation. In the untargeted
attack, fitness is the negative output probability of the correct class.

This attack can also be extended to consider changing more pixels, the length of
individuals is five times the number of modified pixels. The authors included results
for a 3-pixel attack and a 5-pixel attack. Though these were more successful in fooling
the attacked models, in some cases, it was indeed sufficient to only modify a single
pixel. For example, the success of the targeted one pixel attack on ImageNet-1k was
slightly above 16%. These results are in contrast with the hypothesis of Goodfellow
et al. (2015), who explained misclassification in AEs as a result of multiple tiny changes
across input dimensions. Apparently, one (greater) change to a single input dimension
might also be enough.

Chen et al. (2018) proposed a generalisation of the CW attack, the Elastic-net At-
tack to DNN (EAD). It uses elastic-net regularisation to find the optimal perturbation,
which combines L1 and L2 norms in the optimisation

argmin
x′

(
∥x′ − x∥2

2 + β∥x′ − x∥1 + c · F (x′, t)
)
, (2.9)

such that x′ ∈ [0, 1]n and F (x′, t) is defined as in Eq. 2.2, and therefore, CW is a special
case of EAD for β = 0. Moreover, β controls the relative importance of the L1 and L2

norm. However, the authors found that using the same reparametrisation trick as CW
to ensure the box-constraint does not work well, the optimisation is insensitive to β and
produces results similar to those when considering only the L2 norm, so instead, EAD

Figure 2.6: Comparison of AEs produced using EAD (left) and CW (right) from the
same original MNIST inputs. The L1-term in EAD promotes sparsity and results in
visually sharper perturbations (Chen et al., 2018).

25

uses the iterative shrinkage-thresholding algorithm (Beck and Teboulle, 2009) to solve
the optimisation. Results showed that this is a viable approach, and with increasing β,
EAD produces perturbations with low L1 norms but slightly higher L2 and L∞ norms,
revealing a trade-off. AEs produced by EAD are, therefore, qualitatively different from
those produced by CW, a comparison depicted in Fig. 2.6.

2.4 Mitigating adversarial attacks

Naturally, researchers have been trying to solve the problem of AEs ever since they
were discovered. Thus, many different defence methods have been proposed. Some of
them aim to modify network architectures to make them inherently more robust, others
alter the training process. Also, numerous detection methods, which try to detect and
eliminate any adversarially modified inputs, were designed. However, as we will discuss
further, none of these have been completely successful.

2.4.1 Adversarial training

Adversarial Training (AT) has been the most promising and most studied defence
mechanism so far. It is based on a simple idea of generating AEs during training
and using them as part of the training data. Of course, new AEs must be generated
continually to replace those that the network can already classify correctly with the new
ones, resulting in a very computationally costly procedure. AT was already proposed
by Szegedy et al. (2014). However, it was not feasible at that time due to a very
inefficient AE generation procedure.

The idea of adversarial training was revisited by Goodfellow et al. (2015). However,
instead of adding AEs to the training data, they defined an adversarial loss (based on
replacing the clean sample x with an AE computed by the FGSM attack) as

J(x + ϵ sign(∇xJ(x, l; θ)), l; θ) (2.10)

and then trained a classifier with a linear combination of standard and adversarial loss.
Therefore, at each pass considering the accuracy on both clean and FGSM-generated
inputs. Using this approach, the authors were able to train a model achieving (at the
time) state-of-the-art classification accuracy on the MNIST dataset while also reducing
the success of the FGSM attack on this model by more than 70%.

Moosavi-Dezfooli et al. (2016) performed adversarial training with their method
DeepFool while comparing it to the FGSM, although they opted for the standard ad-
versarial training (augmenting the data with AEs) instead of using the adversarial loss.
The adversarially trained networks were then attacked with DeepFool. As DeepFool

26

Figure 2.7: Two examples of the loss function of a model adversarially trained with
the white-box FGSM attack. Loss is visualised for inputs x∗ = x + ϵ1g1 + ϵ2g2, where
x is an input image taken from the training data distribution, g1 is the gradient of the
model in x, and g2 is an orthogonal adversarial direction (Tramèr et al., 2018).

aims to produce (an approximation of) the minimal adversarial perturbation, its mag-
nitude can then be used as a measure of robustness. The results showed that while AT
with DeepFool-generated AEs increases network robustness, AT with FGSM-generated
AEs decreases it. Authors hypothesised that this was due to the fact that FGSM, being
a method optimised mainly for quick computation instead of minimising the perturba-
tion, produces overly perturbed AEs.

Similar findings were provided by Kurakin et al. (2017), who, using FGSM-generated
AEs, managed to adversarially train a network on ImageNet-1k. However, the result-
ing model was only robust to white-box single-step attacks. Unfortunately, as shown
by Tramèr et al. (2018), the model also remained vulnerable to transferred single-step
attacks. The reason is that AT with FGSM results in models with a locally more
curved loss function, with gradients failing to capture the global behaviour of the loss
in the vicinity of the input data points. Visualisation of this phenomenon is shown
in Fig. 2.7. Therefore, the linear approximation computed by FGSM on these models
does not find the correct “adversarial direction,” and the resulting AEs have lower
attack success even on unsecured models (trained only with clean, unperturbed data).
On the other hand, AEs computed with FGSM on an unsecured model do transfer to
adversarially trained ones, as the linearisation in FGSM approximates the loss on these
models well. Motivated by these findings, the authors proposed ensemble adversarial
training. It works by training an ensemble of unsecured models, which then serve as
source networks for generating AEs. Another, different model, is adversarially trained
on these AEs, along with white-box AEs (generated using gradients from the adversar-
ially trained model). This training strategy greatly improves robustness to black-box
transfer attacks.

Madry et al. (2018) formalised the goal of training a robust network as a min-max
optimisation, basically optimising the network for its worst-case performance over all

27

allowable perturbations:

min
θ

E(x,y)∼D
[
max
δ∈S

J(x + δ, l; θ)
]
, (2.11)

where D is the training data distribution and S is the space of considered perturbations
(most commonly an L∞-ball with radius ϵ). In this formalisation, an adversarial attack
serves as an approximation of the inner maximisation. The stronger the attack used for
training, the better the approximation. The authors proposed to use their PGD attack
(described in Sec. 2.2.3). Recall that the starting point for optimisation is randomised
in each computation of the AE, which helps prevent such local deformations of loss
function around the original data, as observed by Tramèr et al. (2018) on networks
adversarially trained with FGSM. Moreover, the PGD attack might also be run multiple
times when producing a single AE, each time starting at a different point and then
choosing an AE that maximises the loss function. This results in particularly strong
AEs.

However, even with iterative attacks such as PGD, the optimisation is still not
solved exactly. Carlini et al. (2017) tried to mitigate this problem by using Reluplex
(Katz et al., 2017), a verification tool which, for a given network, input x and maximal
allowable perturbation magnitude ϵ, either finds an AE within this constraint, or proves
that such an input does not exist. Using binary search to find minimal ϵ for which an AE
does exist, this method can be used to measure the robustness (i.e., the average distance
to the closest AE) almost exactly. Reluplex has some limitations, though. It can only
be used on small (order of hundreds of neurons), piecewise-linear networks. This limits
the activation functions to ReLU and max-pooling. Moreover, it can also only work
with piecewise-linear constraints, i.e., L∞ and L1 norm. Despite these limitations, the
authors managed to show that using AT as proposed by Madry et al. (2018) with small
networks trained on the MNIST dataset provably increases the minimal ϵ needed to
craft an AE on these networks 4.2 times on average.

There were some attempts to modify the AT procedure to make it more efficient,
though not all of them were successful. For example, Adversarial Logit Pairing (ALP)
proposed by Kannan et al. (2018) originally seemed to increase robustness to white-
box attacks while not losing any black-box robustness. The idea is to add another loss
term during (adversarial) training of the network, which penalises it for the distance
between logits of the clean image and logits of its adversarial counterpart. This can be
interpreted as teaching the network that a clean image and its respective AE should
not only be of the same class, but should be close in the output (logit) space as well.
Unfortunately, Engstrom et al. (2018) showed that by simply increasing the number
of iterations in the PGD attack (against which ALP was evaluated), the robustness
of ALP-trained models drops to almost zero. Moreover, visualising the loss function
(depicted in Fig. 2.8) reveals similar artefacts as in the case of FGSM-based AT.

28

Figure 2.8: Comparison of loss landscapes of the networks trained on clean data (top
row) and with ALP (bottom row) for inputs in form x∗ = x + ϵ1g1 + ϵ2g2, where x is
a clean image from the test-set, g1 is the gradient of the model in this image, and g2

is a random Rademacher vector. Coefficients ϵ1 and ϵ2 correspond to the x and y axes,
the z axis is the value of the loss. We can see that ALP results in sharp local minima
around the original inputs (Engstrom et al., 2018).

One of the more successful variants of adversarial training is the feature denoising
by Xie et al. (2019). In this approach, a convolutional neural network is modified
by adding denoising blocks after convolutions. Each denoising block consists of a
denoising operation (the authors propose four different options), 1×1 convolution, and
a skip connection. The modified network is then trained using standard AT. Results
on ImageNet-1k showed that feature denoising outperforms other defences by a huge
margin, and in contrast to ALP, it retains its success even against the strong 2 000-
iteration PGD attack. The issue is that the increased robustness comes with the cost
of a non-negligible drop (≈ 14%) in clean accuracy.

Ultimately, even adversarially trained networks with provably increased robustness
fail on AEs crafted using norm constraints different from those used in training. Tramèr
and Boneh (2019) showed that the model by Madry et al. (2018), although robust to
L∞-bounded perturbations, is surprisingly fragile to attacks constrained in other norms.
Moreover, they argued that there is a trade-off between robustness to perturbations of
different types. They suggested multi-perturbation adversarial training, which considers
multiple different spaces of allowable perturbations S1, . . . ,Sk in the Eq. 2.11 and
computes the inner maximisation as either the maximum across these spaces or average.
The spaces Si can be balls in different Lp norms, but also, for example, a space of small
affine transformations, such as rotations or translations, as these were also shown to be
capable of producing AEs (Engstrom et al., 2019). Then, the authors compared their

29

training strategy with multiple networks, each trained using a standard AT with a
different perturbation type. The network trained with multi-perturbation AT attained
lower robustness to a specific perturbation type than a network trained to be robust
only to that perturbation type, but much higher robustness to other perturbation types,
empirically confirming the aforementioned trade-off.

2.4.2 Other defences

Over the years, many other defences not based on AT have been proposed. Unfortu-
nately, most of them were proven unable to provide actual robustness. Among the first
broken defences, defensive distillation by Papernot et al. (2016b) stands out. It com-
bines two concepts — network distillation (Hinton et al., 2015) and manipulation of
temperature in the output softmax activation function. Distillation was originally pro-
posed for transferring knowledge between different models. First, a classifier is trained
in a standard way to perform a certain task. Second, another (usually a much smaller)
model is trained, while instead of using the one-hot labels from the original dataset,
the model is trained on output probability vectors predicted by the first model. The
idea is that output probabilities of the trained model contain more information than
the one-hot vectors from a dataset. Using this extra information, it is possible to train
a smaller model to perform the task, while not losing accuracy. The second element
of the defensive distillation is based on the generalisation of the softmax activation
function from Eq. 1.3 by adding a temperature parameter T as follows:

softmax(x, T)i = exi/T∑
j exj/T

. (2.12)

A high value of T is used when training the first model. This model is then distilled,
i.e., a second model is trained to output the same probabilities as the first one. The
second model has the same architecture and is trained with the same value of T as the
first one. After the training is finished, its temperature is set to T = 1. This change
of temperature is equivalent to multiplying the network logits by T and as partial
derivatives of softmax grow smaller with input values getting larger (in absolute value),
the gradients of defensively distilled network are very close to zero. Thus, gradient-
based attacks fail to find any AEs. As the authors did not evaluate their defence
against any black-box attack, it was initially not clear whether this strategy actually
makes the network more robust (in the sense that there do not exist any AEs fooling
it), or it just makes the tested attacks unable to find them.

Soon enough, the answer was provided by Carlini and Wagner (2017c) who showed
that all three versions of their CW attack (described in Sec. 2.2.3) completely break
defensively distilled networks, reducing their accuracy on CW-generated AEs to zero,

30

while an average magnitude of the produced AEs increases (in comparison to un-
distilled networks) only marginally.

The effect that defensive distillation has on the loss function was called gradient
masking (Papernot et al., 2017). Both FGSM-based AT and ALP, which were dis-
cussed earlier, also exhibit some signs of masked gradients. Athalye et al. (2018a)
noted that some defences seem to mask the gradients on purpose. They referred to it
as gradient obfuscation, while identifying three main categories: gradient shattering,
caused by non-differentiable elements or numerical instability; stochastic gradients, as
a result of randomness during inference; and vanishing/exploding gradients, which are
a well-known problem in very deep computations. For each type of obfuscated gra-
dients, the authors proposed a specific attacking strategy. For shattered gradients,
they used the Backward Pass Differentiable Approximation (BPDA) method, which,
in backward pass, i.e., computation of gradients, replaces the non-differentiable part of
the defence by a differentiable approximation. Stochastic gradients can be mitigated
using the EOT attack described by Eq. 2.3, while instead of considering a distribution
of transformations, one computes the expectation over the stochastic element in the
given defence. Exploding/vanishing gradients are alleviated with a re-parametrisation.
Using these strategies, the authors devised specific attacks, which managed to break 7
additional defence methods.

However, these attacking strategies, designed to overcome the obfuscated gradients,
are not perfect either. For example, Gao et al. (2022) showed that some randomised
defences with insufficient randomness, formerly broken with EOT attack, can also be
broken with the much simpler PGD attack, if used with smaller step size and more
iterations. Therefore, the use of EOT in evaluating those defences is unnecessary. On
the other hand, BPDA fails on defences containing elements that are hard to approxi-
mate (Sitawarin et al., 2022), and overestimates their robustness. In general, the best
practise when evaluating a certain defence is to evaluate it against an adaptive attack
(Carlini and Wagner, 2017a), i.e., an attack specifically devised against that partic-
ular defence. The problem is, that it is not always clear, what the optimal adaptive
attack is, or how to construct it. Tramèr et al. (2020b) analysed thirteen different
defences, all of which were evaluated against an adaptive attack in their respective
original papers, while breaking all of them with different, stronger, adaptive attacks.
In conclusion, designing an ultimate method for properly evaluating defences remains
an open problem.

2.4.3 Detecting adversarial examples

A different way to tackle the problem of AEs is provided by detection methods. These
are applied on a fully trained model during inference to mark each input as being be-

31

nign or possibly adversarially modified. Among the first proposed detection methods
was the one by Metzen et al. (2017). This detection is performed by a simple neural
network classifier, which takes activations on a hidden layer of the original network
as inputs. The classifier is trained using standard back-propagation on the original
dataset extended with AEs generated by an adversarial attack, one AE for each benign
input, resulting in a balanced training dataset. In this way, the authors analysed three
different attacks: FGSM, BIM, and DeepFool. Overall, they discovered a trade-off
(dependent on the magnitude of the adversarial perturbation) between the misclas-
sification rate and the detectability. The AEs with greater perturbations were more
successful in causing misclassification but easier to detect.

A very similar detection approach was proposed by Gong et al. (2017), with the
distinction that their detector takes the images themselves as inputs, instead of the
hidden layer activations. However, the resulting detection accuracy was by far not as
good, mainly due to very high false positive rate (benign images classified as AEs).

A different possibility for detection algorithms is using statistics. For example,
Li and Li (2017) successfully used statistics (Principal Component Analysis (PCA)
coefficients, extremal values, 25-th 50-th and 75-th percentiles) of convolutional layer
activations. To have a distribution for each input image and network layer, individual
pixels/neurons are considered c-dimensional samples, where c is the number of channels
on a given layer, drawn from the distribution. These statistics are then used as inputs
to a cascade classifier (Viola and Jones, 2004) to detect AEs crafted by L-BFGS.
Moreover, the authors also analysed RC examples, crafted as proposed by Nguyen
et al. (2015) and showed that they are very easy to detect, as their statistics diverge
greatly from those of the clean data.

Another method inspired by statistics was proposed by Grosse et al. (2017a), who
showed that statistical tests could be used to detect AEs (using FGSM and JSMA
attacks in their experiments). However, the statistical tests need samples of size around
50 or more to provide confident results, so they cannot be used to classify a single image
as being adversarial or benign. Therefore, the authors once again opted for machine
learning to solve the problem, and chose to train a classifier with an additional (k+1)-st
class corresponding to adversarial examples. The procedure works as follows: first, a
classifier with (k + 1) output neurons is trained on the original dataset, then a batch
of AEs is crafted. Second, the classifier is fine-tuned on these AEs to classify them as
belonging to the (k + 1)-st class. The results showed that a classifier trained in this
way with JSMA-crafted AEs is later able to detect AEs crafted with FGSM. However,
it does not work the other way around and models trained to classify FGSM-crafted
AEs fail to detect JSMA-generated AEs.

Feinman et al. (2017) designed two different statistical approaches of detecting AEs.
The first of them is based on approximating original data class manifolds on the last

32

DNN hidden layer by kernel density estimation and assuming that AEs are off this
manifold. The second one uses dropout (the training regime version) to introduce
randomness into the classifier inference. By running the inference multiple times and
taking variance of outputs as an estimate of prediction uncertainty, most of the AEs
can be identified as inputs with high output uncertainty.

Similarly to defence methods, most detections were also broken shortly after being
proposed. For example, Carlini and Wagner (2017a) managed to break all previously
mentioned detection methods (and a few more), either by using the strong CW attack,
or by designing a specific loss function to be optimised during the attack. The only
detection method that was broken only partially (in the sense that it significantly
increased the required AEs perturbation magnitude) was the one based on estimating
uncertainty using dropout. However, the most recent research (Lucas et al., 2023)
suggests that randomness in general may not be a helpful aspect in defending against
AEs.

Moreover, He et al. (2017) showed multiple detections based on ensembling to be
ineffective against adaptive attackers. Among others, also the popular feature squeezing
(Xu et al., 2018), which uses multiple “squeezing” transformations on the inputs: bit-
depth reduction, median filtering, and non-local blur. If the output probabilities of
any squeezed version of the image differ significantly from the output probabilities of
the unsqueezed input, it is marked as an AE. Besides breaking detections specifically
designed to work as ensembles, He et al. (2017) also combined training a DNN detector
by Gong et al. (2017), training a detector that takes hidden activations as input by
Metzen et al. (2017), and kernel density estimation by Feinman et al. (2017) in a single
model, and designed an attack that can break all three of these detections at once,
showing that combining multiple (weak) defence methods is not strong.

Even though research on robustifying DNNs has been mostly independent from
research on detecting AEs, and detection has been considered a much easier task,
Tramèr (2022) proved a link between robustness of a standard classifier and a detector
— classifier with the option to reject inputs (i.e., mark them as AEs). The exact
result is that the existence of a detector with an accuracy of α within ϵ distance from
clean inputs implies the existence of a classifier with the same accuracy α within ϵ/2
distance from clean inputs, and vice versa. It was shown that applying this theorem
to multiple detection methods would imply the existence of classifiers with robustness
greatly above the current state-of-the-art, therefore questioning the validity of the
detections evaluations.

33

2.4.4 Certified defences

A completely different method against AEs is provided by certified defences. They are
based on the concept of having a classifier, which, alongside classification, can also
generate a robustness certificate for a given input. This means, that it is possible to
prove that within an ϵ distance from this input (usually measured in some Lp norm),
the output of the classifier remains the same. Of course, it may not be possible to
obtain a certificate for each input. The problem is then split into two sub-problems:
devising ways of formally proving robustness for given inputs, and training classifiers,
which are able to issue the robustness certificates with a high success rate.

The advantage is that these classifiers remain robust even after the emergence of
new, stronger attacks. The downside is that the certified robustness is much lower than
the empirically evaluated robustness of uncertified defences such as AT. Moreover, the
early certified defences were restricted to some specific class of NNs. For example,
Raghunathan et al. (2018) proposed a training method for certified robustness, which
is only applicable to NNs with a single hidden layer. With this approach, the authors
trained a network with a provably robust test error below 35% on MNIST, considering
the perturbation constraint ϵ < 0.1 in the L∞ norm.

Wong and Kolter (2018) used a different method to provide certificates, but their
method is similarly limited. It can only be applied to NNs using exclusively the ReLU
activation function. The results on the MNIST dataset seemed quite promising, with
the same constraint of ϵ < 0.1 in the L∞ norm, they managed to train a network with
provable test error < 5.8%. However, the results on slightly more challenging datasets
(FMNIST and SVHN) were not as pleasing. For example, the achieved provable upper
bound on robust test error for SVHN was 40.67% for ϵ < 0.01.

Later, a couple of methods not limited to any specific NN architectures were pro-
posed. For example, interval bound propagation by Gowal et al. (2019) can be used
to train relatively large certifiably robust networks. With this method, the authors
were able to lower the certified error on MNIST under ϵ < 0.1 in L∞ norm to 2.23%,
but also train the first certifiably robust network on ImageNet-1k (though using inputs
downscaled to 64×64 px). However, they also observed that the training with this
method is highly unstable and requires careful parameter tuning and scheduling.

Another popular method applicable to any NN is called randomised smoothing
(Cohen et al., 2019). It works with the L2 norm and uses Gaussian noise to create
a “smoothed” version of a given classifier f . The smooth output f ′ is defined as the
most probable output f(x′) for x′ = x+N (0, σ2I), i.e., x perturbed by adding random
isotropic Gaussian noise. Based on the probabilities of the top class and the second
most prevalent class, it is possible to analytically compute the radius ϵ of the ball
centred in x, for which the output is certifiably robust. One obvious disadvantage is

34

that the probabilities cannot be computed exactly. In practice, they are estimated
using Monte Carlo sampling. Then, the certificate does not mean that the output
is provably robust, but the probability that the input was adversarially modified, is
provably smaller than some fixed constant γ. The success rate with which the cer-
tificates are generated depends on the choice of γ and the number of used samples,
but also on the output probabilities of the individual classes. Therefore, the authors
proposed to train the classifier not only on the clean data, but also on data perturbed
by the aforementioned Gaussian noise, to “teach” the classifier to predict the same
(correct) class over such a distribution with high probability. The choice of σ controls
robustness–accuracy trade-off, more closely studied by Gao et al. (2022). Greater σ

improves (certified) robustness for greater radii ϵ while degrading accuracy for smaller
ϵ.

Eventually, even if it was possible to train perfectly (certifiably) robust image clas-
sifiers, one problem still remains — the commonly used Lp metrics do not capture
human visual perception exactly. This is reflected in two problems: 1) the existence
of perceptually very similar inputs belonging to the same class that are far in an Lp

metric and classified differently, and 2) the existence of images that are close in an
Lp metric and classified as the same class, but perceptually dissimilar, and labelled
differently by human labellers.

The first mentioned problem was studied by Ghiasi et al. (2020). They devised
an attacking method called shadow attack, which applies a large (in some Lp norm)
but almost imperceptible perturbation to an input x, resulting in a wrongly classified
input x′, such that an entire neighbourhood of x′ (given some norm) is classified the
same. Therefore, certifiably robust NN both misclassifies this sample and generates a
certificate stating that the classification is robust. Such an input is not an AE in the
standard definition constraining it in an Lp norm, but it is an AE in the sense that
it is an adversarially modified input, perceptually similar to a clean one, created with
the intention of causing misclassification. An example of an image produced by the
shadow attack is in Fig. 2.9.

The second problem was identified by Tramèr et al. (2020a), who studied a unique
set of AEs created from original data by adding a small perturbation, such that the true
label (according to human labellers) of the input changes, while the classifier output
remains the same. The misclassification, in this case, arises from the fact that even
though the perturbation is small, it changes the correct output class. Classifiers that
are too invariant (insensitive to input changes) produce the same output for both clean
and the perturbed image, thus, at least one of them must be incorrect. Therefore,
these AEs are called invariance-based. Two examples crafted using different Lp norms
are in Fig. 2.10.

The main problem with invariance-based AEs is that when considering defences

35

Figure 2.9: An image from the ImageNet dataset (left), its adversarial perturbation
computed by the shadow attack (middle), and the resulting AE (right). Image from
Ghiasi et al. (2020).

Figure 2.10: Pairs of a clean image and its invariance-based AE constrained in the L∞

metric (left) and the L0 metric (right). Output labels for the AEs were assigned by
human labellers. Image adapted from Tramèr et al. (2020a).

against the “standard” AEs, the goal is usually to train networks that are more invari-
ant and, consequently, more prone towards invariance-based AEs. Specifically, in the
case of certifiably robust networks, obtaining a robustness certificate for a given input
image and a certain radius ϵ means that any invariance-based AE produced from this
image with a perturbation of magnitude smaller than ϵ is provably misclassified by
this network. Therefore, if we resort to considering only the Lp norms, we encounter
a trade-off between the robustness against invariance-based AEs and the robustness
against standard AEs (Tramèr et al., 2020a).

2.5 Analysing and explaining adversarial examples

Some fraction of the papers about AEs were not dedicated to proposing any new
attacks or defences, but to analysing the existing ones. Most importantly, researchers
have been trying to answer the question as to why AEs even exist if they are so hard to
find by chance. Another important question is where exactly the AEs lie with respect
to the clean data. Some authors argue that AEs are actually out-of-distribution, they
do not lie on the clean data manifolds and, therefore, it is only natural that they are
misclassified. Other authors think the opposite is true and try to prove the existence of

36

on-manifold AEs. In this section, we summarise a couple of the most influential works.

2.5.1 Explaining the existence of AEs

Already the very first paper on AEs (Szegedy et al., 2014) speculated about the reason
for their existence. The authors compared AEs to rational numbers in the space of real
numbers. They have an extremely low probability, therefore, they are not found in the
testing data, yet they are dense and can be found using optimisation.

Goodfellow et al. (2015) challenged this hypothesis and proposed a different ex-
planation. The authors suggested linearity of NN in combination with higher dimen-
sionality of the input data as the possible cause and supported their statement by the
fact that their linearity-based FGSM attack can successfully find AEs for almost every
given input.

Gilmer et al. (2019) also blamed the input data dimensionality as the source of
some non-intuitive properties. Using isotropic Gaussian noise to augment the data,
and average distance to decision boundary as the measure of robustness, they provided
a formula to capture the relationship between test error on noisy data and robustness
on clean data, considering a linear classifier. Even very low non-zero noisy test error
implies extremely low robustness for classifiers with high input dimensionalities. To
support this theory also for non-linear classifiers, they used the average distance to
PGD-generated AEs to approximate the robustness and showed that the relationship
holds almost the same. Next, they compared AT with training on noisy images and
found some similarities in the resulting networks. Therefore, they suggested evaluation
on noise-corrupted inputs as the first sanity check of defences against AEs.

Other authors argued that vulnerability to adversarial attacks might be just a con-
sequence of training the networks to achieve high classification accuracy on clean data.
For example, Tsipras et al. (2019) noticed that AT with large numbers of training sam-
ples leads to reduced accuracy on the original data. Therefore, they hypothesised the
existence of a trade-off between clean and robust accuracy. To support their claims,
they constructed a synthetic dataset for which it is impossible to achieve high classifi-
cation accuracy without losing robustness. The dataset was created to contain robust
features that cannot easily be manipulated by small perturbations but that are not
sufficient to reach accuracy above some threshold. Besides, it also contains non-robust
features that can be easily manipulated by an adversary, but that are necessary to
increase the classification accuracy.

In their follow-up paper (Ilyas et al., 2019), the authors further promoted the idea of
non-robust features in the data by marking them as the main cause of vulnerability to
AEs. To show that natural datasets are also comprised of both robust and non-robust
features, they proposed a way of modifying the CIFAR-10 dataset to contain only

37

the robust features. To define which features are robust, they used the adversarially
trained model from Madry et al. (2018), more specifically, the part of it up to the layer
before the logit layer (let’s denote it g), which we can think of as a feature extractor
for the last layer (which is then just a linear classifier). Then, for each image x from
the original dataset, a robust image xr was created by projected gradient descent
optimisation, starting from a random different image from the dataset, optimised so
that ∥g(x)−g(xr)∥2 was minimal. The motivation behind this optimisation is that as
the adversarially trained model is more robust, it relies more on the robust features.
So, by optimising an input to result in similar activations, the robust features are
introduced into the input. The authors used the resulting robust dataset to train
a classifier and showed that even though standard training was used, the classifier
attained non-trivial levels of robustness.

In their second experiment, the authors demonstrated the existence of non-robust
features by creating a non-robust version of the dataset. For each input image x,
its non-robust version was created by picking an incorrect class t (either randomly
or according to some fixed permutation of classes) and performing a targetted PGD
attack with target t. The resulting AE x′ was assigned t as its label in the non-robust
dataset (so to humans, this label seems wrong because the AE still looks very similar
to the original image). After training a classifier on this non-robust dataset, it achieved
fairly high classification accuracy on the original CIFAR-10 test-set.

In conclusion, the authors stated that the existence of AEs is not a property of
the trained models but of the data itself. This hypothesis would also explain the
transferability phenomenon, as two different models trained on the same data are likely
to learn the same non-robust features and, therefore, be vulnerable to perturbations of
the same type.

2.5.2 AEs and clean data manifolds

The problem of robustness–accuracy trade-off that we mentioned earlier is closely con-
nected to the question of whether improving generalisation of the trained models harms
or improves robustness. In other words, are AEs drawn from the original data distri-
bution or not? Or, from the geometrical point of view, are they included in the original
data manifold?

These questions are not easily answered. The fact that many proposed detection
methods based on statistics were initially successful against some types of attacks hints
that at least some AEs are statistically different from the original data and, therefore,
out-of-distribution. However, these detections were later broken by different attacks.
Does that mean that there are also some in-distribution AEs, or are the detection
methods just not accurate enough?

38

Considering the geometrical interpretation with data manifolds, it is the same story.
Numerous defence methods were based on the hypothesis that AEs lie off the data
manifold, only to be later broken. For example, MagNet (Meng and Chen, 2017) and
APE-GAN (Shen et al., 2017) were broken by Carlini and Wagner (2017b). PixelDefend
(Song et al., 2018) and Defense-GAN (Samangouei et al., 2018) were broken by Athalye
et al. (2018a).

To actually prove the existence of on-manifold AEs, Gilmer et al. (2018) constructed
a very simple dataset consisting of two concentric spheres, each belonging to a different
class. To craft on-manifold AEs, the attack just needs to be constrained to the surface
of the original sphere, which, in practice, is achieved by a simple projection after each
step of the PGD attack. The authors trained a NN classifier on this dataset using 50
million unique training points and evaluated it over an additional 20 million points
while observing 0% test error. However, they were still able to craft on-manifold AEs
for this network.

Stutz et al. (2019) followed the idea of on-manifold AEs with more realistic datasets.
They created one MNIST-inspired synthetic dataset, called FONTS, containing white
letters on a black background. The crafting process was randomised by considering dif-
ferent fonts for the letters, but also various spatial transformations. As the used trans-
form distribution was known exactly, so was the data manifold. Crafting on-manifold
AEs was then performed by optimisation in the space of transform parameters. By also
enforcing the similarity constraint in the transform space, the authors achieved higher
perceptual similarity of the crafted AEs than by constraining them in the image space.
Moreover, they used a couple of additional datasets for which the exact data manifolds
were not known. Therefore, they were approximated by training generative NNs to
model the data distribution. Similarly to FONTS, while crafting on-manifold AEs,
the optimisation was performed in the hidden space of the generative NNs. Then, the
authors compared the crafted on-manifold AEs with those crafted using the standard

Figure 2.11: Comparison of on-manifold and off-manifold (regular) AEs crafted by
Stutz et al. (2019).

39

PGD attack. They showed that PGD-crafted AEs indeed do leave the data manifolds.
However, as they proved by crafting them, on-manifold AEs exist too. Moreover, con-
trary to the previous beliefs, by training on on-manifold AEs, the generalisation of
the models increases. However, the observed increase in testing accuracy was most
prominent on the dataset for which the data manifold was known exactly. Using this
approach with other datasets clearly suffered from the fact that the trained generative
NNs did not manage to fit the data distribution exactly, as can be seen in Fig. 2.11,
for example, in the “FONTS with learned manifold” column, on the slightly distorted
letter ‘A.’ Unfortunately, AT with on-manifold AEs did not increase robustness against
regular, off-manifold AEs.

40

Chapter 3

Inherent robustness of neural
networks

As none of the proposed defence methods provides perfect robustness, even small ad-
vancements may be beneficial. We believe that the study of the inherent robustness
of various neural network architectures is an important research direction. If we found
NNs that are inherently more robust and identified their aspects that provide increase
in robustness, then this knowledge could be used to design novel architectures that
further promote the aforementioned aspects and, thus, gain robustness.

3.1 Robustness of networks with logistic sigmoid

In our very first experiments, published in Bečková et al. (2020), we aimed at monitor-
ing the progress of robustness during the training of a network. Therefore, we opted to
work only with architectures that are rather simple, allowing for better separation of
effects caused by adversarial attacks. To gain better insight into the processes taking
place during training, we deliberately analysed networks with distinct training pro-
files, namely, networks with logistic sigmoid activation function with varying values of
temperature T :

σ(x, T) = 1
1 + e−x/T

. (3.1)

Based on the value of T , neurons with this activation function saturate at different
rates. We also hoped to take a closer look at the linearity hypothesis by Goodfellow
et al. (2015). With decreasing temperature, logistic sigmoid approaches the (piece-wise
linear) step function. With increasing temperature, the slope of the sigmoid gets less
steep. Therefore, based on the linearity assumption, we expected networks with low
temperatures to be less robust than networks with high temperatures.

41

Figure 3.1: CNN architecture used for SVHN and CIFAR-10. Image plotted using
NN-SVG tool (LeNail, 2019).

3.1.1 Models and data

In our study, we used four different datasets. On MNIST and FMNIST, we trained
MLPs having a single hidden layer of 256 neurons with logistic sigmoid as the activation
function, considering T = {1/64, 1/32, . . . , 4, 16}. For SVHN and CIFAR-10, we used
a simple CNN depicted in Fig. 3.1. All sigmoids in this network were set to have the
same temperature, using values T = {1/8, 1/4, . . . , 4, 8}.

To assess the levels of neuron saturation, we analysed the net values, i.e., neuron
values before the activation function. For each of the analysed sigmoids, we split the
space of real numbers into three disjoint regions based on their value in the respective
sigmoid:

• Linear region: the linear region is defined according to the tangent line of the
sigmoid graph computed at x = 0. The region is comprised of all numbers x, for
which the point (x, σ(x, T)) is closer to the tangent line than a threshold d1.

• Non-linear region: the non-linear region contains those values x that are not
included in the linear region and for which the first derivative of σ(x, T) is larger
than a given threshold d2.

• Saturated region: the saturated region is made of all the remaining values, i.e.,
all x, for which the derivative of σ(x, T) is smaller than d2.

These regions are visualised in Fig. 3.2. In our experiments, we used threshold values
d1 = 0.05 and d2 = 0.0005. For simplicity, in the case of SVHN and CIFAR-10, we
only analyse the neurons from the last hidden layer.

To analyse the network robustness, we needed to generate AEs. Since one of our
main aims was to evaluate the robustness at each epoch during training, we chose two
computationally efficient methods. The first of them is the FGSM attack constrained
in the L∞ norm with ϵ = 0.1. The second one is constrained in the L0 norm, and it
works as follows: first, the gradient of the loss function is computed (the same gradient
is needed for the FGSM attack, so this step is basically for free). Then, from the

42

−100 −75 −50 −25 0 25 50 75 100

0.0

0.2

0.4

0.6

0.8

1.0 T = 1/64
T = 1/32
T = 1/16
T = 1/8
T = 1/4
T = 1/2
T = 1
T = 2
T = 4
T = 8
T = 16

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Graph of the logistic sigmoid for various values of the temperature param-
eter. The smaller dots denote the border points between linear and non-linear regions,
the larger dots divide non-linear and saturated regions.

1: 1.000 1: 0.001
7: 0.000 7: 0.999

2: 1.000 2: 0.445
8: 0.000 8: 0.555

0: 0.999 0: 0.227
6: 0.000 6: 0.757

1: 0.998 1: 0.228
9: 0.001 9: 0.766

4: 1.000 4: 0.000
9: 0.000 9: 1.000

6: 1.000 6: 0.119
5: 0.000 5: 0.881

2: 0.988 2: 0.002
3: 0.006 3: 0.475

6: 0.947 6: 0.398
5: 0.053 5: 0.602

8: 1.000 8: 0.260
3: 0.000 3: 0.740

9: 1.000 9: 0.080
3: 0.000 3: 0.920

8: 0.996 8: 0.353
6: 0.003 6: 0.646

9: 0.798 9: 0.002
2: 0.185 2: 0.983

Figure 3.3: Examples of original–adversarial pairs from the MNIST (left) and SVHN
(right) datasets generated by our L0-constrained method. Below each image, the output
confidence for the original class and the incorrectly predicted class (of the corresponding
AE) is included.

43

gradient, we identify those k pixels in the input image, for which the absolute value
of the partial derivative of the loss is the highest. These pixels will be modified. In
our experiments, we consider changing 1, 2 or 3 pixels. Their new value is found using
grid-search. For simplicity, for each pixel, we consider only the extremal values 0/1
(which, in the case of RGB inputs, corresponds to 8 possible colours, as each channel is
modified independently). To the best of our knowledge, we are the first to use an attack
defined in this way. It is much computationally faster than the one pixel attack by
Su et al. (2019) and conceptually simpler than JSMA. Some examples of the resulting
AEs with 2 modified pixels can be seen in Fig. 3.3.

3.1.2 Results

Visualisations of the saturation development for each of the tested networks can be
found in Fig. 3.4. The “starting point” differed greatly across the various temperature
values, but in all cases, we noticed a gradual shift from linear and non-linear activations
towards saturated ones. If we compare these values with the development of robustness
(measured as the ratio of failed adversarial attack attempts) visualised in Fig. 3.5, we

Figure 3.4: Graphs of the development of neuron saturations for all tested networks
across all training epochs. Colour denotes the fraction of activations belonging to a
given region.

44

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ro
b
u
s
tn

e
s
s

MNIST

T =1/64

T =1/32

T =1/16

T =1/8

T =1/4

T =1/2

T =1

T =2

T =4

T =8

T =16

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

SVHN

T =1/8

T =1/4

T =1/2

T =1

T =2

T =4

T =8

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ro
b
u
st

n
e
ss

 MNISTF

0 10 20 30 40 50
epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
CIFAR

Figure 3.5: Development of network robustness across all training epochs, measured
as the resilience against the FGSM attack. For all four datasets, networks with low
temperatures are harder to attack.

can notice a clear correlation between the network saturation and robustness. More-
over, while for SVHN and CIFAR-10 the robustness mostly increased during training,
for MNIST and FMNIST this was not the case for networks with higher temperatures.

We decided to examine this phenomenon more closely, using additional values of ϵ

to constrain the perturbation magnitude. Fig. 3.6 shows the development of robustness
during training for four different values of ϵ and three different temperatures. Regard-
less of the used ϵ, the robustness exhibits the same profile. It is almost constant for the
network with low temperature, but it decreases for networks with higher temperatures.

Based on these results, we hypothesised that the networks with low temperatures
were, unfortunately, only seemingly robust, and, similar to defensive distillation, the

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ro
b
u
s
tn

e
s
s

MNIST T= 1/64F

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

MNIST T= 1F

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

MNIST T= 16

� =0.025

� =0.05

� =0.1

� =0.2

F

Figure 3.6: Development of robustness against the FGSM attack during training of a
network trained on the FMNIST dataset, evaluated for different values of ϵ.

45

Figure 3.7: Success of our L0-constrained attack across all classes and all four datasets
for different T . Columns correspond to the number of perturbed pixels and rows to
individual classes.

saturation of neuron activations provided some sort of gradient masking. Networks with
low temperatures were highly saturated from the beginning, therefore, their gradients
were not “useful” in finding an adversarial perturbation. This did not change during
training, hence, the robustness remained almost constant. Using higher temperatures,
the gradients in the first few epochs were not useful for the attack, because the network
was not yet trained properly. However, during training, they became more meaningful,
so the robustness dropped.

Evaluation of robustness using our L0-constrained attack also supported the gra-
dient masking theory. As can be seen in Fig. 3.7, the results were slightly different.
Low temperatures were still the most robust for the MNIST and FMNIST datasets.
However, for SVHN and CIFAR-10, the robustness did not seem to depend on the
choice of temperature. We explain this by the fact that our attack is not as much
gradient-based (thanks to the grid search across values) as FGSM, therefore, it suffers
less from the gradient masking.

In our last experiment, we examined the gradients of loss computed with respect
to the input. We defined G(x) as the average absolute value of partial derivatives of
loss J(x, l; θ) with respect to input components xi:

G(x) = 1
n

n∑
i=1

∣∣∣∣∣∂J(x, l; θ)
∂xi

∣∣∣∣∣ , (3.2)

46

Figure 3.8: A visualisation of medians of the values of G(x) per each class and network
temperature. Graph values are in range [0, 0.0002] for MNIST, [0, 0.2] for FMNIST,
[0, 0.04] for SVHN and [0, 0.15] for SVHN, all ranges scaled from black to white.

where n is the dimensionality of the input. We evaluated G(x) for each class indi-
vidually, as we observed some differences between classes, especially in the case of
FMNIST. We also noticed some outliers, a few of them visualised in Fig. 3.9. To our
surprise, some of the inputs with abnormally large G(x) are “hard”, for example the
incorrectly cropped ‘4’ in MNIST or the images of shirts in FMNIST that are probably
too dark. Therefore, instead of computing the average across all inputs from a certain
class, we computed the median. The results are illustrated in Fig. 3.8. Contrary to our
expectations, the median values of G(x) did not correlate with the success of adver-
sarial attacks. They were higher for very low temperatures in the case of MNIST and
CIFAR-10, and very high temperatures in the case of MNIST and SVHN. The median
G(x) of networks trained on the FMNIST dataset did not seem to depend on the tem-
perature as much as the class. This suggests that even though the networks with low
temperatures achieved high levels of saturation, their gradients did not vanish, they
just became completely unusable for the attacks.

47

(a) MNIST (b) FMNIST (c) SVHN (d) CIFAR-10

Figure 3.9: Examples of images with a large value of G(xi), all from models with T = 1.

3.2 Robustness of RecViT

In this section, we present a pilot adversarial robustness study of the newly proposed
NN architecture RecViT (Recurrent Vision Transformer) developed by our lab member
Štefan Pócoš. Preliminary results of these experiments were published in Pócoš et al.
(2024b,a).

3.2.1 RecViT architecture

The main motivation behind the RecViT architecture was provided by the work of
Stollenga et al. (2014), who enhanced a CNN by adding top-down feedback in the
form of adaptive weighing of convolutional kernels in an iterative way. Building upon
this idea, the RecViT adds a recurrent connection to standard ViT to facilitate the
top-down information flow.

The inference in RecViT is very similar to ViT. First, the input image is split
into patches, which are linearly projected, and combined with their corresponding
positional embeddings. An extra trainable vector is prepended, the class token. All
these vectors are then processed by multiple transformer encoder blocks. While the
resulting representations of image patches are not used anymore, the representation
of the class token is processed further. In the standard ViT, it is directly used as
the input to a simple MLP that performs the classification. However, in RecViT, the
representation of the class token is copied as the initial value of the class token in the
next iteration (even though it might also be fed into the MLP in the non-final iterations
to track the intermediate predictions). Representations of the image patches may be
computed in each iteration from the same input image, but, as we will explain later,
it can be beneficial to introduce some meaningful input transformations. After a fixed
number of iterations k, the class token is sent as the input into the MLP to obtain the
final classification. An illustration of the process is visualised in Fig. 3.10.

Our hypothesis is that RecViT could be more robust than the standard ViT. The
reasoning behind this hypothesis is that by adding the top-down connection, we provide

48

+ + + ++

Class

Boxer

Bengal

Pug

E. Mau

Transformer encoder

MLP0.9

0.1

0.0

0.0

Nx

Patch +

position embedding
[class]

token

Class

Boxer

Bengal

Pug

E. Mau

+ + + ++

Transformer encoder

MLP0.2

0.7

0.1

0.0

Nx

[class]

token

Figure 3.10: The first and the second iteration from the RecViT classification process.
After an iteration is computed, the resulting class token representation is used in the
next iteration, facilitating the top-down information flow.

some sort of expectation about the output class. Then, the network gains an opportu-
nity to “reconsider its decision” by seeing the input image a couple more times, possibly
focusing on more class-specific details of the input, similar to the enhanced CNN by
Stollenga et al. (2014).

3.2.2 RecViT variants and data

We train RecViT using the method commonly used for recurrent NNs, which is back-
propagation through time. It is basically standard back-propagation, but through the
entire unrolled computational graph. Depending on outputs from which iterations we
considered “important” (i.e., from which iterations we back-propagated the errors), we
distinguish two training methods:

• Method 1 (M1): this method computes the loss using only the classification
in the last iteration, which emphasises the idea of “reconsidering” the output. It
does not matter if the classifications in the non-final iterations are incorrect, the
network is not penalised for that.

• Method 2 (M2): in this method, we feed the class token representation to
the MLP in each iteration and collect the outputs. The loss is computed as the
average of losses from predictions across all iterations. This approach focuses
more on the fact that, to provide some sort of “expectation” in the top-down
connection, even the preliminary outputs should be somewhat correct.

We also experiment with applying transformations to inputs through iterations. There
is a biological motivation behind this decision. As shown in Elsayed et al. (2018),

49

humans are also susceptible to AEs if they have only limited time to see them. So,
“seeing” the input image multiple times under some subtle transformations is more
realistic (more similar to how humans process visual inputs when they process them
correctly) and might help reduce the error rate. Therefore, in our experiments, we
compare four input transformation strategies:

• Vanilla: the Vanilla strategy does not apply any transformations to the inputs.
The same image is used in every iteration. This serves as the baseline for com-
parison with other strategies.

• Random Transform (RandT): this strategy simulates the dynamic condi-
tions of perceiving a moving object, or a stationary object perceived by a moving
observer. For a given input, we randomly sample parameters for translation, ro-
tation, and scaling, which are composed together to form a single transformation.
The input in the first iteration is the original image, inputs for subsequent itera-
tions are created by applying the combined transformation to the input from the
previous iteration. Thus, the input image becomes progressively more modified.

• Blur: this strategy is similar to the previous one, but instead of applying a
transformation composed of translation, rotation, and scaling, the inputs across
iterations become increasingly blurred by Gaussian blur, which simulates focusing
on different levels of details in the input image.

• Inverse Blur (InvBlur): this strategy uses the same inputs as the Blur version,
however, their order is inverted. The most blurred one is used in the first iteration,
while the original image is in the last. Thus, this reversed order gives the greatest
importance to the unmodified image.

As a basis for our implementation, we use the ViT-tiny (Steiner et al., 2022) imple-
mented in the timm library (Wightman, 2019), which was pre-trained on the ImageNet-
21k dataset and then fine-tuned on ImageNet-1k. In our experiments, we further fine-
tune the models on the CIFAR-10 and Oxford-IIIT Pet (PET) datasets.

To analyse the robustness of the various RecViT variants, along with the robustness
of the standard ViT, we opt to use AEs generated using transfer attack1. We do not
use standard gradient-based white-box attacks on RecViT, a recurrent NN, because
they could suffer from the vanishing/exploding gradients problem. Moreover, we do
not use ViT models as the source for transfer attack, as in that case, the source would
be much more similar to ViT than RecViT. It was shown before that AEs tend to
transfer better between similar architectures (Mahmood et al., 2021). Therefore, using

1AEs were generated using the Adversarial Robustness Toolbox Python library (Nicolae et al.,
2018).

50

ViT as the source would likely skew the results in favour of RecViT. Eventually, we
chose to use three different CNN architectures — AlexNet, VGG-11, and ResNet-18 —
as the source networks to generate AEs. Untargeted PGD was used on each of them
while setting ϵ ∈ {0.01, 0.02, ..., 0.2} for CIFAR-10 and ϵ ∈ {0.007, 0.022, ..., 0.202} for
PET to obtain more varied results. When evaluating the robustness on these AEs,
we specifically focus on those which successfully fooled all three source networks. We
denote them as cross-validated (C-V). It was hypothesised by Liu et al. (2017) that
AEs capable of fooling multiple different models are more likely to transfer to another
one. Therefore, this subset of our AEs is expected to be the most problematic for the
tested models.

3.2.3 Results

In the first stage of our experiment, we aimed to compare the two training methods and
four input transformation strategies, both in terms of clean accuracy and robustness.
For each combination of training method, input transformation, and number of itera-
tions k ∈ {2, 3, 4}, we trained 5 independent runs to obtain more statistically robust
results. As this created 24 combinations in total, in this stage, we only used the PET
dataset. We also trained 10 runs of standard ViT-tiny for comparison.

The results were the most interesting mainly from the point of view of different
input transformations. While Vanilla and RandT achieved practically the same clean
accuracy as the baseline ViT-tiny, their robustness (accuracy on AEs) was slightly
elevated. Blur and InvBlur were noticeably less accurate on the clean data (2–3%
drop), but their robustness was significantly higher. The highest robustness was by far
achieved by the InvBlur strategy (≈ 8% gain in comparison with ViT-tiny). Regarding
the different values of k and different training methods, the results were pretty incon-
clusive, though M2 seemed to be slightly more robust. Therefore, in the next stage
of our experiment, we only focused on the InvBlur strategy, while still analysing all
k ∈ {2, 3, 4} and both training methods.

In the second stage of our experiment, we trained 5 runs for each combination of
k ∈ {2, 3, 4} and two training methods on the CIFAR-10 dataset. On this dataset, the
superiority of M2 was way more pronounced. For all values of k, the robustness of M1
was on par with the robustness of ViT-tiny. However, the robustness of M2 was higher
by more than 20% while losing only 2–3% in the clean accuracy.

In this stage, we also performed an additional comparison to assess the effect of
blurring alone. For that, we trained ViT-tiny on inputs blurred in the same way
as in the InvBlur strategy. As the standard ViT cannot take multiple inputs in a
single forward pass, during training, the inputs were sampled randomly from among all
considered levels of blurring. In testing, the output class was determined by averaging

51

Table 3.1: Comparison of accuracy on the test-
set and C-V AEs of RecViT InvBlur models with
ViT-tiny and ViT Blur models trained on the
PET dataset.

Test-set C-V AEs
RecViT variant Mean±Std Mean±Std

ViT-tiny 88.80±0.57 10.66±1.42
InvBlur M1, k=2 86.99±0.98 18.93±6.63
InvBlur M1, k=3 86.32±1.25 14.83±5.48
InvBlur M1, k=4 85.33±2.74 10.58±2.16
InvBlur M2, k=2 85.27±1.28 20.54±2.15
InvBlur M2, k=3 78.09±7.14 21.83±4.91
InvBlur M2, k=4 74.31±5.54 22.36±2.26

ViT Blur k=2 86.21±0.83 18.20±1.25
ViT Blur k=3 79.19±1.50 15.33±2.03
ViT Blur k=4 68.45±3.37 12.71±2.21

Table 3.2: Average clean accu-
racy and robustness (in %) of the
top 3 runs (sorted according to
the test-set accuracy) from Inv-
Blur RecViT models trained on the
PET dataset.

Test-set C-V AEs
M1, k=2 88.13 28.44
M1, k=3 87.68 21.11
M1, k=4 88.15 12.47
M2, k=2 87.14 24.02
M2, k=3 85.59 24.28
M2, k=4 84.01 26.53

the logits from forward passes across all blurring levels. We refer to networks trained
and evaluated in this way as ViT Blur.

The results for networks trained on PET are in Tab. 3.1. For each value of k, InvBlur
achieved comparable or higher accuracy than ViT Blur on both test-set examples and
C-V AEs. However, after closer inspection, we noticed quite high values of standard
deviation in the accuracies of InvBlur models. Therefore, in the next stage, we analysed
the models on a run-by-run basis.

In the third stage of the experiment, we were interested in analysing the correlation
between clean accuracy and robustness. If it were strong and negative, it would hint at
a robustness–accuracy trade-off. On the other hand, positive correlation could mean
that the training was unstable and some runs failed to achieve optimal performance.
Sorting the runs according to the clean accuracy and averaging the results for the top
three runs revealed that it is probably the second case. As we can see in Tab. 3.2, runs
with higher clean accuracy achieved also higher robustness. To gain even better insight,
we trained additional 10 runs of the InvBlur M2 k = 3 model, as its accuracy had the
highest standard deviation. The results are visualised in Fig. 3.11, along with ViT
Blur models, for a better comparison. We can clearly see a high positive correlation
(0.81 Pearson correlation coefficient) between clean accuracy and robustness.

Given these results, we are optimistic about the performance of InvBlur RecViT
models. Our future research should focus on mitigating the training instabilities, pos-
sibly by performing an extensive hyperparameter search. Eventually, even if the search

52

Figure 3.11: Visualisation of the ro-
bustness vs accuracy of all individ-
ual InvBlur RecViT M2 k=3 runs,
compared to ViT Blur models with
various k.

Figure 3.12: Comparison of attention maps
and their overlap with the input for a clean
image and its respective AE on the 8th layer of
a Vanilla RecViT, trained with M1 and k=3.

failed at finding some more stable combinations of hyperparameters, the problem has
a simple, though time-consuming, workaround by training more independent runs and
using those that have the best test-set accuracy.

Regarding the robustness of RecViT, our future work should cover a more com-
prehensive analysis including adaptive white-box attacks and a comparison with other
blurring-based defences, such as feature denoising. We are also planning to evaluate
the robustness of RecViT trained with a modified adversarial training, where multiple
AEs would be presented to the network across iterations.

In the last stage of our experiment, we took advantage of the fact that the self-
attention mechanism used in ViT (and, subsequently, RecViT) provides us with an
inherent explainability of the models. The attention scores computed in Eq. 1.9 can
be visualised on a patch-wise basis. These can be upscaled and blurred to obtain more
visually pleasing per-pixel attention maps.

When analysing the attention maps of our models, we noticed some differences
between the clean and adversarial inputs, as illustrated in Fig. 3.12. It is a well known
fact that AEs generated with standard attacks have severe impact also on saliency
maps generated by post-hoc explanation methods (Kotyan and Vargas, 2021). While
there were some successful efforts to develop adversarial attacks that change the NN
prediction while keeping the saliency maps of post-hoc methods intact (Zhang et al.,
2020), we are not aware of any similar attack devised for inherent explanations, such
as attention maps. Therefore, we consider it an interesting open question for possible
future research.

Moreover, as it is possible to compute the attention maps for each iteration in

53

the RecViT, each transformer encoder in every iteration, and each attention head in
every transformer encoder block, this results in thousands of attention maps that need
to be analysed. Therefore, a rigorous analysis requires an effective numerical way of
evaluating the quality of attention scores. We hope, that this problem will be possible
to solve on the PET dataset, thanks to the provided trimap segmentations, which can
be used as examples of the “ideal” attention maps. We published some preliminary
results using the cosine similarity in Pócoš et al. (2024b), while a different method was
presented in Pócoš et al. (2024a). However, none of them provided satisfactory results,
therefore, this is another open problem for our future work.

54

Chapter 4

Examining proximity of adversarial
examples to data manifolds

As we mentioned earlier, the question of whether AEs lie on the original data manifolds
is one of the most important. However, so far, the research has focused mostly on the
manifolds in the input image space. As most NNs can be viewed as a sequence of
transformations between adjacent network layers, another interesting approach is the
analysis of the data layer-by-layer. What happens with an AE at the beginning of a
DNN? What at the end? At which layer does the AE activation diverge so far from
the original data activations that it eventually becomes misclassified?

4.1 Manifold disentanglement hypothesis

Analysing such layer-by-layer development of activations is not completely off-topic
even without taking AEs into account. Considering only the original data, one of the
interesting theories is the manifold disentanglement hypothesis (Brahma et al., 2015).
It states that the input data belonging to some class (such as, for example, all pos-
sible images of cats) form a low-dimensional manifold in the input space. Manifolds
of individual classes are highly entangled and hard to separate. However, as they are
gradually transformed by individual NN layers more and more, the manifolds disen-
tangle and become lower-dimensional, up to the point that at the penultimate layer,
which is followed only by the last linear transformation and softmax, they are (almost
perfectly) linearly separable.

Our research group first inspected this hypothesis in Kuzma and Farkaš (2019). The
authors assessed the degree of entanglement by computing the embedding complexity
— the error rate with which it is possible to project the data activations into lower-
dimensional space. Multiple projection methods were tried, and t-SNE (t-distributed
Stochastic Neighbourhood Embedding) (Van der Maaten and Hinton, 2008) was found

55

(a) Embedding complexity through layers of
5-hidden-layer MLP trained on MNIST.

(b) Embedding complexity through layers of
7-hidden-layer MLP trained on SVHN.

Figure 4.1: Development of embedding complexity throughout individual layers of
MLPs trained on the MNIST and SVHN datasets. Images adapted from Kuzma and
Farkaš (2019).

to work best. This method uses the Kullback–Leibler (KL) divergence to measure the
quality of the projection. The same measure was also used to quantify the embed-
ding complexity. To also provide the option of visualising the results, the projections
considered were always into 2D space.

As the paper also analysed the effect of NN architecture on the manifold unfold-
ing, multiple different networks were examined. All of them were simple MLPs with
1–7 hidden layers, each consisting of 100 neurons. Every layer except the last one em-
ployed the same activation function, one of logistic sigmoid, hyperbolic tangent, ReLU,
or softsign, which is defined as softsign(x) = x/(1 + |x|). This resulted in 28 different
combinations in total. These architectures were trained on MNIST and SVHN. The
results supported the manifold disentanglement hypothesis, as the embedding complex-
ity consistently decreased throughout the trained networks, regardless of the depth of
the network or the used activation function. The greatest differences were observed
between the two used datasets, as can also be seen in Fig. 4.1. Networks trained on the
MNIST dataset exhibited a monotonous decrease of embedding complexity through
network layers, whereas in the case of SVHN, the complexity increased in the first 2–3
layers and then decreased steadily.

Due to the observed differences between the two used datasets, in Pócoš et al.
(2021), we extended the previous research by analysing two more datasets — FMNIST
and CIFAR-10. Networks trained on FMNIST used the same architecture as described
above (MLPs with 1–7 hidden layers, 100 neurons each), while for CIFAR-10, to achieve
acceptable performance, we used a convolutional neural network comprised of 1–4
VGG-type blocks (convolution, convolution, pooling), followed by a single 100-neuron
fully connected layer. As the results in Kuzma and Farkaš (2019) did not seem to
depend on the choice of activation function, in our work, we chose to only use ReLU.

56

(a) 6th of 6 layers (b) 10th of 10 layers

(c) 14th of 14 layers (d) the 18th of 18 layers

Figure 4.2: Visualisations of t-SNE projections computed on the last hidden layers
of networks containing 1–4 VGG-type blocks1. More blocks are beneficial for better
unfolding of the classes, which correlates with higher classification accuracy.

Instead, to provide a broader analysis, we opted to employ two additional methods of
measuring the entanglement.

Additional t-SNE projections First, we analysed the two additional datasets us-
ing t-SNE. While Kuzma and Farkaš (2019) only evaluated the KL divergence of pro-
jections into 2D, we also explored the possibility of projecting the activations into
3D space, and confirmed that the embedding complexity still decreases through the
network layers. Moreover, analysis of networks trained on CIFAR-10 showed a clear
correlation between the network performance and the quality of the learned represen-
tations on the last hidden layer. Deeper networks attained higher accuracy while also
learning representations that led to better class separability. This can be seen in t-SNE
projections visualised in Fig. 4.2.

Eigenvalues analysis Because t-SNE is based on stochastic optimisation, and the
resulting projection heavily depends on the choice of parameters, we also decided to
verify the manifold unfolding using two additional, deterministic methods. The first
of them performs PCA and counts how many eigenvalues are needed to explain 95%
of the variance in the data. Since we were interested in the complexity of manifolds

1When adding one VGG-type block, the number of layers increases by 4, as in the implementation,
dropout (included in each block) works as a stand-alone layer.

57

Figure 4.3: Development of the number of eigenvalues explaining 95 % of the variance
in activations of data from MNIST class 5 (left) and SVHN class 7 (right). In each
case, a network with 7 hidden layers was used, trained on the respective dataset.

of individual classes, PCA was also computed on a per-class basis. Once again, the
results depended mainly on the dataset used. In the case of MNIST, the number
of eigenvalues decreased consistently, while for SVHN, it increased at first and only
decreased afterwards. This can be seen in Fig. 4.3. The results for FMNIST were quite
class-dependent. Easily separable classes that were classified with higher accuracy
exhibited a similar trend as MNIST, while more difficult classes behaved more similar to
SVHN. For a more in-depth analysis of the individual FMNIST classes, see the original
paper (Pócoš et al., 2021). We did not use this method to analyse the networks trained
on CIFAR-10, as due to the use of convolutions and pooling, the dimensionality of
hidden layers varies, which also affects the results of PCA and forbids any meaningful
layer-by-layer comparison.

Inter-class vs intra-class distances The second additional method is based on
computing the ratio of mean inter-class and intra-class Euclidean distances of class-
specific activations of the network layers. For a given layer, let’s denote the vector of

Figure 4.4: Development of the average intra-class distance (left), inter-class distance
(middle), and their ratio (right) computed from the activation vectors of a model with
7 hidden layers trained on the F-MNIST dataset.

58

activations of the j-th sample from class c as xc
j, and let N c be the number of samples

belonging to class c. Let mc be the element-wise mean of activation vectors of the c-th
class and M the element-wise arithmetic mean of all samples. We define the mean
inter-class distance as the mean squared distance of class means from M and the mean
intra-class distance as the average of the squared distances of all class samples from
the corresponding class mean, i.e.,

DistInter = 1
k

k∑
c=1
∥mc −M∥2

2, DistIntra = 1
k

k∑
c=1

1
N c

Nc∑
j=1
∥xc

j −mc∥2
2, (4.1)

where k is the number of classes. As the comparison of Euclidean distances in spaces
with non-matching dimensionalities is inconsistent, we again could not analyse the
networks trained on CIFAR-10. Out of the remaining three datasets, results from
FMNIST have been the most interesting. Therefore, for brevity, we chose to employ
this method only on the networks trained on FMNIST. The results showed that while
the intra-class distances did not exhibit any clear trend, the inter-class distances tended
to grow larger towards the final layers of the network. Therefore, their ratio steadily
decreased, as can be seen in Fig. 4.4.

4.2 Relationship between data manifolds and AEs

After empirically confirming the manifold disentanglement theorem using three differ-
ent methods, we moved towards analysing the relative position of AEs with respect to
the clean data manifolds. The experiment and results presented in this section were
published in Bečková et al. (2022); Pócoš et al. (2022).

4.2.1 Experimental setup

For our experiments, we used three different NN architectures:

• A fully connected network with two hidden layers per 128 neurons with ReLU
trained on the MNIST dataset (further referred to as MNIST FC),

• a CNN with two convolutional layers with 16 channels, pooling and ReLU trained
on the MNIST dataset (MNIST Conv.),

• and a CNN with three VGG-type blocks and a 256-neuron fully connected layer
with ReLU trained on CIFAR-10.

This way, we could compare a fully connected to a convolutional network on the same
dataset, as well as compare results on a simple to a slightly more challenging dataset.

As Stutz et al. (2019) suggested that robustness against on-manifold AEs is basi-
cally generalisation, we opted to analyse the more challenging, off-manifold AEs. To

59

provide a thorough analysis, we investigated four different types of AEs, each crafted
considering a different Lp norm2, along with two types of rubbish class examples:

• L0 norm: To generate AEs while minimising the L0 norm, i.e., the number
of modified pixels, we slightly refined our approach from Bečková et al. (2020).
The attack works iteratively, always modifying the pixel for which the partial
derivative of loss is the greatest. Then, grid search is used to determine its final
value. The attack stops as soon as misclassification occurs.

• L1 norm: AEs with perturbation of minimal L1 norm were created with the
untargeted EAD attack.

• L2 norm: To craft AEs with perturbations optimised in the L2 norm, we used
the untargeted version of the CW attack.

• L∞ norm: AEs with perturbations measured in L∞ were created with the untar-
geted PGD attack. However, as this attack works by constraining the magnitude
instead of minimising it, to get more diverse AEs, we set the constraint ϵ to mul-
tiple values: ϵ ∈ {0.01, 0.02, . . . , 0.15} for MNIST and ϵ ∈ {0.01, 0.02, . . . , 0.05}
for CIFAR-10.

• RC random uniform: The first type of RC examples, from now on referred
to as RCrnd, was generated by running targeted PGD, starting from a random
isotropic noise (i.e., value of each pixel was chosen uniformly from all admissible
values). For greater variability, we chose to craft targeted RC examples, the same
number of them for each class. The reason was, that most noisy images (before
applying PGD to them) were classified as the same class.

• RC from distribution: RC examples of the second type, denoted as RCdistrib,
were created using the targeted PGD in the same way. However, in this case,
the starting image was created differently. The value of each pixel was picked at
random, from all values appearing in the dataset at the position of that pixel.
This resulted in RC examples that are still rubbish (not recognisable as any class),
but “harder” in the sense of being more similar to the original data distribution.

As explained earlier, optimising the perturbation magnitude in different norms pro-
duces qualitatively different AEs. Tab. 4.1 shows average magnitudes of the resulting
perturbations measured in different norms. One can notice that each norm is indeed
minimised by the attack specifically devised for it. A visual comparison of all 6 different
types of crafted malicious data is in Fig. 4.5. One of the main goals of this experiment
was to compare the different types of AEs and their effect on the trained NNs.

2All AEs except those optimised in the L0 norm were generated using the Adversarial Robustness
Toolbox Python library (Nicolae et al., 2018).

60

Figure 4.5: An illustration of all 6 types of adversarial data created for the convolutional
networks trained on MNIST and CIFAR-10 respectively (columns). For each attack
(rows), three pairs of original (left) vs adversarial (right) images are shown, along with
the corresponding predicted classes and output probabilities.

Figure 4.6: Visualisation of the number of generated AEs per each original–predicted
class pair for all attack types on the MNIST Conv. network. We can notice that the
counts are similar across all used attacks.

61

Table 4.1: Average magnitudes of adversarial perturbations crafted with different at-
tacks (rows), measured in different norms (sub-columns), for all three tested networks
(columns).

MNIST FC MNIST Conv. CIFAR-10
L0 L1 L2 L∞ L0 L1 L2 L∞ L0 L1 L2 L∞

Our (L0) 10.42 8.50 2.69 1.00 13.14 9.91 2.86 1.00 9.78 10.01 2.19 0.81
EAD(L1) 51.88 8.28 1.68 0.73 42.14 7.82 1.83 0.84 66.34 1.97 0.29 0.11
CW(L2) 286.52 13.21 1.13 0.26 180.21 11.83 1.38 0.43 428.98 3.85 0.21 0.04

PGD(L∞) 493.27 47.06 2.21 0.11 516.68 49.28 2.35 0.12 1022.81 76.83 1.46 0.03

4.2.2 Manifold projection method

The most simple way to study the proximity of AEs to data manifolds would be to com-
pute the average distances between AEs and the clean data. However, as already noted
before, this approach is not viable for networks with varying hidden-layer dimensionali-
ties, because the standard Euclidean distance is dimensionality-dependent. To provide
a more consistent comparison regardless of the used NN architecture, we proposed a
novel algorithm based on projecting the AEs onto the class-specific manifolds.

Taking inspiration from Stutz et al. (2019), we used the convex hull of the k nearest
neighbours as an approximation of the data manifold. To study the activations of AEs,
we project them onto manifolds approximated in this way. In general, such projection
is computed as follows: considering a vector a and its nearest neighbours ai1 , . . . , aik

,
the projection coefficients γ1, . . . , γk are given by the solution of the following convex
optimisation:

argmin
γ1,...,γk

∥
k∑

j=1
γjaij

− a∥2, such that
k∑

j=1
γj = 1 and γj ≥ 0. (4.2)

The resulting projection ã is then computed as ã = ∑k
j=1 γjaij

. A simple function
Project, which computes the indices of the kNN, projection coefficients and the projec-
tion itself, is given in Alg. 1.

Algorithm 1 Project
Require: a ▷ Get the input to project
Require: A = {a1, . . . , an} ▷ Get data to approximate manifold

i1, . . . , ik ← indices of kNN of a from A ▷ Compute indices of the kNN
γ1, . . . γk ← solve according to Eq. 4.2 ▷ Compute projection coefficients
ã← ∑k

j=1 γjaij
▷ Compute the projection

return (i1, . . . , ik), (γ1, . . . γk), ã ▷ Return all relevant data

As we wanted to focus on the process of how an AE diverges from the manifold of
the correct, original class co to the manifold of the incorrectly predicted class cp, we

62

Figure 4.7: Projection reconstructions of activations across network layers. Visualised
are the results of AEs from Adv4→9 computed on the MNIST FC network (left) and
AEs from Adv3→5 computed on the MNIST Conv. network (right). The top row shows
projection reconstructions of AEs computed using the EAD attack, and the bottom
row shows reconstructions of PGD-generated AEs.

split all AEs based on these classes and always focused on the subset of AEs with fixed
co and cp, which we denote as Advco→cp .

To compute the proximity of an AE to the class manifolds (on a certain hidden
layer), we need to collect activations A of all training inputs, and specifically, the
activation a′ of the AE. First, a projection of a′ in the hidden space is computed, using
all data regardless of their class to represent the manifold. The indices of the kNN
and projection coefficients are kept to reconstruct the respective combination x̃ in the
input space. A visualisation of such combinations computed across all NN layers for
the same AE can be seen in Fig. 4.7. Then, x̃ is projected again, onto class-specific
manifolds of classes co and cp. Distances to these projections are then returned as the
proximity scores. The entire procedure is summarised in Alg. 2.

Algorithm 2 Compute proximity
Require: a′, co, cp ▷ Get an AE activation and its original and predicted class
Require: X, A ▷ Get all training inputs and their activations
Require: Xco , Xcp ▷ Get all inputs from class co and class cp

(i1, . . . , ik), (γ1, . . . γk), _ ← Project(a′, A) ▷ Project in the activation space
x̃← ∑k

j=1 γni
xi ▷ Reconstruct the combination in the input space

_, _, x̃co ← Project(x̃, Xco) ▷ Project onto original class manifold
_, _, x̃cp ← Project(x̃, Xcp) ▷ Project onto predicted class manifold
return ∥x̃co − x̃∥2, ∥x̃cp − x̃∥2 ▷ Return distances to projections

As in our algorithm the computation of the Euclidean distance is always performed
in the input space, which has a fixed dimensionality, we could consistently compute and
compare the proximity scores across all network layers. In our experiments, we picked
a fixed set of AEs Advco→cp and averaged the proximity scores on all layers across all
AEs from this set.

63

Figure 4.8: UMAP visualisation of activations of four types of AEs, two types of RC
examples, and the test-set on the fourth layer of the MNIST FC network.

4.2.3 Assessment of data entanglement

We also decided to inspect the data visually, similar to Pócoš et al. (2021). Instead
of using t-SNE, we chose to project the data into 2D using UMAP (Uniform Manifold
Approximation and Projection) (McInnes et al., 2018) while, of course, also including
the activations of AEs. An example is in Fig. 4.8.

In the UMAP visualisations, we noticed two things. Activations of RC examples
were, as expected, quite disconnected from the original data activations, while those of
RCdistrib seemed to be closer to the train-set activations than RCrnd ones. Activations
of AEs minimised in the L∞ norm seemed quite far from the original data activations,
the remaining activations of AEs were closer. Some AEs even seemed to occupy the
same regions as the clean data activations. To analyse this phenomenon more closely,
we performed a numerical estimation of data entanglement using the Soft Nearest
Neighbour (SNN) loss (Frosst et al., 2019), which is defined as:

lSNN(X, y, T) = − 1
n

n∑
i=1

log

∑
j∈{1,...,n}\i

yi=yj

e
−∥xi−xj ∥2

T

∑
k∈{1,...,n}\i

e
−∥xi−xk∥2

T

 , (4.3)

where X are inputs, y are their respective labels, n is the number of inputs and T is
temperature parameter. The common approach is to adjust T to minimise the loss.
This was done using the standard SGD. Due to numerical instabilities encountered
when optimising the SNN loss on the network trained on CIFAR-10, we only include
results for the networks trained on MNIST.

64

Figure 4.9: Development of proximity scores (y-axis) of the original class (dark shade)
and the predicted class (light shade) across the individual network layers (x-axis). In
general, we observe a trend of increase of the original class scores and decrease of the
predicted class scores.

4.2.4 Results

The results of analysing AEs with our manifold projection method are visualised in
Fig. 4.9. As there are 100 possible original–predicted class pairs, we only include
results for two pairs for each tested architecture. The pairs were chosen according to
the AE counts (for the MNIST Conv. network visualised in Fig. 4.6). To have more
statistically robust results, we picked pairs with high counts.

We can notice that the shift in proximity scores from original to predicted class
was different across the networks. It was slow and gradual in the MNIST FC network,
however, in both convolutional networks, it happened mostly at the last few layers.
Comparing different attacks, we can see that the PGD (L∞-minimising) attack had the
greatest impact on the proximity scores. Another interesting fact to note is that some
AEs remained closer to the original than the predicted class even at the penultimate
layer, but were still misclassified. We currently do not have an explanation for this
phenomenon and find it an interesting direction for future work.

Our co-authors also proposed a second method to assess the proximity of AEs to
data manifolds. Comparing both methods on the same set of AEs, they provided
consistent proximity scores. For full results, we refer the reader to the published paper
(Pócoš et al., 2022).

Regarding the SNN loss analysis, the results were consistent with those presented
earlier. The entanglement of clean and adversarial data on the MNIST FC decreased

65

Figure 4.10: Development of the SNN loss scores between malicious inputs (AEs and
RC examples) and the test-set through the layers of networks trained on MNIST.

gradually, while on the MNIST Conv. network, the drop was most visible on the last
layer. RC examples were quite disentangled, with a clear difference between RCrnd and
RCdistrib, RCrnd being consistently more entangled with the clean data. The develop-
ment of the SNN loss across network layers is visualised in Fig. 4.10.

The most prominent result is that AEs with perturbations minimised in different
Lp norms not only look different but also evoke different effects in the trained NNs.
Therefore, networks robust against one type of AEs may not be robust against other
types, as the cause of misclassification may differ. This is consistent with the results
presented earlier, that even the adversarially trained network by Madry et al. (2018),
which achieved remarkable robustness against L∞-minimised AEs, was surprisingly
weak against attacks minimised in other norms.

Due to these findings, future work in this direction should include an analysis of
additional adversarial inputs, such as on-manifold AEs. Moreover, to better isolate
the effect of individual attack types on the trained NNs, the analysis should also be
performed with networks (possibly adversarially trained ones) that are more robust
against a certain type of AEs.

66

Bibliography

Athalye, A., Carlini, N., and Wagner, D. (2018a). Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In International
Conference on Machine Learning, Proceedings of Machine Learning Research, pages
274–283.

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. (2018b). Synthesizing robust
adversarial examples. In International Conference on Machine Learning, pages 284–
293.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Bečková, I., Pócoš, Š., and Farkaš, I. (2020). Computational analysis of robustness
in neural network classifiers. In 29th International Conference on Artificial Neural
Networks, pages 65–76. Springer International Publishing.

Bečková, I., Pócoš, Š., and Farkaš, I. (2022). Skúmanie vzdialeností adverzariálnych
vstupov k jednotlivým triedam v hlbokých neurónových sieťach. In Kognice a umělý
život 20, pages 160–161. České vysoké učení technické v Praze.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G.,
and Roli, F. (2013). Evasion attacks against machine learning at test time. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
pages 387–402. Springer.

Brahma, P. P., Wu, D., and She, Y. (2015). Why deep learning works: A manifold
disentanglement perspective. IEEE Transactions on Neural Networks and Learning
Systems, 27(10):1997–2008.

Brendel, W., Rauber, J., and Bethge, M. (2018). Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. In International Con-
ference on Learning Representations.

67

Carlini, N. and Farid, H. (2020). Evading deepfake-image detectors with white-and
black-box attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 658–659.

Carlini, N., Katz, G., Barrett, C., and Dill, D. L. (2017). Provably minimally-distorted
adversarial examples. arXiv preprint arXiv:1709.10207.

Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner, D., and
Zhou, W. (2016). Hidden voice commands. In 25th USENIX Security Symposium,
pages 513–530.

Carlini, N. and Wagner, D. (2017a). Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pages 3–14.

Carlini, N. and Wagner, D. (2017b). MagNet and “Efficient Defenses Against Adversar-
ial Attacks” are not robust to adversarial examples. arXiv preprint arXiv:1711.08478.

Carlini, N. and Wagner, D. (2017c). Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy (SP), pages 39–57.

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2018). EAD: elastic-
net attacks to deep neural networks via adversarial examples. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. (2017a). ZOO: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, pages 15–26.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. (2017b). Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526.

Cohen, J., Rosenfeld, E., and Kolter, Z. (2019). Certified adversarial robustness via
randomized smoothing. In international Conference on Machine Learning, pages
1310–1320.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet:
A large-scale hierarchical image database. In Conference on Computer Vision and
Pattern Recognition, pages 248–255.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
(2021). An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations.

68

Elsayed, G., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow, I., and
Sohl-Dickstein, J. (2018). Adversarial examples that fool both computer vision and
time-limited humans. Advances in Neural Information Processing Systems, 31.

Engstrom, L., Ilyas, A., and Athalye, A. (2018). Evaluating and understanding the
robustness of adversarial logit pairing. arXiv preprint arXiv:1807.10272.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. (2019). Exploring the
landscape of spatial robustness. In International Conference on Machine Learning,
pages 1802–1811.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A.,
Kohno, T., and Song, D. (2018). Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1625–1634.

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. (2017). Detecting adver-
sarial samples from artifacts. arXiv preprint arXiv:1703.00410.

Frosst, N., Papernot, N., and Hinton, G. (2019). Analyzing and improving represen-
tations with the soft nearest neighbor loss. In International Conference on Machine
Learning, volume 97, pages 2012–2020.

Gao, Y., Shumailov, I., Fawaz, K., and Papernot, N. (2022). On the limitations of
stochastic pre-processing defenses. Advances in Neural Information Processing Sys-
tems, 35:24280–24294.

Ghiasi, A., Shafahi, A., and Goldstein, T. (2020). Breaking certified defenses: Se-
mantic adversarial examples with spoofed robustness certificates. In International
Conference on Learning Representations.

Gilmer, J., Ford, N., Carlini, N., and Cubuk, E. (2019). Adversarial examples are a
natural consequence of test error in noise. In International Conference on Machine
Learning, pages 2280–2289.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu, M., Wattenberg, M., and
Goodfellow, I. (2018). Adversarial spheres. arXiv preprint arXiv:1801.02774.

Gong, Z., Wang, W., and Ku, W.-S. (2017). Adversarial and clean data are not twins.
arXiv preprint arXiv:1704.04960.

Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adver-
sarial examples. In International Conference on Learning Representations.

69

Gowal, S., Dvijotham, K. D., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T., and Kohli, P. (2019). Scalable verified training for provably
robust image classification. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4842–4851.

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P. (2017a). On
the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280.

Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. (2017b). Ad-
versarial examples for malware detection. In 22nd European Symposium on Research
in Computer Security, pages 62–79. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

He, W., Wei, J., Chen, X., Carlini, N., and Song, D. (2017). Adversarial example
defense: Ensembles of weak defenses are not strong. In 11th USENIX Workshop on
Offensive Technologies.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and Abbeel, P. (2017). Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. (2018). Black-box adversarial at-
tacks with limited queries and information. In International Conference on Machine
Learning, pages 2137–2146.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019).
Adversarial examples are not bugs, they are features. Advances in Neural Information
Processing Systems, 32.

Kannan, H., Kurakin, A., and Goodfellow, I. (2018). Adversarial logit pairing. arXiv
preprint arXiv:1803.06373.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Reluplex:
An efficient SMT solver for verifying deep neural networks. In Computer Aided
Verification: 29th International Conference, pages 97–117. Springer.

70

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kotyan, S. and Vargas, D. V. (2021). Deep neural network loses attention to adversarial
images. arXiv preprint arXiv:2106.05657.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. Advances in Neural Information Processing
Systems, 25.

Kurakin, A., Goodfellow, I. J., and Bengio, S. (2017). Adversarial machine learning at
scale. In International Conference on Learning Representations.

Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial examples in the
physical world. In Artificial Intelligence Safety and Security, pages 99–112. Chapman
and Hall/CRC.

Kuzma, T. and Farkaš, I. (2019). Embedding complexity of learned representations
in neural networks. In 28th International Conference on Artificial Neural Networks,
pages 518–528. Springer.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Cortes, C., and Burges, C. (1998b). The MNIST database of handwritten
digits.

LeNail, A. (2019). NN-SVG: Publication-ready neural network architecture schematics.
Journal of Open Source Software, 4(33):747.

Li, X. and Li, F. (2017). Adversarial examples detection in deep networks with con-
volutional filter statistics. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5764–5772.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45:503–528.

Liu, Y., Chen, X., Liu, C., and Song, D. (2017). Delving into transferable adversarial
examples and black-box attacks. arXiv preprint arXiv:1611.02770.

Lucas, K., Jagielski, M., Tramèr, F., Bauer, L., and Carlini, N. (2023). Randomness
in ML defenses helps persistent attackers and hinders evaluators. arXiv preprint
arXiv:2302.13464.

71

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards
deep learning models resistant to adversarial attacks. In International Conference
on Learning Representations.

Mahmood, K., Mahmood, R., and Van Dijk, M. (2021). On the robustness of vision
transformers to adversarial examples. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7838–7847.

McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861.

Meng, D. and Chen, H. (2017). MagNet: a two-pronged defense against adversarial
examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 135–147.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. (2017). On detecting adver-
sarial perturbations. In International Conference on Learning Representations.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). Universal
adversarial perturbations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1765–1773.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P., and Soatto, S. (2018).
Robustness of classifiers to universal perturbations: A geometric perspective. In
International Conference on Learning Representations.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). DeepFool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2574–2582.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A. Y., et al. (2011). Read-
ing digits in natural images with unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, page 7. Granada, Spain.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 427–436.

Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., Zant-
edeschi, V., Baracaldo, N., Chen, B., Ludwig, H., Molloy, I., and Edwards, B. (2018).
Adversarial robustness toolbox v1.2.0. https://arxiv.org/pdf/1807.01069.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
(2017). Practical black-box attacks against machine learning. In Asia Conference
on Computer and Communications Security, page 506–519.

72

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A.
(2016a). The limitations of deep learning in adversarial settings. In European Sym-
posium on Security and Privacy (EuroS&P), pages 372–387. IEEE.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. (2016b). Distillation
as a defense to adversarial perturbations against deep neural networks. In IEEE
Symposium on Security and Privacy, pages 582–597.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V. (2012). Cats and dogs.
In IEEE Conference on Computer Vision and Pattern Recognition.

Pócoš, Š., Bečková, I., and Farkaš, I. (2022). Examining the proximity of adversarial
examples to class manifolds in deep networks. In Artificial Neural Networks and
Machine Learning, pages 645–656. Springer Nature Switzerland.

Pócoš, Š., Bečková, I., and Farkaš, I. (2024a). Explainability of vision transformer with
top-down connection. In Cognition and Artificial Life 2024, pages 28–29. Flow.

Pócoš, Š., Bečková, I., and Farkaš, I. (2024b). RecViT: Enhancing vision transformer
with top-down information flow. In Proceedings of the 19th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions - Volume 3, pages 749–756. INSTICC, SciTePress.

Pócoš, Š., Bečková, I., Kuzma, T., and Farkaš, I. (2021). Assessment of manifold
unfolding in trained deep neural network classifiers. In Trustworthy AI – Integrat-
ing Learning, Optimization and Reasoning: First International Workshop, TAILOR
2020, Virtual Event, pages 93–103. Springer.

Raghunathan, A., Steinhardt, J., and Liang, P. (2018). Certified defenses against
adversarial examples. In International Conference on Learning Representations.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. Biometrika, 71:599–607.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet large scale visual recog-
nition challenge. International Journal of Computer Vision, 115:211–252.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

73

Samangouei, P., Kabkab, M., and Chellappa, R. (2018). Defense-GAN: Protecting
classifiers against adversarial attacks using generative models. In International Con-
ference on Learning Representations.

Shen, S., Jin, G., Gao, K., and Zhang, Y. (2017). APE-GAN: Adversarial perturbation
elimination with GAN. arXiv preprint arXiv:1707.05474.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
pages 1–14.

Sitawarin, C., Golan-Strieb, Z. J., and Wagner, D. (2022). Demystifying the adversar-
ial robustness of random transformation defenses. In International Conference on
Machine Learning, pages 20232–20252.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N. (2018). PixelDefend:
Leveraging generative models to understand and defend against adversarial exam-
ples. In International Conference on Learning Representations.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

Steiner, A. P., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., and Beyer, L.
(2022). How to train your ViT? Data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Research.

Stollenga, M. F., Masci, J., Gomez, F., and Schmidhuber, J. (2014). Deep networks
with internal selective attention through feedback connections. Advances in Neural
Information Processing Systems, 27.

Stutz, D., Hein, M., and Schiele, B. (2019). Disentangling adversarial robustness and
generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6976–6987.

Su, J., Vargas, D. V., and Sakurai, K. (2019). One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fer-
gus, R. (2014). Intriguing properties of neural networks. In International Conference
on Learning Representations.

Tramèr, F. (2022). Detecting adversarial examples is (nearly) as hard as classifying
them. In International Conference on Machine Learning, pages 21692–21702.

74

Tramèr, F., Behrmann, J., Carlini, N., Papernot, N., and Jacobsen, J.-H. (2020a). Fun-
damental tradeoffs between invariance and sensitivity to adversarial perturbations.
In International Conference on Machine Learning, pages 9561–9571.

Tramèr, F. and Boneh, D. (2019). Adversarial training and robustness for multiple
perturbations. Advances in Neural Information Processing Systems, 32.

Tramèr, F., Carlini, N., Brendel, W., and Madry, A. (2020b). On adaptive attacks to
adversarial example defenses. Advances in Neural Information Processing Systems,
33:1633–1645.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. (2018). Ensemble adversarial training: Attacks and defenses. In International
Conference on Learning Representations.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2019). Ro-
bustness may be at odds with accuracy. In International Conference on Learning
Representations.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9(11).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International
Journal of Computer Vision, 57:137–154.

Wightman, R. (2019). Pytorch image models. https://github.com/rwightman/
pytorch-image-models.

Wong, E. and Kolter, Z. (2018). Provable defenses against adversarial examples via
the convex outer adversarial polytope. In International Conference on Machine
Learning, pages 5286–5295.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K. (2019). Feature denoising
for improving adversarial robustness. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 501–509.

75

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Xu, W., Evans, D., and Qi, Y. (2018). Feature squeezing: Detecting adversarial exam-
ples in deep neural networks. In Proceedings 2018 Network and Distributed System
Security Symposium. Internet Society.

Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., and Wang, T. (2020). Interpretable
deep learning under fire. In 29th USENIX Security Symposium.

76

	Introduction
	Introduction to deep neural networks
	Notation and training of neural network classifiers
	Popular image classification datasets
	10-class datasets
	Larger-scale datasets

	Development of the state-of-the-art
	Convolutional neural networks
	CNNs on ImageNet
	Vision transformer

	Adversarial examples
	Fooling images
	Properties of adversarial examples
	Computational complexity of adversarial attacks
	Transferability
	Optimising AEs with stronger attacks
	Physical adversarial examples
	Universal adversarial perturbations
	AEs outside the scope of this work

	Other noteworthy attacks
	Non-transfer black-box attacks
	Attacks using non-standard Lp norms

	Mitigating adversarial attacks
	Adversarial training
	Other defences
	Detecting adversarial examples
	Certified defences

	Analysing and explaining adversarial examples
	Explaining the existence of AEs
	AEs and clean data manifolds

	Inherent robustness of neural networks
	Robustness of networks with logistic sigmoid
	Models and data
	Results

	Robustness of RecViT
	RecViT architecture
	RecViT variants and data
	Results

	Examining proximity of adversarial examples to data manifolds
	Manifold disentanglement hypothesis
	Relationship between data manifolds and AEs
	Experimental setup
	Manifold projection method
	Assessment of data entanglement
	Results

	Bibliography

