
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Intrinsically Motivated Reinforcement

Learning

Dissertation thesis

2023

Mgr. Matej Pecháč

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Intrinsically Motivated Reinforcement

Learning

Dissertation thesis

Study program: 2508 Informatics

Department: Department of Applied Informatics

Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2023

Mgr. Matej Pecháč

I hereby declare that I wrote this work by myself, only with the help of the referenced

literature.

Bratislava, 30. 4. 2023

..

Mgr. Matej Pecháč

Acknowledgement

I would like to express my gratitude to my thesis supervisor, prof. Igor Farkaš, for

his patience and guidance, to the friend and former colleague Michal Chovanec for

long and fruitful discussions as well as invaluable advice on this topic and to my wife

Barbora for forbearance and understanding.

iv

Abstract

Reinforcement learning can solve decision-making problems and train an agent to be-

have in an environment according to a predesigned reward function. However, such an

approach becomes very problematic if the reward is too sparse and the agent does not

come across the reward during the environmental exploration. The solution to such a

problem may be in equipping the agent with an intrinsic motivation, which will pro-

vide informed exploration, during which the agent is likely to also encounter external

reward. Novelty detection and state prediction are the promising branches of intrinsic

motivation research. We present Self-supervised Network Distillation (SND), a

class of intrinsic motivation algorithms based on the distillation error as a novelty in-

dicator, where the target model is trained using self-supervised learning. We adapted

three existing self-supervised methods for this purpose and experimentally tested them

on a set of ten environments that are considered difficult to explore. We also applied

self-supervised learning in the training of the forward model, denoted Self-supervised

Predictor (SP) and showed that even for this approach to intrinsic motivation, it leads

to an improvement in the agent’s performance. The results show that our approach

achieves faster growth and higher external reward for the same training time compared

to the baseline models, which implies improved exploration in a very sparse reward

environment.

Keywords: reinforcement learning, self-supervised learning, intrinsic motivation, nov-

elty detection, state prediction, knowledge distillation, sparse reward

v

Abstrakt

Učenie posilňovańım dokáže vyriešit’ rozhodovacie problémy a natrénovat’ agenta tak,

aby sa správal v prostred́ı podl’a vopred navrhnutej funkcie odmeny. Takýto pŕıstup

sa však stáva vel’mi problematickým, ak je odmena pŕılǐs riedka a agent na odmenu

počas prieskumu prostredia nenaraźı. Riešeńım takéhoto problému môže byt’ vybavenie

agenta vnútornou motiváciou, ktorá poskytne informované skúmanie, počas ktorého

sa agent pravdepodobne stretne aj s externou odmenou. Detekcia nových stavov a

predikcia stavu sú sl’ubnými vetvami výskumu vnútornej motivácie. V práci predsta-

vujeme triedu algoritmov vnútornej motivácie založených na destilačnej chybe ako

indikátoru novosti – Self-supervised Network Destillation (SND), kde sa ciel’ový

model trénuje pomocou samokontrolovaného učenia. Na tento účel sme prispôsobili tri

existujúce metódy samokontrolovaného učenia a experimentálne sme ich otestovali na

súbore desiatich prostred́ı, ktoré sa považujú za t’ažko preskúmatel’né. Samokontro-

lované učenie sme aplikovali aj pri tréningu dopredného modelu – Self-supervised

Predictor (SP), a ukázali sme, že aj pre tento pŕıstup k vnútornej motivácii vedie

k zlepšeniu výkonu agenta. Výsledky ukázali, že náš pŕıstup dosahuje rýchleǰśı rast

a vyššiu externú odmenu za rovnaký čas tréningu v porovnańı so inými modelmi, čo

znamená zlepšenú exploráciu v prostrediach s vel’mi riedkou odmenou.

Kl’́učové slová: učenie posilňovańım, samokontrolované učenie, interná motivácia, de-

tekcia nových stavov, predikcia stavov, prenos znalost́ı, riedka odmena

vi

List of Figures

2.1 The scheme of agent-environment interaction. 3

3.1 End-to-End architecture. 14

3.2 Memory Bank architecture. 15

3.3 Momentum Encoder architecture. 16

3.4 Clustering Feature Representations architecture. 17

4.1 Simplified architecture of an agent with intrinsic motivation. 26

4.2 General architecture of agent with prediction-based approach to intrinsic

motivation. 27

4.3 Intrinsic Curiosity Module scheme. 28

4.4 General architecture of an agent with novelty-based approach to intrinsic

motivation. 30

4.5 The basic principle of generating an exploration signal in random net-

work distillation. 33

4.6 General architecture of agent with information-based approach to in-

trinsic motivation. 34

4.7 General architecture of competence-based approach to intrinsic motiva-

tion. 40

4.8 Architecture of the hierarchical system of actor–critic experts. Adapted

from Santucci et al. (2013). 41

4.9 General architecture of a morphological computational approach to in-

trinsic motivation. 43

5.1 The basic principle of generating an exploration signal in the regularized

target model and training of the SND target model using two consecutive

states and the self-supervised learning algorithm. 46

5.2 The scheme of the SP model with feature extractor trained by SSL

algorithm and the forward model. 50

5.3 Architectures of individual networks of agent with SND and SP motiva-

tion modules. 52

vii

5.4 Agent’s performance based on various learned model architectures, eval-

uated in terms of the overall score, external reward obtained and the

number of rooms explored. 55

5.5 The cumulative external reward per episode (with the standard devia-

tion) received by the agent from the tested environment. The horizontal

axis shows the number of steps in millions, the vertical axis refers the

external reward. We compared Baseline, RND and SND methods. . . . 58

5.6 The cumulative external reward per episode (with the standard devia-

tion) received by the agent from the tested environment. The horizontal

axis shows the number of steps in millions, the vertical axis refers the

external reward. We compared Baseline, ICM and SP method. 59

5.7 The distance matrix of 1000 states and feature vectors collected from

Montezuma’s Revenge environment. Small distances are displayed by

blue color, while large distances are displayed by red color. 61

5.8 The t-SNE projected feature representations of the target models (ran-

dom and trained) in Montezuma’s Revenge task. The colors correspond

to different rooms. 62

5.9 Descendingly ordered eigenvalues of the linear envelope obtained using

the PCA method on RND and SND methods, which show the stretching

of the feature space in individual dimensions. The horizontal axis shows

the indices of eigenvalues, the vertical axis denotes the magnitude of

eigenvalue on a logarithmic scale. 63

5.10 Descendingly ordered eigenvalues of the linear envelope obtained using

the PCA method on ICM and SP methods, which show the stretching

of the feature space in individual dimensions. The horizontal axis shows

the indices of eigenvalues, the vertical axis denotes the magnitude of

eigenvalue on a logarithmic scale. 64

5.11 Novelty detection for different regularisation losses as response to differ-

ent future windows. The states were collected on Montezuma’s Revenge

with the best agent, red dots correspond to state examples above. . . . 68

viii

List of Tables

5.1 Environment hyperparameters . 53

5.2 PPO hyperparameters . 54

5.3 SND hyperparameters . 54

5.4 SP hyperparameters . 54

5.5 Average cumulative reward (with standard deviation) per episode for all

3 preprocessing methods and maximal reward achieved by the agents. . 55

5.6 Average cumulative external reward per episode for tested SND models.

The best model (not necessarily in statistical sense) for each environment

is shown in bold face. 56

5.7 Average maximal score reached by tested models on Atari environments.

The best model for each environment is shown in bold face. 56

5.8 Average cumulative external reward per episode for tested ICM and SP

models. The best model for each environment is shown in bold face. . . 57

5.9 Description of the target model feature space created by SND methods. 65

5.10 Description of the target model feature space created by SP methods. . 66

ix

Acronyms

CNN Convolutional Neural Network. 51

ICM Intrinsic Curiosity Module. 27, 46, 56, 60, 66, 67, 69–71

IM Intrinsic Motivation. 1, 2, 67, 70

MPD Markov Decision Process. 3, 5, 6, 30

PCA Principal Component Analysis. 62

RL Reinforcement Learning. 1, 5–7, 20, 25, 68, 72

RND Random Network Distillation. 33, 45, 51, 53, 56, 60, 62–64, 69–71

SND Self-supervised Network Distillation. vii, 45, 46, 51, 55, 56, 60, 63, 67, 69–71

SP Self-supervised Predictor. 46, 49, 51, 55, 56, 60, 66, 67, 69–71

SSL Self-Supervised Learning. vii, 13, 22, 45, 46, 48, 50, 55, 60, 69–72

x

Contents

1 Introduction 1

2 Reinforcement learning 3

2.1 Markov decision process . 3

2.1.1 Value functions . 4

2.1.2 Bellman optimality equations 5

2.2 Reinforcement learning methods . 5

2.2.1 Dynamic programming . 6

2.2.2 Monte Carlo . 7

2.2.3 Temporal difference . 7

2.3 Off-policy reinforcement learning methods 7

2.3.1 Q-Learning . 8

2.3.2 Deep Q-Network (DQN) . 8

2.3.3 Deep Deterministic Policy Gradient (DDPG) 9

2.4 On-policy reinforcement learning methods 9

2.4.1 SARSA . 10

2.4.2 REINFORCE . 10

2.4.3 Actor–Critic (AC) . 11

2.4.4 Advantage Actor–Critic (A2C) 11

2.4.5 Proximal Policy Optimization (PPO) 11

3 Self-supervised learning 13

3.1 Contrastive methods . 13

3.1.1 Cosine similarity . 16

3.1.2 Noise Contrastive Estimation (NCE) 17

3.1.3 InfoNCE . 18

3.1.4 Contrastive loss . 18

3.1.5 N -pair loss . 19

3.2 Non-contrastive methods . 19

xi

3.2.1 BYOL . 20

3.2.2 Barlow Twins . 21

3.2.3 VICReg . 21

4 Intrinsic motivation 23

4.1 Knowledge-based category . 25

4.1.1 Prediction-based approach . 26

4.1.2 Novelty-based approach . 30

4.1.3 Information-based approach . 33

4.1.4 Learning progress approach . 38

4.2 Competence-based category . 39

4.3 Morphological-based category . 43

5 Self-supervised Predictors 45

5.1 Methods . 46

5.1.1 SND-STD . 47

5.1.2 SND-VIC . 48

5.1.3 SND-VINV . 48

5.1.4 SP . 49

5.2 Experiments . 49

5.2.1 Training setup . 50

5.2.2 State preprocessing . 51

5.3 Results . 53

5.4 Analysis . 60

6 Discussion 69

xii

Chapter 1

Introduction

The development of reinforcement learning (RL) methods has achieved much success

over the last decade, since together with advances in computer vision (He et al., 2016;

Krizhevsky et al., 2012), it became possible to teach agents to solve various tasks, or

play computer games (Mnih et al., 2013) (see overview in (Souchleris et al., 2023)),

even surpassing human players (Mnih et al., 2015). Nevertheless, these single tasks

require very long training times and a lot of computational resources. Coping with

complex (continuous) environments such as the real world is still a challenge. There

are several research opportunities, one of them being the search for more efficient

learning methods, that can, among other things, provide better feature representations.

Another is hardware development, which attempts to adapt to the requirements of

neural networks that are currently being used in the RL field.

The complex environments with sparse rewards pose a special challenge for RL

approaches. The most popular computational approach to make RL more efficient

is based on a concept of intrinsic motivation (IM) (Baldassarre et al., 2014). IM

introduces a new reward function – an intrinsic reward that the agent generates for

itself. This reward function should reflect the agent’s effort to gain as much knowledge

as possible about the environment and acquire skills that will be useful for the given

environment and help it maximize the environmental reward function – external reward.

In this way, it is possible to ensure an informed exploration of the environment, life-long

learning and open-ended development at the agent.

The aim of this thesis is to investigate and improve methods of IM. We focused on

exploration strategies in environments with very sparse reward that require informed

exploration. Knowledge-based intrinsic motivation deals with this area. Within it, we

introduced a new class of algorithms for detecting the novelty of a state, which can

serve as a suitable IM signal. This new class of algorithms combines intrinsic motivation

with self-supervised learning methods, which are also gaining popularity and, in our

1

opinion, will play an important role in the future development of agents. We think that

the combination of IM and self-supervised learning methods is quite natural, since both

principles rely only on the agent and its internal systems, without the need for designer

intervention to define either the reward function or the labeled data. The source code

for this work is available here: https://github.com/Iskandor/SND

The thesis is divided into six chapters. Chapter 2 is a review of basic principles of

reinforcement learning, including specific on-policy and off-policy algorithms. In Chap-

ter 3, we present the basic concepts of self-supervised learning, model architecture, met-

rics and loss functions. In Chapter 4, we define motivation, intrinsic motivation, which

are followed by an overview of different approaches and their methods to generate an

intrinsic reward for the agent. In Chapter 5 we present our methodology, experiments

along with results and analysis, aiming to explain the success of our algorithms and to

reveal the failure of the compared algorithms. Chapter 6 includes a summary of our

research along with conclusions drawn from the results and analyses. At the end, we

also attached several directions in which the work can be further developed and we

present the sequence of our ideas that led to the creation of these models.

2

https://github.com/Iskandor/SND

Chapter 2

Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto, 1998, 2018) is a domain of machine

learning focused on solving decision problems by learning from interaction of the agent

and environment solely from its own experience. This interaction is continual, the agent

selects actions from its repertoire and the environment responds to those actions and

presents a new situation, denoted state, to the agent. With a new state the environment

also provides the reward signal and the agent maximizes this reward. The scheme of

this interaction is presented in Figure 2.1. Reinforcement learning is intensively studied

in many areas such as control theory, robotics, game theory, multi-agent systems and

many more. It is considered as one of three main learning paradigms together with

supervised and unsupervised learning. The decision problem is often formalized as a

Markov decision process.

Figure 2.1: The scheme of agent-environment interaction.

2.1 Markov decision process

Markov decision process (MPD) (Bellman, 1957) is a mathematical framework from

the field of optimal control theory which can be used to formalize decision and control

3

problems in agent-environment interaction. It consists of quintuple (S,A, T ,R, γ),
where:

• S is the state space

• A is the action space

• T is the transition function T (s, a, s′) = p(st+1 = s′|st = s, at = a)

• R is the reward function

• γ is the future discount factor

Subsequently we can define a stochastic policy π what is a state dependent probability

function π : S ×A → [0, 1], such that

πt(s, a) = πt(a|s) = p(at = a|st = s) and
∑
a∈A

π(s, a) = 1 (2.1)

or a deterministic policy π which tells us exactly which action to take in state s

πt(st) = at (2.2)

The main goal of the agent is to maximize an expected return in each state

Rt =
∞∑
k=0

γkrt+k (2.3)

2.1.1 Value functions

Value functions are functions of state (or state–action pair) which yield the expected

return. They are always defined with respect to a particular policy. In other words

they express how much reward will the agent accumulate when starting in state s

it will follow a particular policy π. For MDPs we can define state–value function

V π(s) : S → R formally as

V π(s) = Eπ {Rt | st = s} = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}
(2.4)

and action–value function Qπ(s, a) : S × A → R which defines the value of taking an

action a in state s under a policy π as

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s, at = a

}
(2.5)

Value functions V π and Qπ can be approximated using agent’s experience. We can

accumulate a large number of samples of interactions between the agent and the envi-

ronment and later use them for estimating the value functions. A fundamental property

4

of the value functions is that they satisfy the following recursive relationship between

value of the current state s and the value of the successor state s′:

V π(s) = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}
(2.6)

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}
(2.7)

=
∑
a

π(s, a)
∑
s′

T (s, a, s′)[
R(s, a, s′) + Eπ

{
γ

∞∑
k=0

γkrt+k+2 | st+1 = s′

}] (2.8)

=
∑
a

π(s, a)
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2.9)

Deriving the last recursive form we obtained Bellman equation for V π. Analogically

we can obtain Bellman equation for Qπ whose final form is

Qπ(s, a) =
∑
s′

T (s, a, s′)

[
R(s, a, s′) + γ

∑
a′

π(s′, a′)Qπ(s′, a′)

]
(2.10)

=
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2.11)

2.1.2 Bellman optimality equations

Now we are going to introduce Bellman optimality equations, where the policy π is

no more arbitrary, but it maximizes the value of V π or Qπ. Such a policy is the

best possible (optimal) policy π∗ for given MPD. The MPD could have more optimal

policies.

Bellman optimality equations are defined more formally

V ∗(s) = max
a

E {rt+1 + γV ∗(st+1) | st = s, at = a} (2.12)

= max
a

∑
s′

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)] (2.13)

Q∗(s, a) = E
{
rt+1 + γmax

a′
Q∗(st+1, a

′) | st = s, at = a
}

(2.14)

=
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(2.15)

2.2 Reinforcement learning methods

There are many approaches to solving RL problems. In general, they can be divided

from the point of view of whether they use knowledge of the environment (transition

5

function T and reward function R) into two large groups:

• Model-based methods — rely on a model of the environment, either ob-

tained directly from the environment (through the intervention of the designer)

or learned, when searching for an optimal policy.

• Model-free methods — do not need to know the environment model to find

the optimal policy.

According to whether the current policy generating actions is also a source of samples

for learning, we divide RL methods into two groups:

• On-policy methods evaluate and improve the policy that also makes decisions

and drives the agent’s behaviour.

• Off-policy methods use the behaviour policy to generate actions that can be

unrelated to the policy that is evaluated and improved which is called estimation

policy.

2.2.1 Dynamic programming

Dynamic programming (DP) (Bellman, 1954) is a mathematical optimization method

and a programming method which can be used to solve control problems i.e. to find an

optimal policy for environment formalized as MPD. The main assumption for using DP

is the precise knowledge of the model of environment. In other words the agent needs to

know the transition function T and the reward function R and then it can apply some

of the DP methods to compute optimal policy. It is a model–based method without

bootstrapping (using one or more estimated values in the update step for the same

kind of estimated value). Thus the application of DP is computationally expensive but

it provides good theoretical foundation for other methods which are usually employed.

Policy iteration is a method of DP to find an optimal policy that constantly switches

between two processes. The first is policy evaluation which refers to computation of

the value function V π for arbitrary policy π. The second process is policy improvement

which searches for a better policy π′ evaluated by value function V π and then again

evaluates a new policy π′. Such iterative algorithm yields a finite sequence of improving

policies which converge to an optimal policy π∗ because finite MPD has a finite number

of policies. This algorithm manipulates the policy directly.

6

Value iteration is another way for finding an optimal policy by calculating an op-

timal value function and omitting full policy evaluation. This part is replaced by

truncated policy evaluation that performs only one backup of each state. By turning

the Bellman optimality equation to update rule we obtain

Vk+1(s) = max
a

∑
s′

T (s, a, s′) [R(s, a, s′) + γVk(s
′)] (2.16)

The important result is that the greedy policy is guaranteed to be optimal, as the

value function converges to an optimal value function. From an empirical experience,

the greedy policy is often optimal long before the value function has converged. This

method finds an optimal policy indirectly.

2.2.2 Monte Carlo

We briefly mention Monte Carlo (MC) methods which are the class of algorithms

solving RL problems by averaging sample returns. Therefore, the agent does not need

to know the model of the environment and it is sufficient for it to gather experience in

the form of state–to–state transitions. MC methods are thus model–free and do not

use bootstrapping. The observation of more and more returns leads to convergence to

the expected value. Monte Carlo policy evaluation learns the state–value function V π

for a given policy π. MC estimation of action values leads to estimation of state–action

value function Qπ and is used in MC control which is MC version of policy iteration

algorithm from dynamic programming mentioned above.

2.2.3 Temporal difference

Temporal difference (TD) methods refer to model-free reinforcement learning algo-

rithms. Their advantage is that the agent does not need to have any knowledge about

a model of the environment (unlike DP methods) and does not have to wait until the

end of an episode where the return is known (like in Monte Carlo methods). They use

a form of bootstrapping – making estimates based on more accurate estimates from

the following step so they can be used on-line and in a fully incremental fashion. Se-

lected representatives of TD algorithms are described in more detail in the following

two sections.

2.3 Off-policy reinforcement learning methods

A common feature of off-policy algorithms is that they use the behaviour policy to

generate actions, and this policy can be unrelated to estimation policy that is eval-

7

uated and improved. Thus, it is possible to use even old samples and recycle them

in the learning process, which leads to stable learning and reduction of the necessary

samples to achieve an optimal policy. From a computational point of view, these are

more demanding algorithms, since each step uses several old samples to update the

parameters.

2.3.1 Q-Learning

Q-learning algorithm (Watkins and Dayan, 1992) directly approximates the optimal

Q∗ independently of the followed policy. The next state–action pair is still determined

by policy π but is not present in the update rule

Qt+1(st, at) = Qt(st, at) + α
[
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

]
(2.17)

It has been proven that for correct convergence it is only required that all pairs continue

to be updated. Then the algorithm converges to optimal action–value function Q∗ with

probability one. We present equations for function approximation version

δt = rt + γmax
a
Qθ(st+1, a)−Qθ(st, at) (2.18)

θt+1 = θt + αδt∇θQθ(st, at) (2.19)

2.3.2 Deep Q-Network (DQN)

Deep Q-Network algorithm (Mnih et al., 2015) solved the main disadvantage of Q-

Learning, which may suffer from instability and divergence when combined with an

nonlinear Q-value function approximation and bootstrapping. The algorithm uses a

model Qθ that approximates the state–value function (critic) and the so-called target

model Qθ− , which serves as a source of target values when updating the critic. The

authors introduced two innovations:

• Experience replay buffer Dt = {e0, ..., et} (functions as a queue), which stores a

certain number of samples et = (st, at, rt, st+1) and then random minibatches are

selected from it to be used when updating the critic estimating Qπ function. In

this way, one sample can be used more than once, which increases the efficiency

of sampling and decorrelates the samples due to their random selection.

• Periodically updated target model Qθ− against which the critic is optimized. This

model is frozen C steps and then its weights are cloned (hard update) from

the critic’s current weights. This increased the stability of the algorithm, which

eliminates short-term oscillations.

8

The update of the critic is defined as

θt+1 = θt − αQ∇θ
1

|B|
∑

(s,a,r,s′)∈B

[
Qθ(s, a)−

(
r + γmax

a′
Qθ−(s, a

′)
)]2

(2.20)

where B is a minibatch sampled from the experience replay buffer D.

2.3.3 Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm (Lillicrap et al., 2015) combines the Deterministic policy gradient

(DPG) (Silver et al., 2014) algorithm and DQN, introduces an experience replay buffer

for DPG, and extends both algorithms to the space of continuous actions. The DDPG

model consists of an actor µψ and a critic Qθ and a target networks for the actor µψ−

and critic Qθ− , which are updated by the so-called soft update or Polyak averaging

θ−t+1 = τθ−t + (1 − τ)θ where τ ≪ 1 (analogously for an actor). The critic is updated

according to the rule

θt+1 = θt − αQ∇θ
1

|B|
∑

(s,a,r,s′)∈B

[Qθ(s, a)− (r + γQθ−(s
′, µψ−(s′)))]

2
(2.21)

and the following equation holds for the actor

ψt+1 = ψt + αµ∇ψ
1

|B|
∑
s∈B

Qθ(s, µψ(s)) (2.22)

where B is a minibatch sampled from the experience replay buffer D.

Distributed Distributional DDPG (D4PG) (Barth-Maron et al., 2018) applies a

set of improvements on DDPG to make it run in the distributional fashion. Multi-

agent DDPG (MADDPG) (Lowe et al., 2017) extends DDPG to an environment where

multiple agents are coordinating to complete tasks with only local information.

2.4 On-policy reinforcement learning methods

These methods evaluate and improve the policy that also makes decisions and drives

the agent’s behaviour. They are less efficient in the use of samples (they cannot recycle

old samples), but thanks to the introduction of the technique of parallel collection of

samples by several instances of the actor, they are able to eliminate this disadvantage

from a technical point of view. Also, thanks to more advanced policy update constraints

that were introduced later (Schulman et al., 2015a, 2017), their stability has increased

and their performance is comparable to off-policy methods.

9

2.4.1 SARSA

SARSA (Rummery and Niranjan, 1994) is an on-policy control algorithm estimating

the action–value function Qπ(s, a) for current policy π and for all states s and actions

a. Instead of using transitions from state to state, in this algorithm we use transitions

from state–action pair to successive state–action pair which also form Markov chains

with a reward. The next state–action pair is chosen according to current policy π and

therefore, we are talking about the on-policy method. The update rule is defined as

Qt+1(st, at) = Qt(st, at) + α [rt + γQt(st+1, at+1)−Qt(st, at)] (2.23)

If st+1 is a terminal state, then Q(st+1, at+1) is defined as zero. Its name is derived

from the quintuple (st, at, rt+1, st+1, at+1) involved in the updating process describing

the transition from one state–action pair to another.

The control is quite straightforward. As the algorithm iteratively estimates action-

value function Qπ, at the same time the policy π greedily selects actions using current

estimates. It has been proven that SARSA converges to an optimal action–value func-

tion (and therefore, to an optimal policy) when each state–action pair is visited an

infinite number of times. There also exists possibility to use function approximation

as done in TD(0). The tabular update is then changed as follows

δt = rt + γQθ(st+1, at+1)−Qθ(st, at) (2.24)

θt+1 = θt + αδt∇θQθ(st, at) (2.25)

2.4.2 REINFORCE

The policy πθ induces a distribution of trajectories that generates a reward distribu-

tion. REINFORCE (Monte-Carlo policy gradient) algorithm tries to update the policy

parameters θ using the gradient of an expected reward in an episode ∇θEπθ [
∑∞

t=0 rt].

After applying the policy gradient theorem (Sutton and Barto, 2018), we get an update

rule for the policy parameters

θt+1 = θt + αRt∇θ ln πθ(st, at) (2.26)

The algorithm thus tries to strengthen actions that lead to a higher reward (return Rt

here serves as a weighting of the update of the given action probability). A widely used

variation of REINFORCE is to subtract a baseline value from the return to reduce the

variance of gradient estimation while keeping the bias unchanged. Good candidates

for bias are value functions Qπ, V π and an advantage function Aπ defined as

Aπ(st, at) = Qπ(st, at)− V π(st) (2.27)

10

2.4.3 Actor–Critic (AC)

The main components of AC methods are the policy model (actor) and the value

function (critic). This is a straightforward extension of the REINFORCE algorithm,

where bootstrapping is introduced by adding a critic which already learns to estimate

return Rt (by value function) instead of waiting for the completion of the trajectory

and its evaluation. The critic updates the value function parameters θ and depending

on the algorithm it could be an action–value function Qπ or a state–value function V π.

The update rule for actor model is similar to the REINFORCE algorithm, namely

ψt+1 = ψt + αQθ(st, at)∇ψ lnπψ(st, at) (2.28)

The signal driving the learning of critic is the TD error (in this case exactly the same

as for SARSA algorithm)

δt = rt+1 + γ Qθ(st+1, at+1)−Qθ(st, at) (2.29)

θt+1 = θt + α δt∇θQθ(st, at) (2.30)

Actor–critic methods can be very efficient because the policy is directly represented by

a separate structure. There is no need to find an action with a maximum value as it is

in employing Q-learning or SARSA independently in control tasks.

2.4.4 Advantage Actor–Critic (A2C)

Advantage Actor–Critic (A2C) algorithm (Mnih et al., 2016) is a slightly modified

version of the traditional actor–critic algorithm. Several instances of the actor run

each in its own thread and collect samples that are stored in the trajectory buffer.

Several instances of the actor run each in its own thread and collect samples that

are stored in the trajectory buffer T . Subsequently, these samples are used for an

update of the critic (which estimates the V π function) and for an update of the actor

whose actions are weighted by the advantage function Aπ, which is calculated using

the Generalized advantage estimation algorithm (GAE) (Schulman et al., 2015b). The

parallel running of the actor on separate instances of the environment enables fast

collection of samples and also contributes to the stability of learning, which partially

levels the advantage of off-policy algorithms. Asynchronous Advantage Actor-Critic

(A3C) (Mnih et al., 2016) is a version of A2C with asynchronous parallel updates.

2.4.5 Proximal Policy Optimization (PPO)

The main idea of the PPO algorithm (Schulman et al., 2017) is that the policy pa-

rameters should not be updated in one step so that a large policy change occurs. A

11

similar idea was already used in the TRPO algorithm (Schulman et al., 2015a) but

it was implemented using the Kullback–Leibler divergence constraint. PPO simplified

this limitation by introducing a clipped surrogate objective while maintaining similar

performance. The critic is updated by the same rule as in the case of A2C. The algo-

rithm also uses GAE to estimate the advantage function Aπ. It is used in the clipped

surrogate objective for the actor, which has the following form

r(ψ) =
πψ(at|st)
πψold

(at|st)
(2.31)

g(r, ϵ) = clip (r, 1− ϵ, 1 + ϵ) (2.32)

ψt+1 = argmax
ψ

1

|T |T
∑
τ∈T

T∑
t=0

min
(
r(ψ)Aψ

′
(st, at), g(r(ψ), ϵ)A

ψ′
(st, at)

)
(2.33)

where T is the length of a trajectory τ from the trajectory buffer T . Function clip

stands for clipping function. Hsu et al. (2020) identified several cases where PPO fails

and offered alternative surrogate objectives that should improve the performance and

stability of the PPO algorithm.

For our research, we chose the PPO algorithm because of its computational effi-

ciency and universality. It can solve tasks in environments with both discrete and

continuous action space by simply changing the last layer of an actor (head). At the

same time, it is not necessary to explicitly solve any exploration of the environment,

as it inherently generates a stochastic policy. In addition, it is stable and converges

well, its only drawback is the larger number of samples, which could be solved on a

technical level by parallelizing the environments.

12

Chapter 3

Self-supervised learning

Self-supervised learning (SSL) is a paradigm of machine learning, where the model

does not have labels provided by a human, but creates them on its own based on

simple assumptions made by the designer. A big advantage of SSL is that it uses much

more information provided by the data. While in the classification task (supervised

learning) the model receives e.g. 10 bits (if it classifies into 10 classes) and even in

a reinforcement learning task it is fractions of bits per step (0.001 if it encounters

a reward (that is binary) after 1000 steps), so SSL algorithms can extract millions

of bits of information from one sample.1 SSL is currently used in most cases for pre-

training the models, which are subsequently trained for some specific downstream tasks

including language modeling, image classification, or speech recognition. For example

it can be a pre-training of the ResNet network (He et al., 2016) and later it can be

used for a classification task or as a source of representations for a detector, etc.

The most often used is the discriminative approach that aims at grouping similar

samples closer and diverse samples far from each other. Therefore, it is necessary to

introduce a similarity metric of two feature vectors in order to measure how close they

are to each other.

3.1 Contrastive methods

Contrastive learning (Chopra et al., 2005) is a method of self-supervised learning used

to learn the general features by teaching the model which data points are similar or

different using positive and negative samples. The basic intuition behind contrastive

learning paradigm is: push original and augmented images closer to each other

and push original and negative images away. Depending on the way input data is

selected in the context of self-supervised learning, we can identify several architectures

1https://www.slideshare.net/rouyunpan/deep-learning-hardware-past-present-future

13

listed below.

End-to-End Learning architecture works with fully differentiable models that can

be trained using gradient methods. This architecture prefers large batches, where apart

from the input sample and its augmented version (positive sample), other samples are

considered negative. The architecture consists of two encoders: Query encoder Q

and Key encoder K. The task of both encoders is to create a representation (feature

vector) for the original sample x (encoder Q) and a positive or negative sample x′

(encoder K). Positive and original samples move closer to each other in the feature

space, while negative samples move away from the original ones. The representation of

the samples z and z′ are compared according to some similarity metric sim(z, z′) (e.g.

cosine similarity), which will be mentioned later in the text, and is used in loss function

L. Simple scheme is presented in Fig. 3.1. An example of such an architecture is the

SimCLR algorithm (Chen et al., 2020a), which has been successfully used for visual

representations, or a model based on Contrastive Predictive Coding (CPC) (van den

Oord et al., 2018) and their various modifications as Bachman et al. (2019); Henaff

(2020); Hjelm et al. (2018); Ye et al. (2019). The number of negative samples available

in this approach is coupled with the batch size as it accumulates negative samples from

the current batch and it represents the main disadvantage of this architecture.

Figure 3.1: End-to-End architecture.

Memory Bank architecture maintains a buffer (memory bank) to accumulate a large

number of feature representations of samples that are used as negative samples during

training. With this approach, they try to eliminate the shortcoming of the previous

architecture, which is limited by its batch size. For this purpose, a memory bank is

created that stores feature vectors and is regularly updated. Memory bank stores for

each sample s its representation z (e.g. encoder output). If the sample is seen more

14

than once, the representation z is gradually updated by an exponential moving average.

Thus, the average of the representation for the sample s from different time points is

created. The simple scheme is presented in Fig. 3.2. An example of such an architecture

is the PIRL model (Misra and Maaten, 2020), which uses a memory bank for training

on visual data, or a model of Wu et al. (2018) that also uses this architecture in the

context of contrastive learning in connection with a nonparametric variant of softmax

classifier that is more scalable for big data applications. The disadvantage of this

architecture is the potential computational complexity for maintaining memory banks.

It can be challenging to quickly update stored representations.

Figure 3.2: Memory Bank architecture.

Momentum Encoder is a module that replaces the memory bank to solve the men-

tioned shortcoming that it can be computationally demanding to update the memory

bank. The momentum encoder uses a queue into which the latest mini-batch is queued

and the oldest mini-batch is dequeued. This enables building a large and consistent

dictionary on-the-fly that facilitates contrastive unsupervised learning. Momentum

encoder module shares parameters with the Q encoder, but it is not trained after

each mini-batch, but its parameters are updated using a soft-update rule, similar to

the DDPG algorithm (see Sec. 2.3.3). The momentum update makes the momentum

encoder evolve more smoothly than the Q encoder. The simple scheme is presented

in Fig. 3.3. A representative of this architecture is the Momentum Contrast (MoCo)

method (He et al., 2020). The advantage of this architecture is that there is no need to

train two encoders or maintain a memory bank, which makes it computationally and

memory efficient. MoCo V2 combined MLP projection head and stronger data augmen-

tation from SimCLR, achieving even better transfer performance with no dependency

on a very large batch size.

15

Figure 3.3: Momentum Encoder architecture.

Clustering Feature Representations architecture follows an end-to-end approach

with two encoders that share parameters, but instead of using an instance-based con-

trastive approach, they utilize a clustering algorithm to group similar features together.

The goal is not only to bring the current input and the positive sample closer to each

other, but to ensure that similar features form clusters together. For example in an

image task, features representing cats and dogs should be closer to each other than

features representing houses or cars. This architecture tries to solve the shortcoming

of all instance-based contrastive methods, where each instance is taken as a separate

class. If a cat enters the input and another cat is selected as a negative sample, the

representation model of these two samples tries to delay, although it should work in the

opposite way. This problem is implicitly addressed by a clustering-based approach. A

simple scheme is presented in Fig. 3.4. Representative of this architecture is the Deep-

Cluster (Caron et al., 2018) which iteratively clusters features via k-means and uses

cluster assignments as pseudo labels to provide supervised signals. Swapping Assign-

ments between Views (SWaV) algorithm (Caron et al., 2020) computes a code from an

augmented version of the image and tries to predict this code using another augmented

version of the same image.

In the next subsections, we present several the most frequently used contrastive loss

functions.

3.1.1 Cosine similarity

Cosine similarity is the most common similarity metric in contrastive setup that acts

as a basis for different contrastive loss functions. The cosine similarity of two feature

16

Figure 3.4: Clustering Feature Representations architecture.

vectors z and z′ is defined as the inner product of both normalized vectors

cos(z, z′) =
z⊺ · z′

∥z∥∥z′∥
(3.1)

3.1.2 Noise Contrastive Estimation (NCE)

Noise Contrastive Estimation (Gutmann and Hyvärinen, 2010) is a way of learning a

data distribution by comparing it against a noise distribution, which we define. This

allows us to cast an unsupervised problem as a supervised logistic regression problem.

It is commonly used in cases where the probability distribution of the training data is

difficult to model directly. NCE allows us to estimate the model parameters without

directly computing the partition function of the model, which can be intractable. The

partition function is a normalizing constant that is required to ensure that the proba-

bility distribution sums to one over all possible outcomes. NCE reduces the complexity

of optimization by replacing the multi-class classification problem to a binary classi-

fication problem by treating the correct class as the positive example and randomly

sampling noise classes as negative examples. Let x be the positive (target) sample from

P (x|C = 1; θ) = pθ(x) and x
′ be the negative (noise) sample from P (x|C = 0) = q(x′).

The model is then trained to distinguish between the positive and negative samples

using a logistic regression or a neural network which models the logit l of a sample

from the target data distribution instead of the noise distribution

lθ(u) = log pθ(u)− log q(u) (3.2)

The NCE loss is then defined as cross-entropy loss function

LNCE =
1

N

N∑
i=1

[log σ(lθ(xi)) + log(1− σ(lθ(x
′
i)))] (3.3)

17

where σ(·) is the sigmoid function that converts logits to probabilities. The primary

difference in implementation between NCE and Negative Sampling is that in NCE, the

probability that a sample came from the noise distribution is explicitly accounted for,

and the problem is cast as a formal estimate of the log-odds ratio that a particular

sample came from the real data distribution instead of the noise distribution. NCE is

closely related to Generative Adversarial Networks (Mirza et al., 2014), since it can be

interpreted as the discriminator part of a GAN where the generative network is fixed.

3.1.3 InfoNCE

The InfoNCE (van den Oord et al., 2018) loss is inspired by NCE and it uses cate-

gorical cross-entropy loss to identify the positive sample amongst a set of unrelated

noise samples. It is based on the concept of mutual information between two random

variables. In contrastive setup, the mutual information between two representations of

the original and positive sample is maximized, while the mutual information between

representations of original and noise (negative) samples is minimized. Given a context

vector c, the positive sample should be drawn from the conditional distribution p(x|c),
while negative samples are drawn from the proposal distribution p(x), independent

from the context c. The loss function is then defined as

LInfoNCE = −E
[
log

f(x, c)∑
x′∈X f(x

′, c)

]
(3.4)

where x′ is negative sample and f(·) is the scoring (similarity) function where f(x, c) ∝
p(x|c)
p(x)

. This connects it to mutual information defined as

I(x; c) =
∑
x,c

p(x, c) log
p(x|c)
p(x)p(c)

=
∑
x,c

p(x, c) log
p(x|c)
p(x)

(3.5)

InfoNCE was succsefully used in algorithms focused on visual tasks like SimCLR (Chen

et al., 2020a), SimCLRv2 (Chen et al., 2020b) or SupCon (Khosla et al., 2020). Joze-

fowicz et al. (2016) proposed the ranking-based version of NCE, which is equivalent to

InfoNCE.

3.1.4 Contrastive loss

Contrastive loss (Chopra et al., 2005) takes the pairs of examples as input and trains a

model to predict whether two inputs are from the same class or not. Let f(·) be some

encoder or kernel returning representation for an input sample. Specifically, the loss

can be written as

Lcont(xi, xj) = 1{ci = cj}∥fi − fj∥22 + 1{ci ̸= cj}max (0, ϵ− ∥fi − fj∥2)2 (3.6)

18

where ci and cj are the corresponding classes for inputs xi and xj, fi and fj are

abbreviation for f(xi) and f(xj) respectively, and ϵ is a margin parameter imposing

the distance between examples from different classes to be larger than ϵ.

3.1.5 N-pair loss

In the N -pair loss function, each training example is paired with several other examples

from the same class, N is the number of training examples. Contrastive loss is a special

case of N -pair loss where N = 1, as well as Triplet loss function (Schroff et al., 2015)

is special case of N -pair loss where N = 2. Triplet loss was used in face recognition

and clustering at different angles and positions. It directly learned the mapping from

face images to a compact Euclidean space where distances directly corresponded to a

measure of face similarity. The triplet loss function teaches the model to maximize the

distance between the original (called anchor in this case) and the negative sample, and

vice versa to minimize the distance between the original and the positive sample. The

loss function is defined as

Ltriplet(x, x
+, x−) =

∑
x∈X

max
(
0, ∥f(x)− f(x+)∥22 − ∥f(x)− f(x−)∥22 + ϵ

)
(3.7)

where f(·) is an encoder or a kernel returning representation for an input sample.

In order to steadily improve the model, it is critical to choose a challenging negative

sample.

The multi-class version of the N -pair loss function (Sohn, 2016a) extends the idea of

N -pair loss to the multi-class classification setting by considering all positive pairs and

negative pairs across all classes. We can consider it as generalization of Triplet loss that

includes comparison with multiple negative samples, thus getting rid of the mentioned

disadvantage. We set (N +1)-tuplet of training samples including one original sample,

one positive sample and (N−1) negative samples (x, x+, x−1 , ..., x
−
N−1). The loss is then

defined as

LN−pair(x, x
+, {x−i }N−1

i=1) = log

(
1 +

N−1∑
i=1

exp
(
f(x) · f(x−i)− f(x) · f(x+)

))
(3.8)

where · is vector dot product. If we only sample one negative sample per class, it is

equivalent to the softmax loss for multi-class classification.

3.2 Non-contrastive methods

Non-contrastive methods do not need negative samples for learning, which is one of

the disadvantages of contrastive methods. They only work with original and positive

samples.

19

A typical architecture representing non-contrastive learning is an autoencoder (AE)

(Kramer, 1992), which tries to reconstruct the input at the output, while in its “bot-

tleneck” a compressed representation (latent variable or a feature vector) is created

that captures the underlying structure of the data. That, for example, can be used in

further training or for generating synthetic data. Today, AEs are successfully used in

representation learning and have their place in RL as well. Since the feature space AE

is formed using only the reconstruction loss function, the metric of this space does not

preserve the similarity of the inputs very much. Therefore, an improved version of the

variational autoencoder (VAE) (Kingma and Welling, 2013) was introduced. The VAE

is trained using a variational lower bound on the log-likelihood of the data. This lower

bound is derived using the variational inference framework, and involves maximizing a

lower bound on the expected log-likelihood of the data with respect to a probabilistic

model of the latent variables. Last but not least, it is also possible to use a pair of en-

coders (either with shared or separated weights), similar to the case of the End-to-End

architecture described in Sec. 3.1.

3.2.1 BYOL

The main idea of Bootstrap Your Own Latent (BYOL) (Grill et al., 2020) is to train

two identical networks with the same architecture. One is called an online network

parameterized by θ, the other a target network parameterized by ξ. The online network

is trained on input samples and the target network using soft-update weights (Polyak

averaging). Both networks consist of three modules: an encoder f , a projector g and

a predictor q.

At the beginning of the training, two augmented versions v, v′ are generated from

the input x using a set of different transformations that are chosen randomly. Sub-

sequently, their representations are generated using the encoders of both networks:

yθ = fθ(v) and y′ = fξ(v
′). These are then mapped in the latent space using pro-

jectors: zθ = gθ(yθ) and z′ = gξ(y
′). Finally, the online network returns a prediction

qθ(zθ). The loss function Lv is defined as

Lv = MSE

(
qθ(zθ)

|qθ(zθ)|
,
z′

|z′|

)
(3.9)

The loss function Lv′ is defined analogously, but the inputs are reversed, v′ is at the

input of the online network and v is at the input of the target network. The final loss

function then takes the form

LBYOL = Lv + Lv′ (3.10)

This encourages the online network to learn a shared representation of data that is

robust to different augmentations, while the target network serves as a slowly moving

20

target for the online network. Unlike most popular contrastive learning based ap-

proaches, BYOL does not use negative pairs. Most bootstrapping approaches rely on

pseudo-labels or cluster indices, but BYOL directly boostraps the latent representation.

3.2.2 Barlow Twins

Barlow Twins algorithm (Zbontar et al., 2021) learns a shared representation of data

by minimizing a new loss function that encourages the cross-correlation between the

feature vectors of two randomly augmented views of the same input image to be close

to a target cross-correlation matrix. Specifically, the loss function is designed to decor-

relate the feature vectors of the two views while preserving the information content in

the data. It naturally avoids trivial solutions (i.e. constant representations), and is

robust to different training batch sizes. The algorithm creates two augmented versions

y and y′ of the input x and maps them to their feature vectors z and z′ using an

encoder. The loss function is defined as

LBT =
∑
i

(1− Cii)
2 + λ

∑
i

∑
i ̸=j

C2
ij (3.11)

where λ is the scaling parameter, C is the cross-correlation matrix computed between

outputs from two identical networks along the batch dimension. Cij is the cosine

similarity between the network output vectors zi and z
′
j, where i, j are the dimension

indices. Feature vectors z, z′ are normalized along the batch dimension. The first term

of the loss function ensures invariance, while the second term reduces redundancy in

feature vectors.

3.2.3 VICReg

VICReg (Bardes et al., 2022) means variance, invariance, covariance regularization. It

is an improved successor of the Barlow Twins algorithm, which uses the three mentioned

regularization losses to create a suitable feature space. The model has one encoder and

works the same as Barlow Twins, it receives two augmented versions of the input

sample and maps them to feature vectors. The variance regularization term Lv(Z) is
defined as a hinge function on the standard deviation of the features along the batch

dimension

Lv(Z) =
1

d

d∑
j=1

max(0; τ − σ(Zj)) (3.12)

where d is the dimensionality of the feature space, Zj is j-th feature vector from the

batch Z, σ is the actual standard deviation and τ = 1 is a constant target value for

21

the standard deviation. The covariance regularization term Lc(Z) is defined as the sum

of the squared off-diagonal coefficients of the covariance matrix C(Z)

Lc(Z) =
1

d

∑
i ̸=j

[C(Z)]2i,j (3.13)

The invariance criterion Ls(Z,Z′) between two batches Z and Z ′ is defined as the mean-

squared Euclidean distance between each pair of feature vectors

Ls(Z,Z′) =
1

d

d∑
i=1

∥Zi − Z ′
i∥22 (3.14)

The overall loss LVIC then takes the form

LVIC = λLs(Z,Z′) + µ
[
Lv(Z) + Lv(Z′)

]
+ ν

[
Lc(Z) + Lc(Z′)

]
(3.15)

where λ, µ and ν are the scaling parameters.

In our research, we decided to test one method from both SSL categories. We chose

an algorithm using N -pair loss function as a representative of contrastive learning and

VICReg as a representative of a non-contrastive approach. In terms of computational

and memory requirements, non-contrastive methods appear to be more advantageous,

which was also confirmed in the results of our experiments.

22

Chapter 4

Intrinsic motivation

Motivation represents a complex of psychological phenomena such as novelty, surprise,

incongruity or challenge. Therefore, various theories have been developed, out of which

we will briefly describe some:

• Theory of drives (Hull, 1943) is based on a statement that humans are looking

for options to secure their basic needs, to explore the environment (Montgomery,

1954), or look for ways to control it (Harlow, 1950).

• Theory of effectance (White, 1959) is described as the desire for effective inter-

action with the environment.

• Theory of cognitive dissonance (Festinger, 1962) explains motivation as a reduc-

tion in the differences between the experience gained and the expectations that

were created in internal cognitive structures.

• Optimal incongruity theory (Hunt, 1965) proposes that a person is motivated by

stimuli that differ from the standard stimuli the person has already experienced.

• Theory of “Flow” (Csikszentmihalyi, 1991) assigns the greatest motivation to

solving problems with optimal difficulty. In simple tasks, a person begins to get

bored quickly, and on the other hand, without the ability to find a solution a

person becomes frustrated.

• Synchronicity detection is a crucial mechanism in object interaction skills (Wat-

son, 1972) or self-modelling (Rochat and Striano, 2000).

In formalizing the concept of motivation, we can divide it into external and internal,

depending on the mechanism that generates motivation for the agent. If the source

of motivation comes from outside, we are talking about external motivation, and it

23

is always associated with a particular goal in the environment. If the motivation is

generated within the structures that make up the agent, it is an internal motivation.

Another dimension for the differentiation, extrinsic or intrinsic, is less obvious (see

also Morris et al. (2022)). Extrinsic motivations pertain to behaviors whenever an

activity is done in order to attain some separable outcome (Oudeyer and Kaplan, 2009).

Some variability exists in this context, since these behaviors can vary in the extent to

which they represent self-determination (see the details in Ryan and Deci (2000)). On

the other hand, intrinsic motivation is defined as doing an activity for its inherent

satisfaction rather than for some separable consequence (or instrumental value). It

has been operationally defined in various ways, backed up by different psychological

theories, which point to some uncertainty in what intrinsic motivation exactly means.

Nevertheless, Baldassarre (2019) offers a solution of an operational definition of intrinsic

motivation as processes that can drive the acquisition of knowledge and skills in the

absence of extrinsic motivations. Furthermore, the author proposes (and explains why)

a new term of epistemic motivations as a suitable substitution for intrinsic motivations.

Despite some uncertainty, intrinsic motivation has remained a well coined term in the

literature.

Intrinsic motivation has a strong biological basis (Morris et al., 2022; Ryan and

Deci, 2000) since it is observed among higher animals, especially in humans, keep-

ing them engaged in various activities. Intrinsic motivation appears early in life and

guides the biological agents during their entire life. Intrinsic motivation is considered

one of the prerequisites for open-ended (or, life-long) learning. If we want to achieve

this capacity with artificial agents (Parisi et al., 2019), we have to master this first

step and equip the agents with an ability to generate their own goals and acquire new

skills. Therefore, computational approaches concerned with intrinsic motivations and

open-ended development provide the potential in this direction leading to more intelli-

gent systems, in particular those capable of improving their own skills and knowledge,

autonomously and indefinitely (Baldassarre, 2019; Baldassarre et al., 2014).

Intrinsic motivation is a crucial factor that helps the agent not only to remain in

open-ended learning hence solving different tasks (Parisi et al., 2019), but it also helps

to solve single difficult tasks with extremely sparse rewards.

There exists a variety of approaches aiming to use intrinsic motivation signal for

agent learning. Information-theoretic view on intrinsic motivation is well represented

in the literature, involving the concepts of novelty, surprise and skill-learning. The

recent review (Aubret et al., 2023) suggests that novelty and surprise can assist the

building of a hierarchy of transferable skills which abstracts dynamics and makes the

exploration process more robust. In this context, abstraction is a key feature of the

24

agent’s architecture where it makes sense to introduce learning mechanisms to enforce

formation of proper internal representations that lead to improved agent’s performance.

In the following subsections we present different approaches to intrinsic motivation.

The main categorization is influenced by earlier work of Oudeyer and Kaplan (2009).

The computational approaches to intrinsic motivation can be divided into three main

categories:

1. Knowledge-based approach is focused on exploration of the environment and con-

tains prediction-based, novelty-based, information-based and learning progress

methods. This approach is based on the theory of drives, theory of cognitive

dissonance and optimal incongruity theory.

2. Competence-based approach motivates the agent to achieve higher level of per-

formance in the environment. Which means to acquire desired actions to achieve

self-generated goals. Its psychological basis includes theory of effectance and the

theory of flow.

3. Morphological approach is based on the synchronicity detection theory and mo-

tivates the agent to stay in more or less (depending on the motivation signal)

stable state according only to its sensory inputs.

In the context of RL, intrinsic motivation can be realized in various ways, but most

often it is a new reward signal rintrt scaled by parameter η > 0, which is generated by

the motivational part of the model (we refer to it as the motivational module) and is

added to the external reward rextt

rt = rextt + η rintrt (4.1)

The general scheme of the agent with motivation can be found in Fig. 4.1.

4.1 Knowledge-based category

During the learning process, the agent must explore the environment to encounter an

external reward and to learn to maximize it. This can be ensured by adding noise to

the actions, if the policy is deterministic, or it is already its property, if the policy is

stochastic. In both cases, we say that these are uninformed environmental exploration

strategies. The problem arises if the external reward is very sparse and the agent cannot

use these strategies to find the sources of reward. In such a case, it is advantageous

to use informed strategies, which include the introduction of intrinsic motivation. The

goal of introducing such a new reward signal is to provide the agent with a source of

25

Figure 4.1: Simplified architecture of an agent with intrinsic motivation.

information that is absent from the environment when the reward is sparse, and thus

to facilitate the exploration of the environment and the search for an external reward.

This approach is focused on the agent’s knowledge of the environment, and rewards

are given e.g. for observing situations which were not anticipated by some internal

module modelling the environment dynamics or were anticipated and did not occur. It

models phenomena such as uncertainty, novelty, surprise and familiarity.

The knowledge-based category focusing on exploration can be divided into prediction-

based, novelty-based and information-based approaches (Aubret et al., 2019). But we

want to emphasize that the inclusion in these categories is ambiguous, because these

approaches are often combined and therefore it is not possible to establish a clear tax-

onomy of these methods. We analyze this category in more detail than the others,

since our method also belongs to it.

4.1.1 Prediction-based approach

In general, these methods operate by learning a function that predicts some target

quantity based on the input quantity and use the error of this function et (predictive

error) as a signal for internal motivation. Lee et al. (2019) provides a theoretical con-

nection of exploration based on the predictive error with a problem of state marginal

matching, where the aim is to learn a policy for which the state marginal distribu-

tion matches a given target state distribution. General architecture is presented in

Figure 4.2.

Schmidhuber (1991) was among the first to use this approach, he introduced a fully

recurrent neural model consisting of two components. The first one was the controller

26

Figure 4.2: General architecture of agent with prediction-based approach to intrinsic

motivation.

whose aim was to learn to maximize reward and to minimize pain (there were two input

units coding this information). The second component was trying to predict the next

input based on the current input and the action of the controller, and the main goal

was to build a model of the world. The controller got rewarded for action sequences

leading to still unpredictable inputs.

Predictive error motivation methods have at their core a forward model that

learns to predict the dynamic consequences of the agent’s actions. The difference

between the predicted next state and the observed next state then serves as a source of

intrinsic motivation. The assumption is that the forward model will more accurately

predict frequently experienced transitions between states, so its high prediction error

can be a suitable signal informing the agent that it is experiencing something new and

unexpected.

Intrinsic Curiosity Module (ICM) (Pathak et al., 2017) extended agent implement-

ing A3C algorithm (controller) with ICM in the role of a predictor, generating intrinsic

reward, which is presented in Figure 4.3. It was composed of a feature extraction

convolution network, a forward model and an inverse model.

The aim of the feature extraction network was to transform a high-dimensional

input st into the feature vector Φ(st), motivated by the hypothesis that it could en-

hance generalization what was supported by results in their work. The inverse model

predicted an action ât from the feature vectors Φ(st) and Φ(st+1) of two successive

states. The optimization of the inverse model played supportive role for the learning

of feature vectors. The forward model obtained feature vector of the current state

27

Figure 4.3: Intrinsic Curiosity Module scheme.

Φ(st) and action at on the input and learned to predict feature vector of the next state

Φ̂(st+1). Both forward and inverse models were implemented by feedforward neural

networks. The intrinsic reward signal was computed as a Euclidean distance between

the predicted and the actual next state

rintrt =
η

2
∥Φ̂(st+1)− Φ(st+1)∥22 (4.2)

where η
2
is the scaling factor.

Intrinsically-motivated self-aware agent (Haber et al., 2018) architecture employees

the world-model which solves a dynamics prediction problem. Simultaneously, a self

model seeks to predict the world model’s loss. Actions are chosen to antagonize the

world model, leading to novel and surprising events in the environment.

Model-Based Active eXploration (MAX) (Shyam et al., 2019) uses an ensemble of

forward models to plan observing novel events. The measure of novelty is derived from

the Bayesian perspective of exploration, which is estimated using the disagreement

between the features predicted by the ensemble members.

Plan2Explore (Sekar et al., 2020) is an agent, which during exploration leverages

planning to seek out expected future novelty. It’s model is using self-supervised learning

to create world model and ensemble of predictors (forward models), predicting the

next state in the latent space of the world model. Model uncertainty is quantified

as the variance over the predicted means of the different ensemble members, and this

disagreement is used as the intrinsic reward

rintrt = Var ({µ(wk, st, at) | k ∈ [1;K]}) (4.3)

where wk are parameters of k-th predictive model and K is a number of predictive

models in an ensemble.

Exploration with Mutual Information (EMI) (Kim et al., 2018) extracts predictive

signals that can be used to guide exploration based on the forward prediction in the

representation space. The model seeks to learn the representation of states ϕ(st) and

the actions ψ(at) such that the representation of the corresponding next state ϕ(st+1)

28

follow the linear dynamics i.e. ϕ(st+1) = ϕ(st)+ψ(at). Further there is the error model

S which takes the state and action as input and estimates the irreducible error under

the linear model. The intrinsic reward is defined as

rintrt = ∥ϕ(st) + ψ(at) + S(st, at)− ϕ(st + 1)∥2 (4.4)

Predictive surprise motivation rewards the states that occur and were not ex-

pected or do not occur and were expected (Oudeyer and Kaplan, 2009). This is a

simple definition of surprise which is modelled by this approach. To formalize expec-

tations the second predictor MetaΠ is introduced, which aims to predict the error et

of the first predictor Π at time t

MetaΠ(st) = ẽt (4.5)

where ẽt is the predicted absolute error of predictor Π. Based on the ratio of predicted

error ẽt and real error et, the intrinsic reward is defined as

rintrt = C · et
ẽt

(4.6)

This reward would provide high values for highly surprising situations. Pecháč and

Farkaš (2021) tested this concept on several continuous environments, where was used

gating of the predictive error. The source of predictive error was the forward model Π

and surprise was modeled as in eq. 4.6, where the meta-critic module MetaΠ estimated

the error of the forward model. Such an approach showed a slight improvement in

some tasks. The intrinsic reward was defined as

rintrt = max(ϵfm tanh(rifmt), ϵmc tanh(r
imc
t)) (4.7)

where ϵfm and ϵmc are scaling factors, rifmt is equal to error of forward model and rimc
t

is surprise generated by meta-critic as

rimc
t =

et/êt + êt/et − 2, if |et − êt| > σ

0, otherwise
(4.8)

where êt is the estimation of the forward model error et.

Predictive familiarity motivation is an opposite to the previous approach (Oudeyer

and Kaplan, 2009). This one motivates the agent to search known predictable states

and the intrinsic reward has a form

rintrt = C · 1
et

(4.9)

The predictive error et can be substituted by the mean of the error
〈
eRn
t

〉
over the

states belonging to the same region Rn and then the intrinsic reward is transformed to

rintrt = C · 1〈
eRn
t

〉 (4.10)

29

Figure 4.4: General architecture of an agent with novelty-based approach to intrinsic

motivation.

4.1.2 Novelty-based approach

The novelty-based approaches monitor the state novelty nt and the intrinsic signal is

based on its value. There is a relatively large group of methods that express novelty

in some form of count, where generalized count is a novelty measure that quantifies

how dissimilar a state is from those already visited. General architecture is presented

in Figure 4.4.

Count-based methods try to count the number of visits to each state and reward

the agent for visiting a state that has a low or zero counter value. Model-based Interval

Estimation with Exploration Bonus algorithm (Strehl and Littman, 2008) (MBIE-EB)

was based on count-based approach and the idea of providing an exploration bonus

reward depending on the state-action visit-count was originally under a tabular setting.

Estimates of the Q function were realized by solving the MPD model and estimating its

R and T functions. Subsequently, the internal motivation in the form of the inverted

square root of the count of transitions n(s, a) was added to the estimate of the Q

function as follows

Q̃(s, a) = R̂(s, a) + γ
∑
s′

T̂ (s′|s, a)max
a′

Q̃(s′, a′) +
β√
n(s, a)

(4.11)

Implementation of this approach requires introduction of a look-up table which will

store each count for each state–action pair (or state). Obviously it is limited to en-

vironments with a small state space due to the exponential increase in memory con-

sumption as the size of the space state increases. Also in large state spaces there is

30

only a small chance that one state is visited more times and thus the quantity counting

visits cannot help to evaluate novelty of the state.

Pseudo-count was introduced by Bellemare et al. (2016) as a solution for problems

with implementations of count methods under a tabular setting, and proposed an algo-

rithm for deriving a new quantity denoted as pseudo-count from an arbitrary density

model. This enabled to generalize count-based methods to environments with large

or continuous state spaces. Pseudo-count function N̂n(s) and pseudo-count total n̂

are derived from two linear equations expressing the property that after observation

of instance of state s the density models increase in prediction of the same state s

corresponds to unit increase in pseudo-count.

ρn(s) =
N̂n(s)

n̂
(4.12)

ρ′n(s) =
N̂n(s) + 1

n̂+ 1
(4.13)

The variable ρ′n(s) above is the recoding probability of a state s defined as

ρ′n(s) = ρ(s; s1:ns) (4.14)

ρ′n(s) = pρ(Sn+2 = s|S1...Sn = x1:n, Sn+1 = s) (4.15)

where s1:ns means concatenating s to former sequence s1:n. The pseudo-count itself is

then defined as

N̂n(s) =
ρn(s)(1− ρ′n(s))

ρ′n(s)− ρn(s)
= n̂ρn(s) (4.16)

and the intrinsic motivation reads as

rintrt =
β√
N̂n(s)

(4.17)

Pseudo-count has additional important properties making it a good choice for use

instead of empirical count: (1) it is almost zero for unvisited states, (2) it grows

linearly with empirical counts, (3) it respects the ordering of state frequency, (4) it

exhibits credible magnitudes, and (5) is robust w.r.t. the presence of non-stationary

data.

Bellemare et al. (2016) used a Context-Tree Switching (CTS) (Veness et al., 2012)

density model, while Ostrovski et al. (2017) used PixelCNN and PixelRNN generative

models (Van Den Oord et al., 2016) as the state density estimators. Their advantage

was that they were able to calculate internal motivation in the online mode.

Count-Based Exploration based on hash functions (Tang et al., 2017) maps states st

to hash codes Φ(st), which allows to count their occurrences within a hash table. These

counts are then used to compute a reward bonus according to the classic count-based

31

exploration theory. The authors compared an approach with a regular hash function

(SimHash) with an approach with a learned hash function Φ(st) obtained using the

latent space of the auto-encoder. The intrinsic motivation than has form

rintrt =
β√

n(Φ(s))
(4.18)

where n(·) is counter function (lookup table). ϕ-exploration bonus method (Martin

et al., 2017) (ϕ-EB) constructs a density model over the feature space that assigns

higher probability to states that share more features with more frequently observed

states. This is a straightforward extension of the pseudo-count idea. Their Φ-pseudo-

count is then defined as

N̂Φ
n (s) =

ρn(Φ(s))(1− ρ′n(Φ(s)))

ρ′n(Φ(s))− ρn(Φ(s))
(4.19)

where Φ is the feature extractor. The intrinsic motivation reads as

rintrt =
β√
N̂Φ
n (s)

(4.20)

Count-Based Exploration via Embedded State Space method (Liu et al., 2022) uses

an embedding network Φ and an inverse model, which tries to predict an action based

on two embedding vectors for the state and its successor. Its loss serves as a signal

source that forms the embedding space. When calculating the internal reward, the

embedding for the given state is used and encoded with a hash function using SimHash

algorithm (Sadowski and Levin, 2007). Next, the counts in the hash function are

updated for state embedding. The intrinsic motivation has form

rintrt =
β√

n(Φ(s))
(4.21)

Count-Based Exploration with the Successor Representation (Machado et al., 2020)

shows that the norm of the successor representation, while it is being learned, can be

used as a reward bonus to incentivize exploration. In order to better understand

this transient behavior of the norm of the SR the authors introduce the substochastic

successor representation and show that it implicitly counts the number of times each

state (or feature) has been observed. The intrinsic motivation is defined as

rintrt =
1

∥Ψ(st, θ−)∥1
(4.22)

where Ψ(st, θ
−) denotes the successor features of the state st parametrized by θ−. These

are parameters of the target network, which is updated less often for stability purpose.

Features for the successor representation Ψ(st, θ
−) are created based on the output of

the feature extractor Φ. An auxiliary task is used for its training, in which the agent

has to predict the next state st+1.

32

Distillation-based methods define novelty as a measure of inconsistency between

two models, one of which maps the state in the feature space (works as a feature

extractor) and the other tries to distill its knowledge. More formally, the target model

ΦT generates features, and the learned model ΦL tries to replicate them. This process

is called knowledge distillation. Intrinsic motivation, expressed as an intrinsic reward,

is computed as the distillation error

rintrt = ∥(ΦL(st)− ΦT(st))∥2. (4.23)

It is assumed that the learned model will be able to more easily replicate feature vectors

for states it has seen multiple times, while new states will induce a large distillation

error. The Random Network Distillation (RND) (Burda et al., 2018) model, shown in

Fig. 4.5, is a representative of this type of intrinsic motivation. Never-give-up (NGU)

framework (Badia et al., 2020) introduces intrinsic reward that combines per-episode

and life-long novelty to explicitly encourage the agent to repeatedly visit all controllable

states in the environment over an episode. Life-long novelty multiplicatively modulates

the episodic similarity signal and is driven by a RND error. Episodic novelty uses

an episodic memory filled with all previously visited states, encoded using the self-

supervised objective of Pathak et al. (2017) to avoid uncontrollable parts of the state

space. Episodic novelty is then defined as a similarity of the current state to previously

stored states.

Figure 4.5: The basic principle of generating an exploration signal in random network

distillation.

4.1.3 Information-based approach

Information-based approaches use concepts from information theory (Shannon, 1948),

such as information gain, mutual information, or entropy, and try to maximize the

information obtained by the agent from the environment. These methods assume

that the agent has information quantity estimator (e.g. for estimating probability

distribution of states across the state space S) and yields some information metric

33

Figure 4.6: General architecture of agent with information-based approach to intrinsic

motivation.

it. General architecture is presented in Figure 4.6. Information-based methods use

information metrics either directly to calculate intrinsic motivation or as supporting

loss functions.

Predictive information motivation is based on information quantity denoted pre-

dictive information (Bialek et al., 2001; Bialek and Tishby, 1999) and motivates the

agent to search for novelty states which are unpredictable. It is defined for temporal

sequence of random variable S as the mutual information between the past and the

future

PI(S) =MI(Sp;Sf) (4.24)

where Sp = {s0, s1, ..., st} represents entire sequence of observed states st and Sf =

{st+1, st+2, ...} represents all future states that will be observed. It can be also defined as

Kullback–Leibler divergence between the joint distribution PSp,Sf
(s, s′) and the product

of the independent distributions PSp(s) and PSf
(s′)

PI(S) = DKL(PSp,Sf
(s, s′)∥PSp(s)PSf

(s′)) (4.25)

It is obvious that exact calculation is impossible because we have no knowledge about

the entire future, so there is employed one-step predictive information PI∗ defined as

the difference between the entropy of st+1 and the conditional entropy of st+1 given st

PI∗(s) = MI(st+1; st) (4.26)

= H(st+1)−H(st+1|st) (4.27)

34

The first term leads to maximization of exploration behaviour of the agent which is

driven to observe every state with equal probability and the second term expresses

uncertainty of the next state st+1 when the agent possesses some knowledge about the

current state st which pushes the agent to choose actions leading to predictable states.

The intrinsic reward can be defined as

rintrt = C · PI∗(st) (4.28)

There were elaborated two forms of combining extrinsic and intrinsic reward based

on predictive information, oth were tested on embodied agents in a continuous envi-

ronment and yielded different results. In one form (Montúfar et al., 2016) the reward

signal was

rintrt =
∑
s′

pt(s
′|st−1) log

pt(s
′|st−1)

pt(s′)
(4.29)

where pt is the empirical distribution of states from the last T ′ time step and the whole

reward for the agents is computed as a product of extrinsic and intrinsic signal

rt = (rextrt)ξ · (rintrt)1−ξ (4.30)

This avoids optimization of only one of the rewards, but there is an assumption that

the agent receives extrinsic reward after each action, otherwise the whole reward would

be zero and intrinsic reward would not be taken into account.

There were proposed other modifications, such as

rt = f
[
(rextrt)ξ · (rintrt)1−ξ

]
(4.31)

= sign(rextrt)
[
(rextrt)ξ · (rintrt)1−ξ

]
(4.32)

where f is some monotonic (decreasing) function. In this experiment the agent was a

simulated hexapod and its goal was to walk the maximal distance in a limited time.

Employing such a signal showed that it improved learning speed and the agent reached

more extrinsic reward with the intrinsic signal than without it. The best results were

achieved for ξ = 0.75.

On the other hand, similar experiments were done by Zahedi et al. (2013) who

considered episodic tasks in a continuous environment and defined intrinsic reward as

a linear combination of extrinsic reward and one-step predictive information

rt = rextrt + β rintrt = rextrt + β PI∗(st) (4.33)

where β is the factor scaling with respect to the maximal external reward. They

performed three different experiments. One was a cart-pole swing-up task, the second

and the third involved hexapod locomotion and self-rescue task. After evaluation of

the experiments they observed no significant effect of predictive information signal on

learning compared to set-ups where the agent only received extrinsic reward.

35

Information gain is a measurement of the reduction in uncertainty about a random

variable based on new information. It helps the agent make better decisions by choosing

the action that leads to the greatest reduction in uncertainty about the environment.

It is equal to Kullback–Leibler divergence (Kullback and Leibler, 1951) of probability

distributions Q and P . It is defined as the difference between the cross-entropy and

the entropy

DKL(P∥Q) = H(P,Q)−H(P) (4.34)

and after substitution and rearrangements

DKL(P∥Q) = −
∑
i

P (i) log

(
Q(i)

P (i)

)
(4.35)

It can be also defined as a difference between entropies of the same state in two time

steps t0 and t1

IG(s) = H(s, t0)−H(s, t1) (4.36)

Then the intrinsic reward is proportional to the information gain for state s

rintrt = η · IG(st) = η ·H(st, t− 1)−H(st, t) (4.37)

One of the drawbacks is that it can be computationally expensive to estimate informa-

tion gain in continuous environments.

Pseudo-count (Bellemare et al., 2016), that was mentioned in Sec. 4.1.2, can be

also connected to information gain which is commonly used in intrinsic motivation. To

make such a connection one needs to introduce the mixture model ξ over a class of

density models M

ξn(s) = ξ(s; s1:n) =

∫
ρ∈M

wn(ρ)ρ(s; s1:n)dρ (4.38)

where wn(ρ) is the posterior weight of ρ and is defined recursively, starting from a prior

distribution w0 over M

wn+1(ρ) = wn(ρ, sn+1) (4.39)

wn(ρ, s) =
wn(ρ)ρ(s; s1:n)

ξn(s)
(4.40)

In Bayesian inference Kullback–Leibler divergence DKL(P∥Q) is defined as a measure

of the information gained from correction of one’s beliefs from the prior probability

distribution Q (which can be interpreted as a theory or a model of P) to the posterior

probability distribution P (interpreted as observation or true distribution of data)

(Burnham and Anderson, 2003). Then information gain of state s can be defined as

Kullback–Leibler divergence from prior to posterior

IGn(s) = IG(s; s1:n) = DKL(wn(·, s)∥wn) (4.41)

36

The authors introduced a quantity called prediction gain which provides good approx-

imation to information gain of density models. It is defined as the difference between

the logarithm of recoding probability and the logarithm of probability, both obtained

from the density model ρ

PGn(s) ≈ IGn(s) (4.42)

PGn(s) = log ρ′n(s)− log ρn(s) (4.43)

This quantity can then be related to the pseudo-count

N̂n(s) ≈
1

exp(PGn(s))− 1
(4.44)

Variational Information Maximizing Exploration (VIME) (Houthooft et al., 2016)

approximates the environment dynamics and uses the information gain of the learned

dynamics model as intrinsic rewards. Bayesian neural network (BNN) (Graves, 2011)

implements agent’s dynamics model. Intrinsic motivation was then defined as

rintrt = DKL

[
q(θ;ϕ

′

t+1)∥q(θ;ϕt+1)
]

(4.45)

where q(θ, ϕ) is the dynamics model (BNN) weight distribution, ϕ is prior distribution

of the dynamics parameters and ϕ′ is posterior distribution of the dynamics parameters.

According to this motivational signal, the agent should take actions that maximize the

reduction in uncertainty about the environment dynamics.

State Entropy explicitly encourage the agent to uniformly visit all states by max-

imizing the entropy of the state distribution. The theoretical basis for methods of

internal motivation based on the maximization of state entropy is provided by Hazan

et al. (2019) and to compute state entropy they used state density estimation. Random

Encoders for Efficient Exploration (RE3) (Seo et al., 2021) is an exploration method

that utilizes state entropy as an intrinsic reward. The key idea of RE3 is k-nearest

neighbor entropy estimation in the low-dimensional representation space of a randomly

initialized encoder. Intrinsic motivation was defined as

rintrt = log(∥yi − ykNNi ∥2 + 1) (4.46)

where yi = fθ(si) is a fixed representation from a random encoder f and ykNNi is the

k-th nearest neighbor of yi within a set of N representations y1, y2, ..., yN . Seo et al.

(2021) claim that measuring the distance between the states in the fixed representation

space produces a more stable intrinsic reward, since the distance between a given pair

of states does not change during training.

37

Active Pre-Training (APT) method proposed by Liu and Abbeel (2021) uses unsu-

pervised pre-training method for generating suitable representations and non-parametric

particle-based entropy estimator (Singh et al., 2003) for generating intrinsic reward.

The key idea is to explore the environment by maximizing a non-parametric entropy

computed in an abstract representation space (created by contrastive learning), which

avoids challenging density modeling. The reward function for each transition is given

by

rintrt = log

1

k

∑
z(j)∈Nk(fθ(s))

∥fθ(s)− z(j) + 1∥2

 (4.47)

where fθ is a trained encoder, Nk(·) denotes k nearest neighbors around a particle z.

Uncertainty motivation rewards visitation of states that have low probability of

observation (Oudeyer and Kaplan, 2009). The intrinsic reward after observation of

state st is defined as inversely proportional to the probability p(st)

rintrt = C · (1− p(st)) (4.48)

where C is the scaling parameter. This signal would lead to behaviour denoting op-

timism in the face of uncertainty and we can model a phenomenon of novelty for the

agent.

4.1.4 Learning progress approach

Learning progress methods are based on an idea to reward the decrease of prediction

errors. The basic approach is to compare the mean of prediction errors between two

times, t and t−θ. This may lead to confusions in situations where the transition which

leads from highly unpredictable states to highly predictable is rewarded but they are

absolutely qualitatively different and thus incomparable. Therefore, the agent has to

compare qualitatively equal situations which are parts of regions Rn(st) of the state

space split by some mechanism. As an example we provide a mechanism based on

threshold Tf such that the region

Rn(s
i
t) =

{
sjt |dist(s

j
t , s

i
t) < Tf)

}
(4.49)

The intrinsic reward is then defined as

rintrt =
〈
eRn
t−θ
〉
−
〈
eRn
t

〉
(4.50)

where
〈
eRn
t

〉
is the mean prediction error of the state that belongs to the region Rn.

38

4.2 Competence-based category

Competence-based approach computes intrinsic reward using a measure of competence

of the agent to achieve a self-determined goal. In other words it should drive the

agent to acquisition of multiple skills. This approach is appropriate for hierarchical

reinforcement learning (particularly option framework (Sutton et al., 1999)) paradigm

where one option can be considered as one skill and competence-based motivation can

boost their learning. The competence of the agent can be defined as an ability to reach

the desired goal in reasonable time.

The basic idea is that the agent itself generates a goal (it may be some desired state)

denoted gk. The agent’s component, which chooses actions (the planning system) and

is responsible for reaching of the goal gk, generates a plan that is later performed.

The execution of actions can be stopped when the goal gk is reached or the number

of steps exceeds the limit Tg. The process of learning is divided into episodes where

each episode is indexed by time step tg. An episode begins after generating a new

goal gk and ends when the agent reaches the goal g̃k(tg). At the end of the planned

sequence the reached goal g̃k(tg) is compared to the desired goal gk(tg) and the level of

achievement (performance) is computed as

la(gk, tg) = ∥g̃k(tg)− gk(tg)∥ (4.51)

The following methods of competence-based approach are based on the level of achieve-

ment la(gk, tg). General architecture is shown in Fig. 4.7.

Maximization of incompetence motivation drives the agent to reaching goals

where it has low level of achievement so it is highly motivated for the most challenging

tasks (Oudeyer and Kaplan, 2009). The following equation defines intrinsic reward

obtained at the end of episode

rintrt = C · la(gk, tg) (4.52)

In the case that there is high variance in the reaching of the desired goal, it is more

suitable to use mean value of level of performance the same goal gk. Then the equation

would be

rintrt = C · ⟨la(gk, tg)⟩ (4.53)

In the next step one could introduce segmentation of goals into regions Rn to enhance

generalization such that

Rn(gk) = {gl|dist(gk, gl) < σg} (4.54)

39

Figure 4.7: General architecture of competence-based approach to intrinsic motivation.

where σg is some threshold and dist is the distance function. There is defined goal

gRn
k ∈ Rn and intrinsic reward as the mean of performance in reaching the goal gRn

k

rintrt = C · ⟨la(gRn
k , tg)⟩ (4.55)

= C · ⟨la(gσgk , tg)⟩ (4.56)

The main drawback of this approach could be pushing the agent to reach goals which

are unreachable (e.g. a child trying to reach the ceiling) or have a small impact on the

whole task.

Maximizing competence progress addresses the problem mentioned above and

instead of measuring performance, it measures progress in performance and so the goals

where there is no progress are no more interesting for the agent and thus it can focus

on other goals, which are reachable for it (Oudeyer and Kaplan, 2009). This method is

influenced by the theory of flow and seems to be a good way for its implementation in

agents. The intrinsic reward is defined as a difference between two levels of performance

at time t and time t− θ (the previous attempt) for the same goal gk

rintrt = C · [la(gk, tg − θ)− la(gk, tg)] (4.57)

We can apply an extension from previous method dealing with high variance in perfor-

mance where instead of subtracting performance in one episode, we subtract the mean

of performance

rintrt = C · [⟨la(gk, tg − θ)⟩ − ⟨la(gk, tg)⟩] (4.58)

40

The goals can also be segmented into regions to improve generalization, then the in-

trinsic reward would be

rintrt = C ·
[
⟨la(gσgk , tg − θ)⟩ − ⟨la(gσgk , tg)⟩

]
(4.59)

These two methods were further elaborated and explored in Santucci et al. (2013)

where a simple set of 8 tasks was proposed. Two of these tasks were easy to reach (the

agent needed less than 2000 trials to do that), two were difficult (more than 20000 trials)

to reach and four were unreachable. The agent (shown in Figure 4.8) was composed

of a predictor, a selector and a controller. The controller contained n = 8 actor-critic

experts, each dedicated to one task. The selector was implementing Q-value function

where the action was selecting one expert with probability Pk computed by softmax

rule

P k
t =

exp(Qk
t /τ)∑n

i=0 exp(Q
i
t/τ)

(4.60)

The selector updates its Q-values using a simple rule

Qk
t+1 = Qk

t + α
[
rintrt −Qk

t

]
(4.61)

where rintrt is the intrinsic reward calculated from the predictor. The predictor outputs

the values in the range [0, 1], where 1 means absolute certainty that the chosen expert

will reach the goal and 0 means the opposite.

Figure 4.8: Architecture of the hierarchical system of actor–critic experts. Adapted

from Santucci et al. (2013).

The authors identified several forms of predictors generating errors belonging to

maximizing incompetence or maximizing competence progress methods:

• State–action predictor – in this case the predictor has state st and action at

on the input and if predicts if the next state will reach the goal and complete the

task. The predictor makes such predictions step-by-step and is trained through

the delta rule.

41

• State predictor – has only the state st on the input and is more closely coupled

to the competence of the system than the previous method. The predictor is also

trained through a delta rule and runs in a similar fashion as the first method.

• Temporal difference state–action predictor – is a slightly modified version

of the state-action predictor which does not work well in continuous environments

as shown in experiments by Santucci et al. (2014). This predictor is trained using

the TD rule.

• Temporal difference state predictor - is a modified version of the state pre-

dictor, trained using the TD rule.

• Task predictor – was proposed by Santucci et al. (2012) and shows the best

coupling to the competence of the agent in the related skill. At the beginning

of the trial, there is only a binary vector on the input, encoding which expert

was selected (that means which task is going to be solved) and the predictor

yields if the expert will be successful or not. Without any further information

its anticipating of the achievement of the target state is solely dependent on the

agent’s competence in that skill. The predictor is trained through the delta rule.

• Temporal difference predictor – uses TD error from the critic of the selected

expert which can be considered as the measure of achieving the competence.

All listed forms of predictors can generate an error that can be transformed to

a variant where we calculate the difference between errors from two time steps (or

a difference between the means of errors) exactly like was described in maximizing

competence progress paragraph.

The results showed that in case the authors used maximizing incompetence method,

the most successful predictor was task predictor. Somewhat less optimal performance

to be was achieved by TD variants of state predictor and state-action predictor and

their “delta” variants proved inappropriate. When they used maximizing competence

progress method for computation of reward, the task predictor showed once again the

most suitable, but the other forms of predictor reached qualitatively comparable results.

Maximizing competence can be defined as motivation pushing the agent to im-

prove well-mastered skills (Oudeyer and Kaplan, 2009). There can be applied all vari-

ations of calculating the reward mentioned in previous methods. When we apply the

approach with a goal space segmentation into regions the form of intrinsic reward would

be

rintrt =
C

⟨la(gσgk , tg)⟩
(4.62)

42

4.3 Morphological-based category

This approach is based on morphological properties of states being observed by the

agent. There is no special module that would provide predictions of the computing

distribution. General architecture is shown in Figure 4.9.

Figure 4.9: General architecture of a morphological computational approach to intrinsic

motivation.

Synchronicity motivation is based on a short-term correlation between a num-

ber of sensory channels – components of the state vector (Oudeyer and Kaplan, 2009).

States where is high short-term correlation between maximum number of sensory chan-

nels are considered interesting. There can be defined a set of sensory information

sources S with elements Si and its value at time t Si(t) = si. There are more measures

which can define synchronicity sync(Sj, Si). The first one is the normalized information

distance (Crutchfield, 1990)

d(Sj|Si) =
H(Si|Sj) +H(Sj|Si)

H(Si|Sj)
(4.63)

where H(Si|Sj) is the conditioned entropy

H(Si|Sj) = −
∑
si

∑
sj

p(si, sj) log2 p(si, sj) (4.64)

and synchronicity is defined as

sync(Sj, Si) =
C

d(Sj|Si)
(4.65)

It can be also defined as mutual information

sync(Sj, Si) =MI(Si, Sj) (4.66)

43

or the correlation between two time series

sync(Si, Sj) =

∑
t(si(t)− ⟨si⟩) · (sj(t)− ⟨sj⟩)√∑

t(si(t)− ⟨si⟩)2 ·
√∑

t(sj(t)− ⟨sj⟩)2
(4.67)

Independently on the way how synchronicity was obtained, the intrinsic reward is

defined as

rintrt = C ·
∑
i

∑
j

sync(Si, Sj) (4.68)

Stability motivation rewards actions leading to only small changes in observed

states and prevents the agent from observing large variance in states (Oudeyer and

Kaplan, 2009). The interesting states are close to the mean value ⟨s⟩T from the past

T steps

rintrt =
C

∥st − ⟨s⟩T∥2
(4.69)

Variance motivation is an opposite method to stability (Oudeyer and Kaplan,

2009). The reward is given for actions leading to highly variable observations of the

states

rintrt = C · ∥st − ⟨s⟩T∥2 (4.70)

This section concludes the theoretical part of the dissertation thesis, in which we

addressed three essential areas on which our research is based. In the next section, the

research part of the thesis begins with a description of the methodology and results.

Their analysis and interpretation follows. The research part is then concluded with

discussion and further directions of possible development are outlined.

44

Chapter 5

Self-supervised Predictors

We modified the concept of distillation of randomly initialized static network RND

(Burda et al., 2018) and instead we distilled a network that learns continuously using

self-supervised algorithms. We denote the methods SND (Pecháč et al., 2023). The

architecture of such a model consists of a target model ΦT and a learned model ΦL,

but with the essential difference that the network generating the target feature vectors

(target model) is learned. The schematic representation of the proposed approach is

shown in Fig. 5.1. In order to be able to use the trained target model as a suitable

source of target feature vectors for the learning network, it is necessary that it fulfills

the following conditions:

1. Two identical states must map to the same feature vector.

2. Two similar (e.g. successive states) are mapped on two similar feature vectors,

such that their L2 distance is small.

3. Two different states are mapped on two different feature vectors, such that their

L2 distance is large.

The feature space formed in this way can be distilled and then this process can

be used as a source of internal motivation, because the new states will have different

feature vectors than the states seen by the agent so far. We introduced three methods

for forming a feature space that satisfies the above conditions. All three methods are

based on SSL. In the context of SND methods, the RND is their special case, where

the learning rate of the target model is 0.

We also did research in the area of methods based on the prediction error of the

forward model Ψ whose task is to predict the next state st+1 if it receives the current

state st and the action at. The difference (e.g. mean-squared error) between the new

observed state st+1 and the predicted state ŝt+1 can be used as an intrinsic reward.

The assumption is that the forward model will yield lower errors in states it has visited

45

Figure 5.1: The basic principle of generating an exploration signal in the regularized

target model and training of the SND target model using two consecutive states and

the self-supervised learning algorithm.

many times and, conversely, higher errors for states that were visited rarely or never.

The task can be simplified so that the forward model is trained to make predictions

in the latent space (generated by feature extractor Φ), which eliminates the need to

use a decoder that maps a point from the latent space to the state space. Instead, the

difference between the feature vector zt+1 for st+1 and the predicted feature vector ẑt+1

is used as a source of motivation.

The latent space representations can be created in different ways. For example, ICM

model (Pathak et al., 2017) used the loss function based on the forward and inverse

model. Due to the successful use of SSL methods in the case of the SND model,

we decided to apply a similar principle here. We named the method Self-supervised

Predictor (SP). SP uses a feature extractor trained by SSL loss and a forward model

connected to it serves as a source of internal reward.

5.1 Methods

We introduced four new methods using SSL algorithms for feature space training.

Three are based on target network distillation (SND) and one is based on forward

model (SP).

46

5.1.1 SND-STD

SND-STD method (Pecháč et al., 2023; Pecháč and Farkaš, 2022) uses the Spatio-

Temporal DeepInfoMax (ST-DIM) algorithm (Anand et al., 2019) (the simple dia-

gram can be found in Fig. 5.1) leveraging multi-class N -pair losses (Sohn, 2016b) (see

Sec. 3.1.5):

LGL = −
I∑
i=1

J∑
j=1

log
exp(gi,j)∑

s∗t∈Snext
exp(gi,j)

(5.1)

LLL = −
I∑
i=1

J∑
j=1

log
exp(fi,j)∑

s∗t∈Snext
exp(fi,j)

(5.2)

where f(.) = f(st, st+1) and g(.) = g(st, st+1) are score functions for local-local objec-

tive LLL and global-local objective LGL, respectively. Function gi,j is defined as dot

product between transformed global features ΦT(st) and the local features ΦT
(l,i,j)(st+1)

of the intermediate layer l in ΦT, where (i, j) is the spatial location. Analogically fi,j is

dot product between transformed local features ΦT
(l,i,j)(st) and ΦT

(l,i,j)(st+1). The details

of this algorithm are provided in Anand et al. (2019). Snext corresponds to the set of

next states, (st, st+1) represents a pair of consecutive states, (st, s
∗
t) represents a pair

of non-consecutive states and I, J are the width and the height from output shape of

intermediate convolutional layer of the target model. The resulting loss function is

then defined as

L =
1

IJ
(LGL + LLL) (5.3)

Following this objective function, the target model becomes a good feature extractor

adapting to new states discovered by the agent. Our experiments revealed that if

the ST-DIM algorithm works on an incomplete dataset that takes on new samples

(the authors probably did not test it in such conditions), there is an instability and an

exponential increase of activity in the feature space at certain moments. This is related

to the use of cross-entropy loss function in its core (which does not limit the values of

inputs, logits), where derivatives can reach large values and subsequently inflate the

entire feature space. During the development of the model, it turned out that it is

best to minimize the L2-norm of logits represented by functions f and g that enter the

cross-entropy:

Ln = pGL + pLL =
I∑
i=1

J∑
j=1

(∥fi,j∥+ ∥gi,j∥) (5.4)

In addition, we tried to maximize the entropy of the distributions generating the re-

spective logits and minimize the L2-norm of global features. However, both described

approaches failed to sufficiently stabilize the algorithm.

47

Finally, we added one more regularization term Lv that maximizes the standard

deviation σ of the feature vector components and thus ensures that all dimensions of

the feature space are used:

Lv = −σ(ΦT(st)) (5.5)

The final objective function, with the scaling parameters β1 = β2 = 0.0001 (found

experimentally), was defined as

L =
1

IJ
(LGL + LLL + β1Ln) + β2Lv (5.6)

5.1.2 SND-VIC

SND-VIC method (Pecháč et al., 2023) is based on VICReg algorithm which is desribed

in more details in Sec. 3.2.3. The regularization function consists of three terms: the

invariant term, which brings the feature vectors closer to each other, the variance term,

which ensures that the feature vectors within one batch have different values, and the

covariance term, which ensures the decorrelation of the feature vectors and prevents

information collapse. The original method does not need any negative samples, it only

takes the input, creates two augmented versions, and their feature vectors are updated

using the mentioned terms of the regularization function. Our version uses the state

st and its successor st+1 (the same as ST-DIM, the simple diagram can be found in

Fig. 5.1) instead of two augmentations of the same state. The overall loss L takes the

form

L = λLs(Z,Z′) + µ
[
Lv(Z) + Lv(Z′)

]
+ ν

[
Lc(Z) + Lc(Z′)

]
(5.7)

where the scaling parameters were set to λ = 1, µ = 1 and ν = 1/25.

5.1.3 SND-VINV

SND-VINV method is an extension of the previous SND-VIC method by an inverse

model ΦI whose goal is to predict actions based on two feature vectors for a pair of input

states st and st+1. The assumption is that the inverse model learns a feature space that

encodes information relevant for predicting the agent’s actions only (this assumption

was also expressed in Pathak et al. (2017)), which could contribute to improving the

properties of the overall feature space and filter out unnecessary information that does

not apply directly to the agent. The goal of the model is to remove noise from the

feature space, which arises as a result of various (often periodic or random) changes in

the state space, which do not affect the agent in any way, but SSL algorithms try to

separate them and thus generate the illusion of novelty for the agent, who thus wastes

time investigating insignificant phenomena in the environment.

48

The inverse dynamics model optimizes the cross-entropy loss function if the action

space A is discrete:

Lid(Z,Z′) = −1

d

d∑
i=1

|A|∑
c=1

ai,c log
(
ΦI(Z,Z ′)i,c

)
(5.8)

where ΦI(Z,Z ′)i,c is the prediction of the inverse model converted to probability that

action ac led to a transition from state st to state st+1. The overall loss L then takes

the form

L = λLs(Z,Z′) + µ
[
Lv(Z) + Lv(Z′)

]
+ ν

[
Lc(Z) + Lc(Z′)

]
+ ιLid(Z,Z′) (5.9)

where the scaling parameters are set to λ = 1, µ = 1, ν = 1/25 and ι = 1/2.

5.1.4 SP

The SP model has a feature extractor Φ, which is trained using the ST-DIM algorithm

analogously to the SND-STD method. The forward model Ψ, based on the input

feature vector zt of state st and action at, tries to predict the feature vector ẑt+1 of the

next state st+1. The architecture diagram is presented in Fig. 5.2. Internal motivation

is then calculated as

rintrt = ∥ẑt+1 − zt+1∥2 (5.10)

where ẑt+1 = Ψ(zt, at), zt = Φ(st), zt+1 = Φ(st+1) and ∥.∥ denotes the Euclidean norm.

The loss function LΦ for feature extractor is defined according to eq. 5.3 and the loss

function LΨ for the forward model is defined as

LΨ =
1

N

∑
ẑt+1,zt+1∈T

1

d
∥ẑt+1 − zt+1)∥2 (5.11)

where T is the trajectory of length N and d is the dimensionality of feature vectors z.

The overall loss L then takes the form

L = LΦ + LΨ (5.12)

while there are two options for training the feature extractor. Either asymmetrically

using LΦ (representations of the forward model Ψ get closer to the extractor Φ) or

symmetrically using both loss functions LΦ and LΨ (representations of both models

try to get closer to each other).

5.2 Experiments

All together, we tested our methods on 10 environments (Atari and Procgen) that are

considered difficult for exploration.

49

Figure 5.2: The scheme of the SP model with feature extractor trained by SSL algo-

rithm and the forward model.

These include 4 Procgen environments: Climber, Caveflyer, Coinrun, and Jumper.

Procgen is a set of procedurally generated environments, designed primarily for testing

agent’s generalisation (Cobbe et al., 2019). The paper shows several problems for

generalisation in RL, requiring special training and a huge number of samples. For

our purpose, interesting findings are provided in Appendix B.1 in Cobbe et al. (2019).

For several seeds, the baseline agent was not able to reach a non-zero score. Those

seeds lead to hard exploration environments, with only a single reward at the end. The

state is represented by 2 consecutive RGB color images, with the overall size 6×64×64

pixels. The action space is discrete, consisting of 15 actions.

We also tested 6 Atari environments: Montezuma’s Revenge, Gravitar, Venture,

Private eye, Pitfall, and Solaris. The agent receives a reward of +1 for each increase in

the score, regardless of its size. It does not receive any other reward or punishment. The

state is represented by 4 consecutive frames of pixels on a grey scale, so the dimension-

ality of the state representation is 4×96×96. The action space is discrete, consisting of

18 actions, of which only some make sense (depending on the environment), the other

actions have no impact on the environment.

5.2.1 Training setup

We ran 9 simulations for each environment, taking 128M steps for Atari and 64M

steps for Procgen games. Before the main training, we tried 3 hand-selected settings of

hyperparameters for individual motivational models (mainly the scaling of the motiva-

tional signal, or regularization terms) and we always chose the one that had the best

results. These short probes lasted 32M (Atari) or 16M (Procgen) steps and consisted

of 2 to 3 simulations.

All agents were trained with the PPO algorithm (Schulman et al., 2017) using Adam

optimizer (Kingma and Ba, 2015) to tune the parameters of all modules. The basic

agent consists of an actor and a critic, which are two multi-layer perceptrons sharing a

50

common convolutional neural network (CNN) that processes the video input. The critic

has two outputs (heads), one for estimating the value function for the external reward

and the other for the internal reward. We used the orthogonal weight initialisation

with a magnitude
√
2. Model architectures are presented in Figures 5.3a to 5.3c. The

motivational module of SND models consists of two CNNs (the target and the learned

network), which receive input from a single frame. The learning network has two more

linear layers to have an increased capacity over the target model.

The feature extractor of the SP model consisted of a CNN with four convolutional

layers and one fully connected layer with an output dimension of 512, which was the

feature space dimension. The forward model was formed by a classic feedforward

network with three layers. The input dimension was 512 + the number of environment

actions (18 for Atari / 15 for Procgen) and the output was again a 512-dimensional

vector. The architecture of both models is shown in Fig. 5.3d and hyperparameters

can be found in Tab. 5.4.

We followed Burda et al. (2018) for setting the hyperparameters, to have compa-

rable results. We ran 128 parallel environments. For Atari we used 1M samples for

each environment (total 128M frames), for Procgen we used 0.5M samples for each

environment (total 64M frames). In Atari experiments we used gray scale downsam-

pled 4 frames stacked observation. For Procgen we used 2 frames stacking, and a fully

RGB colored observation. The intrinsic motivation modules used no frame stacking, a

single gray scale image for Atari environments and a single RGB image for Procgen.

The summary of all environment hyperparameters is in Table 5.1. The discount factors

were set to γext = 0.998 for external reward and γintr = 0.99 for intrinsic reward. We

found the importance of intrinsic reward scaling, the best results were achieved for

η = 0.5. The learning rate for all models was set to 0.0001 with Adam optimizer.

Actor and Critic models used ReLU, and motivation models worked best with ELU

activation function. We also find the deeper model with 3×3 convolutions works better

then standard Atari model using 8×8 or 4×4 convolutions in Mnih et al. (2013). We

retrained RND models to obtain comparable results and find faster convergence. The

summary of PPO agent’s hyperparameters is in Table 5.2. Hyperparameters of the

intrinsic module are in Table 5.3. More hyperparameters and further details of the

learning process and the architectures of modules can be found in our source codes.

5.2.2 State preprocessing

The state before entering the motivation module of the SND model can undergo pre-

processing. We tested three preprocessing methods:

51

(a) The PPO agent model architecture.

(b) The SND target model architecture.

(c) The SND learned model architecture.

(d) The SP motivation module architecture.

Figure 5.3: Architectures of individual networks of agent with SND and SP motivation

modules.

52

Table 5.1: Environment hyperparameters

Hyperparameter Atari Procgen

Observation downsampling 96×96 64×64

Frame stacking 4 2

State shape for PPO 4×96×96 6×64×64

State shape for IM modules 1×96×96 3×64×64

Parallel environments count 128 128

State normalisation s/255 s/255

Samples per environment 1M 0.5M

1. State normalization using the running mean and the standard deviation

2. Subtraction of the running mean value from the state

3. No preprocessing.

We performed two training runs for each preprocessing method in 32M steps on

Montezuma’s Revenge environment. For testing we used the SND-STD model. Ta-

ble 5.5 demonstrates that the state preprocessing did not have a significant effect on

agent’s performance (maximum reward achieved), only on the speed of learning. This

also agrees with our assumption that operations such as subtraction of the mean or

normalization should be able to find the network itself trained using the self-supervised

loss function. Therefore it is not necessary for the designer to put them into the learning

process explicitly. These conclusions will still need to be confirmed by statistical anal-

ysis. The RND used mean subtraction and SND-V, SND-STD together with SND-VIC

did not use input state preprocessing.

5.3 Results

We processed several quick experiments on Montezuma’s Revenge to explore an optimal

setup. First we have to test the optimal architecture of ΦT and ΦL models. We

experimented with 4 architectures:

1. identical models, one fully connected output layer, ELU activations

2. identical models, two fully connected layers, ELU activations

3. identical models, one fully connected layer, ReLU activations

4. asymmetric models, three fully connected layers for ΦL, none for ΦT, ELU acti-

vations fixed to fully connected convention

53

Table 5.2: PPO hyperparameters

Hyperparameter Value

PPO model learning rate 0.0001

Discount factor γext 0.998

Discount factor γintr 0.99

Advantages ext coefficient 2.0

Advantages intr coefficient 1.0

Intrinsic reward scaling 0.5

Rollout length 128

Number of optimization epochs 4

Entropy coefficient 0.001

Epsilon clipping 0.1

Gradient norm clipping 0.5

GAE λ coefficient 0.95

Optimizer Adam

Weight initialisation orthogonal

Table 5.3: SND hyperparameters

Hyperparameter Value

Target model ΦT learning rate 0.0001

Learned model ΦL learning rate 0.0001

Weight initialisation orthogonal

Table 5.4: SP hyperparameters

Hyperparameter Value

Feature extractor Φ learning rate 0.0001

Forward model Ψ learning rate 0.0001

Weight initialisation orthogonal

Results of different model architectures are in Figure 5.4. The best result was achieved

for the asymmetric architecture.

Finally, we tested intrinsic reward scaling. Low values can lead to stacking the agent

into a non-exploring policy. High values can prevent the agent from collecting extrinsic

rewards, or make it too sensitive to small unimportant changes, both causing instability.

We tested three values if intrinsic reward scaling: 0.25, 0.5 and 1.0. Figures 5.5 and

5.6 capture the cumulative external reward per episode and the standard deviation of

54

Table 5.5: Average cumulative reward (with standard deviation) per episode for all 3

preprocessing methods and maximal reward achieved by the agents.

Method Average reward Max. reward

normalization 3.60 ± 0.14 7

mean subtraction 4.13 ± 0.12 7

none 2.31 ± 0.20 7

Figure 5.4: Agent’s performance based on various learned model architectures, evalu-

ated in terms of the overall score, external reward obtained and the number of rooms

explored.

the tested models in 9 different environments for SND and SP methods, respectively.

In Tables 5.6 and 5.8, these indicators are then averaged over the number of episodes.

We compared methods based on distillation error separately from methods based on

a prediction error, as our goal was to show that SSL algorithms can improve both

types of intrinsic motivation. Table 5.7 shows the maximum achieved score for Atari

environments, which is often used for model comparison (although we would like to

emphasize that the agent never receives this score as a reward and therefore it is

not its goal to maximize it). Of the tested environments, Pitfall game could not be

mastered exceeded by any of the tested algorithms, since none of them achieved a single

55

Table 5.6: Average cumulative external reward per episode for tested SND models.

The best model (not necessarily in statistical sense) for each environment is shown in

bold face.

Baseline RND SND-STD SND-VIC SND-VINV

Climber 0.00 ± 0.00 0.00 ± 0.00 1.48 ± 2.40 6.62 ± 3.24 6.91 ± 2.75

Caveflyer 0.00 ± 0.00 0.00 ± 0.00 10.86 ± 4.37 11.14 ± 2.35 13.13 ± 1.27

Coinrun 0.00 ± 0.00 0.25 ± 0.50 9.40 ± 0.07 5.70 ± 4.18 5.04 ± 4.51

Jumper 0.00 ± 0.00 0.03 ± 0.02 9.76 ± 0.04 9.76 ± 0.03 9.74 ± 0.04

Montezuma 0.00 ± 0.00 5.33 ± 0.23 7.76 ± 1.73 8.45 ± 1.12 N/A

Gravitar 1.19 ± 0.00 6.63 ± 1.55 5.89 ± 0.43 10.05 ± 0.66 N/A

Venture 0.00 ± 0.00 11.18 ± 0.42 9.54 ± 0.90 11.36 ± 0.37 N/A

Private Eye 0.81 ± 0.01 2.41 ± 0.95 3.79 ± 1.24 5.93 ± 0.47 N/A

Pitfall 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 N/A

Solaris 8.08 ± 0.15 3.84 ± 0.25 10.83 ± 1.67 10.85 ± 1.20 N/A

Table 5.7: Average maximal score reached by tested models on Atari environments.

The best model for each environment is shown in bold face.

Baseline RND SND-STD SND-VIC SP

Montezuma 400 6689 7212 7838 4267

Gravitar 2611 5600 4643 6712 5594

Venture 22 2167 2138 2188 1422

Private Eye 14870 14996 15089 17313 13779

Pitfall 0 0 0 0 0

Solaris 12344 10667 12348 11865 11282

reward point; thus we omitted the chart for the Pitfall environment. In the remaining 9

environments, the best results were achieved with the models based on SND motivation,

while in 8 cases it was with a significant lead over the existing algorithms (in Venture

environment the results were almost the same as those of the RND model). When

evaluating the score, the SNDmodels achieved the highest score in 5 Atari environments

(with an exception of the already mentioned Pitfall) and in 3 cases (Montezuma’s

Revenge, Gravitar, Private Eye) it was significantly higher than the compared models.

The SP method outperformed ICM in 6 out of 8 environments, and it was always by a

significant margin (ICM was better only in Caveflyer and Private Eye environments).

In 4 environments, the ICM model failed to find any reward, while in the case of SP,

it was only in 1 environment (the mentioned Pitfall, where all algorithms failed).

56

Table 5.8: Average cumulative external reward per episode for tested ICM and SP

models. The best model for each environment is shown in bold face.

Baseline ICM SP

Climber 0.00 ± 0.00 0.00 ± 0.00 8.31 ± 1.85

Caveflyer 0.00 ± 0.00 6.20 ± 5.38 0.75 ± 1.42

Coinrun 0.00 ± 0.00 0.00 ± 0.00 8.68 ± 0.92

Jumper 0.00 ± 0.00 7.84 ± 2.19 9.75 ± 0.07

Montezuma 0.00 ± 0.00 1.15 ± 0.48 3.97 ± 0.96

Gravitar 1.19 ± 0.00 5.69 ± 1.57 11.60 ± 1.25

Venture 0.00 ± 0.00 0.00 ± 0.00 4.87 ± 4.76

Private Eye 0.81 ± 0.01 6.66 ± 0.20 6.22 ± 0.57

Pitfall 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Solaris 8.08 ± 0.15 8.13 ± 0.60 10.09 ± 0.48

57

(a) Climber (b) Caveflyer (c) Coinrun

(d) Jumper (e) Montezuma’s Revenge (f) Gravitar

(g) Venture (h) Private Eye (i) Solaris

Figure 5.5: The cumulative external reward per episode (with the standard deviation)

received by the agent from the tested environment. The horizontal axis shows the

number of steps in millions, the vertical axis refers the external reward. We compared

Baseline, RND and SND methods.

58

(a) Climber (b) Caveflyer (c) Coinrun

(d) Jumper (e) Montezuma’s Revenge (f) Gravitar

(g) Venture (h) Private Eye (i) Solaris

Figure 5.6: The cumulative external reward per episode (with the standard deviation)

received by the agent from the tested environment. The horizontal axis shows the

number of steps in millions, the vertical axis refers the external reward. We compared

Baseline, ICM and SP method.

59

5.4 Analysis

For a better idea of how the SSL methods work, we visualized the feature space by

collecting 1000 states in the Montezuma’s Revenge environment by a trained agent

(used SND-STD method) and calculating the distance matrix for the collected states.

Figure 5.7 illustrates that the SSL methods can preserve and transfer the structure

of the state space to the feature space. The patterns on the diagonal correspond to

individual rooms in the environment, where the states are similar to each other and

therefore their mutual distance is small (blue color), while the distance to the states

from other rooms is large (red color). We can notice that in the case of both RND

and SND-STD, a similar structure of distances is preserved as in the case of states,

but with smaller differences. When comparing RND and SND-STD with each other, it

can be seen that the feature vectors created by the SND-STD method still have larger

distances, which is indicated by the light blue color. In contrast, SND-VIC is extremely

contrastive, and apart from the main diagonal, there is no distinct original structure.

However, the light red color indicates that the distances for almost any states are larger

than the two previous methods, which indicates better discriminative capabilities of

SND-VIC. With the ICM and SP methods, we see a significantly different picture.

ICM features are formed only by the loss functions of the forward and inverse models.

We can see in the picture that this led to a considerable distance of the feature vectors

at the beginning of the trajectory (significantly greater than with SND methods), but

at the end of the trajectory the feature vectors are already much closer to each other.

With the SP method, whose feature space is formed using the forward model and the

ST-DIM algorithm, we see a similar picture as with the ICM, but with the difference

that the representations of the end states are also more distant from each other.

We can further visualise learned feature vectors Z in 2D using t-SNE method

(van der Maaten and Hinton, 2008). Figure 5.8 shows the resulted features of trained

ΦT on Montezuma’s Revenge. The randomly initialised trained network (the same as

in Burda et al. (2018) in Figure 5.8a) can well distinguish between different rooms,

however within the room the variance is low, pointing to the lack of exploration abili-

ties. On the other hand, self-supervised regularized target model in Figure 5.8 provides

a much larger variance of features, which provides a more sensitive novelty detection

signal.

The main goal of the analysis was to find out the differences (not only visually)

between the individual spaces of features, to describe them with some quantities and

to find a possible connection with the performance of the algorithm and the mentioned

quantities. From the set of examined models for one environment, we always selected

the model with the highest obtained reward and generated 10,000 samples of input

60

(a) States (b) RND feature vectors

(c) SND-STD feature vectors (d) SND-VIC feature vectors

(e) ICM feature vectors (f) SP feature vectors

Figure 5.7: The distance matrix of 1000 states and feature vectors collected from

Montezuma’s Revenge environment. Small distances are displayed by blue color, while

large distances are displayed by red color.

61

(a) Random target model (b) Trained target model

Figure 5.8: The t-SNE projected feature representations of the target models (random

and trained) in Montezuma’s Revenge task. The colors correspond to different rooms.

states by running it in the environment. Subsequently, each model generated feature

vectors for a sample of previously collected input states. Thus, we obtained feature

space samples Z of each model. Although feature spaces are the result of non-linear

transformations, we decided to use the tools of linear algebra to get at least a rough

idea of the properties of these spaces. First, we used the QR decomposition, which

factorizes the matrix A into the unit matrix Q and the triangular matrix R. If A has n

linearly independent columns, then the first n columns of Q form an orthonormal basis

for the column space of A. From the rank of the matrix Q the actual dimensionality

of the feature space can be determined. For all methods, the rank Q of the matrix

was equal to the dimension of the vectors, which means that none of the dimensions

of the vector space is just a linear combination of other dimensions (in other words,

all dimensions are linearly independent). Then, using principal component analysis

(PCA), we found the linear envelope of the high-dimensional manifold that forms the

feature space. We examined the mean value and especially the variance of the feature

vectors and also the eigenvalues obtained using PCA, which at least indicate the basic

shape of the feature space (i.e. the sizes of the individual dimensions).

The results of this analysis are shown in Fig. 5.9, Fig. 5.10 and Tab. 5.9, Tab. 5.10.

For the evaluation, we decided to use the following parameters: mean value and stan-

dard deviation of the L2-norm of features, 25th, 50th, 75th and 95th percentiles of

eigenvalues to obtain a rough representation of stretching of the feature space in indi-

vidual dimensions. To this, we add the maximum achieved external reward (max rext),

so that it is possible to search for a connection between the parameters of the feature

space and the performance of the method.

It can be seen that in almost all cases the RND target model has smaller eigenvalues

62

(a) Climber (b) Caveflyer (c) Coinrun

(d) Jumper (e) Montezuma’s Revenge (f) Gravitar

(g) Venture (h) Private Eye (i) Solaris

Figure 5.9: Descendingly ordered eigenvalues of the linear envelope obtained using the

PCA method on RND and SND methods, which show the stretching of the feature

space in individual dimensions. The horizontal axis shows the indices of eigenvalues,

the vertical axis denotes the magnitude of eigenvalue on a logarithmic scale.

than the SND models. This can also be seen in the L2-norm values that the entire RND

feature space seems to have a smaller volume compared to the SND feature space. We

can see that RND and SND-STD are similar in shape. Their curve has a convex shape,

with SND-STD having more stretched dimensions. The shape of SND-VIC curve is

ensured by the variance (eq. 3.12) and covariance (eq. 3.13) components of its loss

function.

In contrast, the shape of the SND-STD curve is convex and the dimensions are used

unevenly. After these analyses, we tried to improve the variance within the dimensions

by adding a regularization term (eq. 5.5) which tried to maximize the variance within

the feature vector. However, such a term had an expansive effect on the feature space

63

(a) Climber (b) Caveflyer (c) Coinrun

(d) Jumper (e) Montezuma’s Revenge (f) Gravitar

(g) Venture (h) Private Eye (i) Solaris

Figure 5.10: Descendingly ordered eigenvalues of the linear envelope obtained using

the PCA method on ICM and SP methods, which show the stretching of the feature

space in individual dimensions. The horizontal axis shows the indices of eigenvalues,

the vertical axis denotes the magnitude of eigenvalue on a logarithmic scale.

and it was not possible to give it much weight, because the loss function (eq. 5.3) of the

ST-DIM algorithm itself has an expansive effect, and the addition of another expansive

term led to problems with the uncontrolled expansion of the feature space. Despite the

small influence of the variance component of the loss function, the performance of SND-

STD improved and it helped prevent agents from getting stuck in certain cases. If we

compare RND and SND-STD feature spaces (in terms of eigenvalues) they look similar,

but the latter model was able to achieve better results in 7 out of 9 environments. Our

findings show that when training the target model, it is important to enforce the

decorrelation of features and the equal use of all dimensions of the feature space. Such

a model seems to be relatively robust and sufficiently sensitive to novelty. Interestingly,

64

Table 5.9: Description of the target model feature space created by SND methods.

Environment Method max(rext) L2-norm Q25 Q50 Q75 Q95

Climber

RND 0 7.22 ± 3.61 12 33 106 1549

SND-STD 11 47.25 ± 22.64 12 64 823 54189

SND-VIC 11 13.26 ± 3.99 145 2185 14114 75335

SND-VINV 11 12.56 ± 3.73 152 2147 14069 70965

Caveflyer

RND 10 5.06 ± 2.98 48 128 474 4792

SND-STD 16 9.69 ± 5.90 11 34 206 13452

SND-VIC 16 9.89 ± 5.70 23 271 2638 49517

SND-VINV 16 10.27 ± 6.25 96 507 3814 63714

Coinrun

RND 10 5.07 ± 3.00 40 109 389 4029

SND-STD 10 29.23 ± 17.06 54 200 1651 76730

SND-VIC 10 11.23 ± 5.77 332 1140 5414 44014

SND-VINV 10 16.86 ± 8.98 66 445 7520 67400

Jumper

RND 10 8.63 ± 2.19 139 337 1008 6733

SND-STD 10 15.51 ± 3.73 61 189 1044 22008

SND-VIC 10 20.79 ± 6.18 47 257 6271 74860

SND-VINV 10 15.55 ± 4.79 37 303 6037 77653

Montezuma

RND 9 1.93 ± 1.15 9 24 89 778

SND-STD 16 4.85 ± 2.45 9 26 109 6835

SND-VIC 17 6.22 ± 2.99 3066 8429 14858 25634

Gravitar

SND-STD 15 11.66 ± 2.82 8 30 250 20402

RND 20 1.12 ± 0.81 5 10 24 139

SND-VIC 21 7.26 ± 3.01 2263 6837 15173 27908

Private Eye

RND 9 1.40 ± 0.65 3 9 37 410

SND-STD 9 8.03 ± 4.46 15 54 371 24025

SND-VIC 10 4.29 ± 3.56 232 1401 6197 47342

Pitfall

RND 0 1.31 ± 0.39 3 10 47 410

SND-STD 0 10.64 ± 2.81 8 32 319 39904

SND-VIC 0 5.62 ± 1.79 153 1542 9827 44126

Venture

RND 18 0.68 ± 0.80 4 9 30 188

SND-STD 18 4.50 ± 3.79 4 15 115 32272

SND-VIC 18 4.91 ± 3.89 1006 3644 11256 41899

Solaris

RND 55 3.68 ± 3.42 29 62 172 776

SND-STD 81 5.77 ± 4.28 12 37 211 11171

SND-VIC 87 6.00 ± 4.14 1649 5079 13163 32377

65

Table 5.10: Description of the target model feature space created by SP methods.

Environment Method max(rext) L2-norm Q25 Q50 Q75 Q95

Climber
ICM 0 77.12 ± 28.05 4577 12590 55344 798106

SP 11 7.22 ± 2.32 27 77 368 8948

Caveflyer
SP 16 15.39 ± 9.55 161 471 2263 51232

ICM 19 6.76 ± 3.77 18 50 215 5479

Coinrun
ICM 0 23.71 ± 14.25 1588 3725 10409 51649

SP 10 6.07 ± 3.00 46 118 431 5198

Jumper
ICM 10 3.78 ± 1.03 13 30 83 703

SP 10 3.71 ± 0.98 11 22 57 549

Montezuma
ICM 5 16.67 ± 8.57 965 1873 4276 17329

SP 9 16.41 ± 6.06 649 1491 4622 33561

Gravitar
ICM 16 23.36 ± 9.09 139 406 2024 47337

SP 25 24.32 ± 10.69 2315 5761 20956 179683

Private Eye
SP 9 75.54 ± 34.26 4508 13467 58819 636182

ICM 10 187.59 ± 95.90 22188 79620 418410 4709582

Pitfall
ICM 0 118.42 ± 41.71 44101 90429 235133 1013765

SP 0 12.60 ± 4.09 709 1444 3626 19099

Venture
ICM 0 13.97 ± 10.16 1730 3209 6920 25560

SP 18 13.04 ± 10.91 687 2324 11384 132229

Solaris
ICM 71 62.48 ± 30.42 10621 24314 75349 726208

SP 88 52.08 ± 29.98 7121 15816 50221 541324

for Pitfall task (not shown in Figure 5.9), despite their failure, our methods still tried

to take advantage of the feature space dimensions. From the analysis of the trained

agents, we saw that they were able to explore several rooms, but in each there were

enough moving objects that made the given state space rich and thus made it difficult

to train the learned model, which led to a very slow decrease of the internal reward

(we observed a similar behavior after short training sessions in other environments).

We assume that with a larger number of training steps, the agent would eventually be

able to reach the reward.

From the point of view of the eigenvalues, the SP and ICM methods form a very

similar feature space, which mostly differed only in the size of the dimensions. Inter-

estingly, for the Climber and Coinrun environments, the ICM feature space stretched

by one to two orders of magnitude and failed to find any reward. In contrast, in the

Caveflyer environment, the size of the spaces was swapped, and SP had a slightly more

stretched space than ICM, and in this environment, ICM was able to find more ex-

66

ternal reward. From this, we conclude that for the Procgen environments we selected,

models that created a smaller feature space always had an advantage, which probably

led to a smaller prediction error and thus to a smaller reward, which then did not

confuse the agent with a false signal. The Jumper environment turned out to be rela-

tively simple, and both methods produced a feature space with similar properties. The

situation seems to be slightly different for Atari environments. It seems that in the

case of Montezuma’s Revenge and Venture, the SP curves are similar and part of the

dimension is more elongated compared to ICM and the other part is more contracted.

In both cases, SP achieved a significantly higher external reward than ICM, suggesting

that a larger feature space leading to the larger error and reward is more beneficial in

these environments. This is even more pronounced in the case of Gravitar, where the

SP, according to the curve, created a larger feature space by one to two magnitudes

and this ensured a good exploration of the environment. With Private Eye, the order

changed and in this case ICM achieved 1 point higher external reward than SP, which

for now supports the mentioned trend: the larger feature space = the better

exploration. The Solaris environment seems to be sensitive to high internal rewards,

which can introduce more noise into the exploration (we have already observed this

in the SND experiments), and therefore a smaller feature space, leading to a lower

internal reward, proved to be more beneficial here.

Another approach for different regularisation losses is understanding its time eval-

uation and the ability to provide large IM signal for previously unseen states. For the

purpose of exploration, the most important is the ability to detect near future states,

which are very close to already seen ones. We collected a set of 2700 states, from

our best agent playing Montezuma’s Revenge. During the experiment, we trained the

intrinsic motivation modules only on past data, and tested on future data. The testing

batch was selected from the following 4 time horizons, with respect to the agent being

in step n, and testing batch indices m:

1. past: already seen states, m < n

2. near future: n < m < n+ 128 steps in the future

3. far future: m > n

4. random: any batch from the set

We hypothesised that the Random Network distillation provides a sufficient signal

only at the beginning of learning. Converging to zero leads to limited exploration

abilities. This degradation corresponds to our results in Figure 5.11a. On the other

hand, continuously updated target models can provide useful signals for the entire

run. The corresponding results are displayed in Figures 5.11b and 5.11c. On all three

67

(a) RND

(b) SND-STD

(c) SND-VIC

Figure 5.11: Novelty detection for different regularisation losses as response to different

future windows. The states were collected on Montezuma’s Revenge with the best

agent, red dots correspond to state examples above.

losses, the intrinsic motivation is much higher for non-seen states, and not converging

into zero. The strong peeks for near future correspond to new rooms finding. The self-

supervised regularisation prevents collapsing the motivation signal to zero. This insight

provides requirements for an exploration signal. We also have a simple methodology

ready for testing the exploration abilities, without training the whole RL agent which

can be time consuming.

68

Chapter 6

Discussion

We introduced a class of intrinsic motivation algorithms, based on distillation error

as a novelty indicator (SND), where the target model is trained using self-supervised

learning. We adapted three existing self-supervised methods for this purpose and exper-

imentally tested them on a set of environments that are considered difficult to explore.

The proposed variants have been shown to eliminate the identified shortcomings of

the RND model – the need for good initialization, low variance of intrinsic reward on

different states and the loss of the motivational signal caused by the adaptation of the

learning network. We also created a simple forward model Self-supervised Predictor

(SP) using SSL methods. This forward model makes predictions in the feature space,

and this feature space is shaped by one of the SSL algorithms that we have previously

tested for SND as well.

In the experiments, we tested the overall performance of the agents in 10 envi-

ronments. With the exception of one environment, it was confirmed that the SND

algorithms achieved better results than other methods with which we compared them.

For the Atari environments, we also evaluated the achieved game scores so that they

could be compared with other published models that we did not include in in this

work. Also from the point of view of the SND score, the models dominated the com-

pared models. The SP model was able to outperform the ICM model with which we

compared it.

In the analytical part, we focused on deeper understanding of the SND and SP

methods. We used a geometric approach trying to capture, at least in rough outlines,

the properties of feature spaces. A comparison between a randomly initialized feature

space and a feature space formed using one of the SND algorithms shows the correct-

ness of our assumptions that self-supervised algorithms can distinguish even subtle

differences within the state space. This turned out to be one of the weaknesses of the

RND algorithm, which, while being good at distinguishing between sufficiently differ-

69

ent states (e.g. different rooms in Montezuma’s Revenge), it placed similar states close

to each other in the feature space, making the work of the learned model easier. In

the experiments, we thus observed a decrease in the standard deviation of the average

intrinsic reward per episode, which meant that most of the visited states generated a

similar reward. In the feature space, which was formed by the forward model and the

inverse model (ICM) or with the SSL method (SP), we observed significant differences

in distances. It appears that the states visited more times during training (located at

the beginning of the trajectory) are much further apart in this space than the states

visited less often (located towards the end of the trajectory). It is possible that this

unevenness of the feature space also affects the lower success of both algorithms, es-

pecially in environments with very sparse rewards. It seems that the forward model

provides only a kind of ”local” pressure on the feature space, which does not have good

generalization properties, but we have not analyzed this hypothesis in any way.

We experimented with different target model architectures and intrinsic reward

scaling. We found that the target model using ELU activation and only one fully

connected layer with the learned model with three hidden layers performs the best. The

scaling of intrinsic reward shows big sensitivity to this parameter. The best working

value was 0.5, however we think this value should be optimized separately for each

specific environment.

We did not specifically investigate the robustness of SNDmethods with regard to the

initialization of the target model (which was again a problem with RND). We assume

that self-supervised learning algorithms can cope with a poorly initialized model to a

certain extent, but from the training experience we found that it is better to initialize

the target models of SND-STD, SND-VIC and SND-VINV to small values (gain = 0.5)

and letting it expand itself while RND was initialized to higher values (gain =
√
2).

We also compared the effect of state preprocessing on the performance of the SND-

STD model. It turned out that the state preprocessing is not necessary since it has no

significant effect on the agent’s performance.

We also performed an analysis of novelty detection abilities of selected methods.

After comparison with RND as a baseline, we can conclude that this baseline suffers

from an IM-based reward vanishing problem. After adding the regularisation to the

target model, much better features were obtained, with significant change compared

to the baseline. Intrinsic reward vanishing disappears for all the tested losses. This

is cross-validated also on t-SNE features visualisation, where regularised features yield

much higher variance, which means larger sensitivity to novelty.

A direct extension of SND methods will be the merging of the target model with the

model to which the actor and critic are connected. We have already done some pilot

70

research in this direction and it seems to be a feasible task. This would greatly optimize

the entire model and speed up its training in terms of computing time. There was also

no room left to test the SP method with other SSL algorithms that were used for SND.

It would certainly be interesting to try a combination of VICReg together with an

inverse model like SND-VINV. This would lead exactly to the ICM configuration.

In addition to the presented research, which is the main part of this thesis, many

related ideas were created. We tested them to a certain extent, but their inclusion

in the text and a more detailed description would not be entirely consistent with the

main content and would rather introduce confusion. At the very beginning, a model

was created, which we technically called QRND. It was a simple extension of the

RND model, where we added an action to the input. QRND suffered from all the

shortcomings of RND, but we just wanted to test on it the possibility of distilling

representations of transitions between states, which should provide a more complex

input space. The main goal was to find out whether increasing the complexity of the

input delayed the collapse of the intrinsic reward, which was basically not confirmed

and the model achieved a similar score to the classical RND.

However, the QRND tests led to another idea for a rather complex model inspired

by the dopaminergic system technically called DOP. This model consisted of one critic

and several actors (multi-head actor) that generated actions based on common input.

QRND served as a motivational module and evaluated an intrinsic reward for each ac-

tion. The DOP then selected the actions that led to the largest intrinsic reward. The

actors tried to train themselves to generate actions leading to the maximum intrinsic

reward, and the selected actor simultaneously maximized the external reward. How-

ever, this led to chaotic behavior as the actor’s heads switched very quickly. Therefore,

there was a need to manage this switching. This created a new control module, which,

based on the accumulated input state, was supposed to decide when to give which

actor the opportunity to control the agent. It turned out that such a control module

can have the same structure as the controlled module, i.e. it can consist of a critic, a

multi-headed actor, a motivational module. This is how it was possible to stack these

modules and create a hierarchical structure that could learn to work in different time

scales on individual layers. The problem was how to ensure the creation of suitable

representations for individual layers. And here SSL algorithms came into play, from

which the mentioned SND and SP methods were created, and DOP remained only as

an idea, a proposal and a prototype. We think that simple modules (residual blocks,

LSTMs, multi-head attention blocks) have always been behind the revolution in deep

learning. It was possible to stack them on top of each other, increasing the capacity of

the models to solve more complex tasks. And the construction of a similar module will

71

bring a revolution to decision-making and RL. If we manage to successfully complete

the DOP model, it may be one of the candidates for this position.

At the same time, we think that SSL approach to intrinsic motivation can be an

inspiration for a new class of algorithms that will specialize in creating feature mapping

capturing the relationship of the environment to the agent itself, since current self-

supervised methods are agnostic to these relationships.

Based on the presented results in this thesis, we can conclude that self-supervised

learning methods are definitely promising in the creation of novelty detectors, which

can be successfully used from the point of view of intrinsic motivation and improve the

agent’s exploration.

72

Bibliography

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M., and Hjelm, R. D. (2019).

Unsupervised state representation learning in Atari. CoRR, abs/1906.08226.

Aubret, A., Matignon, L., and Hassas, S. (2019). A survey on intrinsic motivation in

reinforcement learning. arXiv preprint arXiv:1908.06976.

Aubret, A., Matignon, L., and Hassas, S. (2023). An information-theoretic perspective

on intrinsic motivation in reinforcement learning: A survey. Entropy, 25.

Bachman, P., Hjelm, R. D., and Buchwalter, W. (2019). Learning representations

by maximizing mutual information across views. Advances in Neural Information

Processing Systems, 32.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S.,

Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., et al. (2020). Never give up:

Learning directed exploration strategies. arXiv preprint arXiv:2002.06038.

Baldassarre, G. (2019). Intrinsic motivations and open-ended learning.

arXiv:1912.13263v1 [cs.AI].

Baldassarre, G., Stafford, T., Mirolli, M., Redgrave, P., Ryan, R. M., and Barto, A.

(2014). Intrinsic motivations and open-ended development in animals, humans, and

robots: An overview. Frontiers in Psychology.

Bardes, A., Ponce, J., and LeCun, Y. (2022). VICReg: Variance-invariance-covariance

regularization for self-supervised learning. In International Conference on Learning

Representations.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., Tb, D., Mul-

dal, A., Heess, N., and Lillicrap, T. (2018). Distributed distributional deterministic

policy gradients. arXiv preprint arXiv:1804.08617.

73

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.

(2016). Unifying count-based exploration and intrinsic motivation. In Advances in

Neural Information Processing Systems, pages 1471–1479.

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American

Mathematical Society, 60(6):503–515.

Bellman, R. (1957). A markovian decision process. Indiana Univ. Math. J., 6:679–684.

Bialek, W., Nemenman, I., and Tishby, N. (2001). Predictability, complexity, and

learning. Neural Computation, 13:2409–2464.

Bialek, W. and Tishby, N. (1999). Predictive information. arXiv preprint cond-

mat/9902341.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random

network distillation. arXiv:1810.12894.

Burnham, K. P. and Anderson, D. R. (2003). Model Selection and Multimodel Inference:

a practical information-theoretic approach. Springer Science & Business Media.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering for

unsupervised learning of visual features. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 132–149.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020).

Unsupervised learning of visual features by contrasting cluster assignments. Advances

in Neural Information Processing Systems, 33:9912–9924.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework

for contrastive learning of visual representations. In International Conference on

Machine Learning, pages 1597–1607. PMLR.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. E. (2020b). Big

self-supervised models are strong semi-supervised learners. Advances in Neural In-

formation Processing Systems, 33:22243–22255.

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discrimi-

natively, with application to face verification. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, volume 1, pages 539–546 vol. 1.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2019). Leveraging procedural

generation to benchmark reinforcement learning. CoRR, abs/1912.01588.

74

Crutchfield, J. P. (1990). Information and its metric. In Nonlinear Structures in

Physical Systems, pages 119–130. Springer.

Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. Harper

Perennial, New York, NY.

Festinger, L. (1962). A Theory of Cognitive Dissonance. Stanford university press.

Graves, A. (2011). Practical variational inference for neural networks. Advances in

neural information processing systems, 24.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch,

C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own

latent-a new approach to self-supervised learning. Advances in neural information

processing systems, 33:21271–21284.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estima-

tion principle for unnormalized statistical models. In Proceedings of the 13th Inter-

national Conference on Artificial Intelligence and Statistics, pages 297–304. JMLR

Workshop and Conference Proceedings.

Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. F., and Yamins, D. L. (2018). Learning to

play with intrinsically-motivated, self-aware agents. Advances in neural information

processing systems, 31.

Harlow, H. F. (1950). Learning and satiation of response in intrinsically motivated

complex puzzle performance by monkeys. Journal of Comparative and Physiological

Psychology, 43(4):289–294.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. (2019). Provably efficient maxi-

mum entropy exploration. In International Conference on Machine Learning, pages

2681–2691. PMLR.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsu-

pervised visual representation learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9729–9738.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Conference on Computer Vision and Pattern Recognition.

Henaff, O. (2020). Data-efficient image recognition with contrastive predictive coding.

In International Conference on Machine Learning, pages 4182–4192. PMLR.

75

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler,

A., and Bengio, Y. (2018). Learning deep representations by mutual information

estimation and maximization. arXiv preprint arXiv:1808.06670.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016).

VIME: Variational information maximizing exploration. In Advances in Neural In-

formation Processing Systems, pages 1109–1117.

Hsu, C. C.-Y., Mendler-Dünner, C., and Hardt, M. (2020). Revisiting design choices

in proximal policy optimization. arXiv preprint arXiv:2009.10897.

Hull, C. L. (1943). Principles of Behavior: An Introduction to Behavior Theory. New

York, London: D. Appleton-Century Company, Inc.

Hunt, J. (1965). Intrinsic motivation and its role in psychological development. In Ne-

braska symposium on motivation, volume 13, pages 189–282. University of Nebraska

Press.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring

the limits of language modeling. arXiv preprint arXiv:1602.02410.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu,

C., and Krishnan, D. (2020). Supervised contrastive learning. Advances in Neural

Information Processing Systems, 33:18661–18673.

Kim, H., Kim, J., Jeong, Y., Levine, S., and Song, H. O. (2018). EMI: Exploration

with mutual information. arXiv:1810.01176.

Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization. In

International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.

arXiv:1312.6114.

Kramer, M. A. (1992). Autoassociative neural networks. Computers & Chemical En-

gineering, 16(4):313–328.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with deep

convolutional neural networks. Neural Information Processing Systems, 25.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86.

76

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine, S., and Salakhutdinov,

R. (2019). Efficient exploration via state marginal matching. arXiv preprint

arXiv:1906.05274.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

and Wierstra, D. (2015). Continuous control with deep reinforcement learning.

arXiv:1509.02971.

Liu, H. and Abbeel, P. (2021). Behavior from the void: Unsupervised active pre-

training. Advances in Neural Information Processing Systems, 34:18459–18473.

Liu, X., Li, Q., and Li, Y. (2022). Count-based exploration via embedded state space

for deep reinforcement learning. Wireless Communications and Mobile Computing,

2022.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. (2017).

Multi-agent actor-critic for mixed cooperative-competitive environments. Advances

in neural information processing systems, 30.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2020). Count-based exploration

with the successor representation. In Proceedings of the AAAI Conference on Arti-

ficial Intelligence, volume 34, pages 5125–5133.

Martin, J., Sasikumar, S. N., Everitt, T., and Hutter, M. (2017). Count-based explo-

ration in feature space for reinforcement learning. arXiv preprint arXiv:1706.08090.

Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., Goodfellow,

I. J., and Pouget-Abadie, J. (2014). Generative adversarial nets. Advances in Neural

Information Processing Systems, 27:2672–2680.

Misra, I. and Maaten, L. v. d. (2020). Self-supervised learning of pretext-invariant

representations. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6707–6717.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In

International Conference on Machine Learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. In Neural

Information Processing Systems.

77

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. nature, 518(7540):529–533.

Montgomery, K. C. (1954). The role of the exploratory drive in learning. Journal of

Comparative and Physiological Psychology, 47(1):60–64.

Montúfar, G., Ghazi-Zahedi, K., and Ay, N. (2016). Information theoretically aided

reinforcement learning for embodied agents. abs/1605.09735.

Morris, L. S., Grehl, M. M., Rutter, S. B., Mehta, M., and Westwater, M. L. (2022). On

what motivates us: a detailed review of intrinsic v. extrinsic motivation. Psychological

Medicine, 52(10):1801–1816.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-based

exploration with neural density models. In International Conference on Machine

Learning, pages 2721–2730.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? a typology of

computational approaches. Frontiers in Neurorobotics, 1:6.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual

lifelong learning with neural networks: A review. Neural Networks, 113:54–71.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven explo-

ration by self-supervised prediction. arXiv:1705.05363.

Pecháč, M., Chovanec, M., and Farkaš, I. (2023). Exploration by self-supervised ex-

ploitation. arXiv preprint arXiv:2302.11563.

Pecháč, M. and Farkaš, I. (2021). Intrinsic motivation model based on reward gating. In

Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International

Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17,

2021, Proceedings, Part IV 30, pages 688–699. Springer.

Pecháč, M. and Farkaš, I. (2022). Intrinsic motivation based on feature extractor

distillation. In Kognice a umělý život XX, pages 84–91. ČVUT v Praze.

Rochat, P. and Striano, T. (2000). Perceived self in infancy. Infant Behavior and

Development, 23(3-4):513–530.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist sys-

tems, volume 37. University of Cambridge, Department of Engineering Cambridge,

England.

78

Ryan, R. and Deci, E. (2000). Intrinsic and extrinsic motivations: Classic definitions

and new directions. Contemporary Educational Psychology, 25(1):54–67.

Sadowski, C. and Levin, G. (2007). Simhash: Hash-based similarity detection.

Santucci, V. G., Baldassarre, G., and Mirolli, M. (2012). Intrinsic motivation mecha-

nisms for competence acquisition. In International Conference on Development and

Learning and on Epigenetic Robotics (icdl), pages 1–6. IEEE.

Santucci, V. G., Baldassarre, G., and Mirolli, M. (2013). Which is the best intrinsic

motivation signal for learning multiple skills? Frontiers in Neurorobotics, 7:22.

Santucci, V. G., Baldassarre, G., and Mirolli, M. (2014). Cumulative learning through

intrinsic reinforcements. In Evolution, Complexity and Artificial Life, pages 107–122.

Springer.

Schmidhuber, J. (1991). A possibility for implementing curiosity and boredom in

model-building neural controllers. In Proc. of the International Conference on Sim-

ulation of Adaptive Behavior: From Animals to Animats, pages 222–227.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 815–823.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015a). Trust region

policy optimization. In International Conference on Machine Learning, pages 1889–

1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). High-

dimensional continuous control using generalized advantage estimation. arXiv

preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms. arXiv:1707.06347.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., and Pathak, D. (2020).

Planning to explore via self-supervised world models. In International Conference

on Machine Learning, pages 8583–8592. PMLR.

Seo, Y., Chen, L., Shin, J., Lee, H., Abbeel, P., and Lee, K. (2021). State entropy maxi-

mization with random encoders for efficient exploration. In International Conference

on Machine Learning, pages 9443–9454. PMLR.

79

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system

technical journal, 27(3):379–423.

Shyam, P., Jaśkowski, W., and Gomez, F. (2019). Model-based active exploration. In

International Conference on Machine Learning, pages 5779–5788.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

Deterministic policy gradient algorithms. In International conference on machine

learning, pages 387–395. Pmlr.

Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., and Demchuk, E. (2003). Nearest

neighbor estimates of entropy. American Journal of Mathematical and Management

Sciences, 23(3-4):301–321.

Sohn, K. (2016a). Improved deep metric learning with multi-class n-pair loss objective.

Advances in Neural Information Processing Systems, 29.

Sohn, K. (2016b). Improved deep metric learning with multi-class n-pair loss objec-

tive. In Advances in Neural Information Processing Systems, volume 29. Curran

Associates, Inc.

Souchleris, K., Sidiropoulos, G. K., and Papakostas, G. A. (2023). Reinforcement

learning in game industry — review, prospects and challenges. Applied Sciences.

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval esti-

mation for markov decision processes. Journal of Computer and System Sciences,

74(8):1309–1331.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning, volume

135. MIT Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT

press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial Intelligence,

112(1-2):181–211.

Tang, H. et al. (2017). #Exploration: A study of count-based exploration for deep

reinforcement learning. In Advances in Neural Information Processing Systems, pages

2753–2762.

80

Van Den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent

neural networks. In International conference on machine learning, pages 1747–1756.

PMLR.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with con-

trastive predictive coding. CoRR, abs/1807.03748.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605.

Veness, J., Ng, K. S., Hutter, M., and Bowling, M. (2012). Context tree switching. In

2012 data compression conference, pages 327–336. IEEE.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279–292.

Watson, J. S. (1972). Smiling, cooing, and ”the game”. Merrill-Palmer Quarterly of

Behavior and Development, 18:323–339.

White, R. W. (1959). Motivation reconsidered: The concept of competence. Psycho-

logical Review, 66(5):297–333.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. (2018). Unsupervised feature learning via

non-parametric instance discrimination. In Proceedings of the IEEE Conference on

Computer vision and Pattern Recognition, pages 3733–3742.

Ye, M., Zhang, X., Yuen, P. C., and Chang, S.-F. (2019). Unsupervised embed-

ding learning via invariant and spreading instance feature. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6210–

6219.

Zahedi, K., Martius, G., and Ay, N. (2013). Linear combination of one-step predictive

information with an external reward in an episodic policy gradient setting: a critical

analysis. CoRR, abs/1309.6989.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-

supervised learning via redundancy reduction. CoRR, abs/2103.03230.

81

	Introduction
	Reinforcement learning
	Markov decision process
	Value functions
	Bellman optimality equations

	Reinforcement learning methods
	Dynamic programming
	Monte Carlo
	Temporal difference

	Off-policy reinforcement learning methods
	Q-Learning
	Deep Q-Network (DQN)
	Deep Deterministic Policy Gradient (DDPG)

	On-policy reinforcement learning methods
	SARSA
	REINFORCE
	Actor–Critic (AC)
	Advantage Actor–Critic (A2C)
	Proximal Policy Optimization (PPO)

	Self-supervised learning
	Contrastive methods
	Cosine similarity
	Noise Contrastive Estimation (NCE)
	InfoNCE
	Contrastive loss
	N-pair loss

	Non-contrastive methods
	BYOL
	Barlow Twins
	VICReg

	Intrinsic motivation
	Knowledge-based category
	Prediction-based approach
	Novelty-based approach
	Information-based approach
	Learning progress approach

	Competence-based category
	Morphological-based category

	Self-supervised Predictors
	Methods
	SND-STD
	SND-VIC
	SND-VINV
	SP

	Experiments
	Training setup
	State preprocessing

	Results
	Analysis

	Discussion

