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Abstrakt: 

 

Umelé neurónové siete sú v súčasnosti najviac skúmanými modelmi v oblasti strojového učenia 

s mnohými aplikáciami v oblastiach ako rozpoznávanie objektov, strojový preklad jazyka, 

robotika a generovanie obrázkov. Avšak aplikácia umelých neurónových sietí môže byť v praxi 

obmedzená absenciou dát s označením. Témou tejto dizertačnej práce sú algoritmické techniky 

na zníženie množstva označených dát potrebných na úspešné natrénovanie modelov založených 

na umelých neurónových sieťach. Medzi tieto techniky patrí transferové učenie, augumentácia 

dát, few-shot učenie, polokontrolované učenie a modely ktoré využívajú rozsiahle datasety bez 

označených dát na riešenie rôznych úloh bez učiteľa. V tejto práci prezentujeme výsledky ktoré 

vylepšujú úspešnosť modelov založených na neurónových sieťach s použitím malého množstva 

označených dát v rôznych oblastiach vrátane klasifikácie obrázkov, segmentácie obrázkov, 

odhadovania pózy objektov a detekcie objektov. 

 

Kľúčové slová: umelé neurónové siete, hlboké učenie, transferové učenie, augumentácia dát, 

few-shot učenie, polokontrolované učenie 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract: 

 

Artificial neural networks are currently the most widely used and researched models in machine 

learning with numerous applications in domains such as object recognition, machine 

translation, robotics or image generation. However, the application of artificial neural networks 

can often be hindered by the lack of labeled data. The topic of this thesis are techniques designed 

to lower the amount of labeled data needed to successfully train artificial neural network 

models. Among these techniques are transfer learning, data augmentation, few-shot learning, 

semi-supervised learning and models that use large scale unlabeled datasets to learn to solve 

various tasks in an unsupervised manner. We present results that improve label efficiency in 

various domains including image classification, image segmentation, object pose estimation 

and object detection. 

 

Keywords: artificial neural networks, deep learning, transfer learning, data augmentation, few-

shot learning, semi-supervised learning 
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Introduction 

 

Artificial neural networks (ANNs) are currently one of the most widely used and researched 

models in machine learning. Models based on ANNs have numerous applications in many areas 

of artificial intelligence where they achieve state-of-the-art results such as object recognition 

(Krizhevsky et al., 2012), machine translation (Wu et al., 2016), control of artificial agents in 

complex environments (Mnih et al., 2015), generation of realistic looking pictures from 

particular domain (Odena et al., 2017) or language modelling (Brown et al., 2020). In some 

domains, ANNs achieve better results than humans. Examples are object recognition of objects 

in photos (Szegedy et al., 2017) or the board game Go (Silver et al., 2017).  

 Learning algorithms in most models based on ANNs are based on gradient descent learning 

method combined with backpropagation mechanism (Werbos, 1974; Rumelhart et al., 1986). 

These kinds of algorithms require a cost function that specifies the error rate of an artificial 

neural network model when solving a particular problem. Using the gradient descent learning 

method with a backpropagation mechanism we can then change the weights of a particular 

network in a way that minimizes the cost function, which results in increasing performance of 

a network on a particular problem. This learning method has in recent years proven to be very 

effective, but also very demanding on computational resources and the number of labelled 

training examples needed for convergence to correct solution. This is why ANNs became 

popular only in recent years when cheap hardware optimized for matrix operations came to the 

market in the form of graphics processing units (GPUs) and when a source of large amounts of 

training data became available, otherwise known as the internet. 

 Because of the need for a large number of labeled training examples for convergence to 

correct solution, applications of ANNs are currently limited to domains with a large number of 

labeled training examples. One example is the domain of object recognition, where there is 

many human annotated photographs and pictures available on image sharing services. Another 

good example is the domain of computer games where although we do not have access to a 

large number of annotated training examples, we can utilize the deep reinforcement learning 

method (Mnih et al., 2013) which enables an artificial agent to learn the correct strategy during 

large amounts of interactions with a simulated environment. 

 Unfortunately, in many important problems in artificial intelligence we do not have access 

to either large amounts of annotated training data or large a number of interactions with a 

simulated environment. One example is the situation of a robotic agent interacting with a real-
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world environment that needs to continuously adapt and learn tasks in its environment. As 

opposed to a simulated environment, an artificial agent in the real-world environment cannot 

afford a large number of interactions with an environment to learn some task because of time 

constraints and because some of these interactions could result in a damage of either the agent 

or the environment itself. In other words, an artificial agent with limited access to the annotated 

data or interactions with an environment requires a learning procedure that can converge to a 

good solution using only a limited number of annotated training data or a limited amount of 

interactions with the environment. 

 In chapter 1 we will explore the basic theory behind ANNs and introduce fundamental 

ANN models used today and their applications. There are several approaches for increasing the 

label efficiency of artificial neural networks. In chapter 2 we review various approaches to the 

problem of label efficiency of artificial neural networks. These approaches include standard 

transfer learning and data augmentation strategies, few-shot learning strategies, semi-

supervised learning strategies and self-supervised learning strategies. We mainly focus on label 

efficiency in the image domain, but these strategies also apply to other domains. In chapter 3 

we present several models that improve label efficiency in various domains including image 

classification, image segmentation, object pose estimation and object detection. In this chapter 

we also present experimental results and comparisons with other methods.   
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1. Artificial neural networks and their applications 

 

1.1 Neural networks and gradient based learning 

 

Artificial neural networks (ANNs) in recent years saw a resurgence of interest both in academic 

and commercial sphere. The reason for this resurgence, as mentioned before, is the performance 

of ANN models in many challenging tasks. An ANN can be viewed as a connectionist model 

that consists of a number of basic computational units called neurons that are interconnected 

with a set of adaptable parameters called weights. Each neuron in an ANN computes an output 

that is a function of its input. ANNs as a whole can be viewed as a composite function  𝑓 , or 

network function, that transforms an input space 𝑋 to an output space 𝑌.  

 𝑓 ∶  𝑋 → 𝑌 ( 1 ) 

ANNs learn by observing the examples from an input space 𝑋 and then adapting their 

weights so that the network learns a network function 𝑓 that can correctly transform the input 

𝑋 to output 𝑌. This should be true even for examples of 𝑋 that the network did not encounter 

before. The basic computation unit of ANNs, the neuron, can compute different functions. In 

most ANN models the neuron computes the sum of the input vector 𝑥 weighted by learnable 

weights 𝑤. Usually there is also a nonlinear activation function 𝜎 applied to the internal activity 

of a particular neuron. The output of a typical neuron in ANN can thus be expressed in the 

following way, where 𝑏 represents the bias of a particular neuron and 𝑖 represents the index of 

a particular input and the corresponding weight. 

 
𝑦 =  𝜎(∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 + 𝑏) ( 2 ) 

The neurons in ANNs are organized in layers. The simplest ANNs have only an input layer 

and output layer connected with weights and are called simple perceptrons (Rosenblatt, 1958). 

Despite the initial promising results of perceptrons when it comes to classification, Minsky and 

Papert (1969) showed that these models are unable to learn classification tasks in which the 

classes are not linearly separable and thus cannot be the solution to the general classification 

problem. Neural networks need at least one hidden layer between the input and output layer in 

order for them to learn classification problems with classes that are not linearly separable. Basic 

architecture of an ANN with one hidden layer is illustrated in Figure 1. 
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The weights in ANNs are adapted using a learning algorithm. Through the history of ANN 

research, many learning algorithms were developed such as expectation-maximization 

(Dempster et al., 1977), simulated annealing (Kirkpatrick et al., 1983) or Hebbian learning 

(Hebb, 1949), but we will focus on an algorithm based on gradient based learning using 

backpropagation algorithm developed independently by Paul Werbos and David Rumelhart. 

Backpropagation algorithm enables us to apply the gradient based learning to ANNs with 

multiple hidden layers and is currently the basis of all state-of-the-art neural network models 

used today.  

 

 

Figure 1. Schema of a fully connected multilayer perceptron with one hidden layer (Rumelhart et al., 1986). 

 

The basic principle of the backpropagation algorithm is to use the gradient descent 

optimization method for finding such a combination of learnable parameters (weights) that 

minimizes the cost function, i.e that maximizes the performance measure of particular neural 

network on some task. The cost function is often fine-tuned to the task, but for most 

classification problems general cost functions like cross-entropy or mean-square error are used. 

Given 𝑝 training examples, correct labels 𝑡, and network outputs 𝑜, we can define the mean 

squared error (𝑀𝑆𝐸) and the cross-entropy (𝐶𝑆𝐸) cost functions in the following way: 

𝑀𝑆𝐸 =  
1

2𝑝
∑(𝑜(𝑖) −  𝑡(𝑖))2

𝑝

𝑖=1

 (3) 
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𝐶𝑆𝐸 =  − ∑[ 𝑡(𝑖) ln 𝑜(𝑖)

𝑝

𝑖=1

+ (1 −  𝑡(𝑖)) ln(1 − 𝑜(𝑖))] (4) 

The backpropagation algorithm can be divided into following basic steps: 

• output of the network is calculated during the forward pass from a set of training examples, 

• cost function 𝐸 is calculated from the output of the network and ground truth (labels), 

• we calculate the gradient ∇𝐸 of the cost function ∇𝐸 = (
𝜕𝐸

𝜕𝑤1
,

𝜕𝐸

𝜕𝑤2
, … ,

𝜕𝐸

𝜕𝑤𝑙
), with respect to 

every learnable parameter (weight) of the network using the chain rule, 

• we update every weight and bias in the neural network by subtracting the gradient scaled 

by a learning constant 𝛼 from the value of the weight  𝑤𝑙
𝑡+1 =  𝑤𝑙

𝑡 −  𝛼
𝜕𝐸

𝜕𝑤𝑙
𝑡. 

 

Since the publication of the original backpropagation paper, several new variants of 

gradient descent optimization algorithm were developed that often exhibit better performance 

than the standard gradient descent algorithm. Some of the most widely used algorithms include 

AdaDelta (Zeiler, 2012), AdaGrad (Duchi et al., 2011) or ADAM (Kingma et al., 2014).  

In subchapters 1.2-1.5 we will examine some of the most significant neural network 

architectures and their applications. All of these architectures use gradient descent learning with 

backpropagation mechanism.  

 

1.2 Convolutional neural networks and their use in image recognition 

 

It is well known that building some constraints (a priori knowledge) relevant for the domain 

that a machine learning system operates in can often enhance generalization capabilities of that 

system. This is also true for machine learning systems based on artificial neural networks.       

Convolutional neural networks (CNNs) developed by LeCun (1989) for use in handwritten 

image recognition have several important constraints built in its architecture that enables CNNs 

to perform better than a multilayer perceptron in the image domain. 

The main constraint built into CNNs is the receptive field arrangement of the neurons in 

the individual layers of convolutional networks that resembles the neuron organization in the 

primary visual cortex which was first discovered in seminal work by Hubel and Wiesel (1962). 

Unlike neurons in the multilayer perceptron, neurons in CNNs are connected by their weights 

to only a small subset of their input space. When presented with an input space the weight 

matrix of every neuron “slides” over the input space in a process known as the convolution. 
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This process results in feature maps that contain responses of all neurons in a particular layer 

for all spatial locations in the input space. Typically a CNN contains a multilevel hierarchy of 

convolutional layers where neurons in convolutional layers farther form input have larger 

receptive fields. This arrangement of neurons is beneficial in the image domain due to the 

compositional nature of images i.e. objects in natural scenes can be decomposed into parts (or 

features), that can also be decomposed into lower level parts all the way down to elementary 

features (edges). These features as well as objects themselves can appear anywhere in the 

image, therefore we want the object recognition model to be invariant to change in spatial 

position. Due to the hierarchical arrangement of CNNs and the convolutional operation, CNNs 

can learn features that exploit compositional nature of images and features that are invariant to 

translation (change in spatial position). Architecture of a Convolutional Neural Network from 

Krizhevsky et al. is illustrated in Figure 2. 

 

 

Figure 2. Example of a convolutional neural network architecture (Krizhevsky et al. 2012). 

 

Besides convolutional layers, basic CNNs typically contain max pooling or average 

pooling layers and fully connected layers that are responsible for computing the output of the 

network based on the activations of final convolutional layer. Max pooling and average pooling 

layers aggregate together the outputs of neighboring neurons by selecting only maximum or 

average activation of neurons in predefined locations in the feature map. Pooling layers are used 

for downsampling of the input space and are known to improve the invariance characteristics 

of CNNs. Unfortunately both max pooling and average pooling layers “throw” away some 

spatial information contained in the feature maps. For this reason max pooling and average 

pooling layers are in most recent models often replaced by convolutional layers with larger 

receptive fields which can be used for subsampling while avoiding the loss of spatial 

information. 

CNNs have numerous applications, particularly in image recognition and processing. Alex 

Krizhevsky, Sutskever and Hinton (2012) first demonstrated that CNNs can outperform 
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competing machine learning methods in image classification. Since then, CNNs became the 

standard machine learning method for most image processing tasks including image generation 

or control of artificial agents using raw visual input. Several architectural changes enabled the 

design of CNNs with a large number of hidden layers (up to 150) with much higher 

performance. The first architectural change was the introduction of Inception layers (Szegedy 

et al., 2015) that replaced convolutional layers with a single filter size with so called Inception 

layers. These layers combine feature maps with multiple filter sizes which enables each layer 

to combine information about local and more global features into a simple output while at the 

same time lowering the computational requirements of very deep networks. Figure 3. illustrates 

a basic architecture of the Inception layer.    

 

 

Figure 3. Example of an Inception layer (Szegedy et al., 2015). 

 

Another key insight comes from a ResNet architecture (He et al., 2016). According to the 

authors ResNet architecture addresses the key problem of constructing very deep architectures 

which can potentially learn more complex features and thus improve the performance, by 

alleviating the vanishing gradients problem. Vanishing gradients are a result of gradient 

multiplication which can result in a situation when gradients go to zero in neural network layers 

closer to the input to the network which can halt the learning in very deep networks. ResNet 

architecture addresses this problem by introducing the so-called residual blocks, illustrated in 

Figure 4. Residual block consists of a number of stacked convolutional (or fully connected) 

layers and a skip connection that simply copies the input to residual layer and adds it to the 

output of the residual layer. During backpropagation this enables the gradient from the layer 

above to pass through skip connection directly, bypassing the weights in the residual block 

which leads to better propagation of gradients through the network. 
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Figure 4. Schema of a residual block (He et al., 2016). 

 

A combination of Inception and ResNet architectures (Szegedy et al., 2017) managed to 

approach human-like performance on the ImageNet image recognition dataset (Russakovsky et 

al., 2015) with 3.7% top-5 error rate. This is significant, because of the challenging nature of 

the dataset that consists of photos of real-world objects collected from the internet belonging to 

1000 classes. 

Beside these key architectural changes, several other changes to standard CNN architecture 

were made that contributed to improved performance of CNNs: 

• usage of faster optimization algorithms like ADAM or RMSprop, 

• more efficient weight initialization techniques like Xavier initialization (Glorot et al., 

2010), 

• usage of alternative activation functions like ReLu, that enables better propagation of 

gradients through the network and reduces vanishing gradient problem, 

• better normalization methods like batch normalization (Ioffe et al., 2015). 

 

1.3 Recurrent neural networks 

 

The main advantage of recurrent neural networks (RNNs) is that unlike feed-forward models 

such as multilayer perceptrons and CNNs they can explicitly model sequences of inputs with 

arbitrary length. They are also capable of generating sequences of outputs. These features make 

recurrent neural networks ideal for tasks like time series prediction, language translation and 

language modelling as well as any domains where the input data is of the sequential nature. 

 The architecture of RNNs is similar to feed-forward models, but with recurrent 

connections on hidden layers that connect hidden layers to themselves through time steps in the 



9 
 

sequence which enables RNNs to model sequences of data. Most RNNs today are trained using 

a variants of training procedure known as backpropagation through time (Werbos, 1990). The 

basic principle behind backpropagation through time is the unrolling of the timesteps during 

the computation of the output. Unrolling procedure is illustrated in Figure 5.  At every timestep 

a part of the input sequence corresponding to that timestep is inputted to the network together 

with activations from hidden layers from previous timestep connected to corresponding hidden 

layers with recurrent weights. Based on the input at the current timestep and activations of 

hidden layers from previous timesteps the output at current timestep is computed. The value of 

the cost function and gradients (using gradient descent) are then calculated for that timestep. 

This process is repeated for every data point in input sequence. When the end of the sequence 

is reached, the gradients are then accumulated and weights of the network are updated. 

 

 

Figure 5. Example of a recurrent neural network with one hidden layer with input 𝑥, output 𝑜, weight matrices 𝑉 

and 𝑈 and a recurrent weight matrix 𝑊. On the right is the unrolled view of the network (from 

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns) 

 

The unrolled RNN can be viewed as one big composite neural network that consists of 

several copies of a feed-forward network (one for each timestep) connected laterally with 

recurrent connections. In long sequences with many steps this architecture and learning 

algorithm suffer from the same vanishing and exploding gradient problem as very deep feed-

forward networks. Long short-term memory (LSTM) architecture (Hochreiter et al., 1997) was 

developed to deal with vanishing and exploding gradient problem in recurrent neural networks 

when processing long input sequences. In LSTM individual neurons are replaced with the so 

called cells. For every cell in the hidden layers there are several gates that control the flow of 

information through the cell called forget gate, input gate and output gate. These cells are 

responsible for learning which parts of information coming to the cell should be retained, 

modified and outputted and which should be “forgotten”. Figure 6. illustrates the architecture 
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of the LSTM cell.  This allows for more efficient flow of gradient through the network and as 

a result, allows for the processing of much longer input sequences. There are several variants 

of the LSTM architecture in use today including LSTM with peephole connections (Gers et al., 

2002), Gated Recurrent Units (Chung et al., 2014) or bidirectional LSTM (Graves et al., 2005). 

 

 

Figure 6. Schema of long short-term memory cell (Graves et al., 2013). 

 

RNNs with LSTM like units have been used to tackle many problems in various areas of 

artificial intelligence. Bidirectional LSTM was successfully applied to a speech recognition 

problem while significantly outperforming other models like Hidden Markov Models (Graves 

et al., 2013). 

Recently RNNs were being replaced by a new model called Transformer (Vaswani et al., 

2017) for sequence prediction tasks. In Transformer model recurrent connections are replaced 

by attention module that models relationships between individual elements in the sequence. 

This attention module only uses feedforward connections which eliminates the vanishing and 

exploding gradient problem. Information about the position of individual elements in the 

sequence is provided to the network as an additional input variable. Transformer models 

currently constitute a backbone of state-of-the-art machine translation models (Liu et al., 2020), 

language prediction models (Brown et al., 2020) or item recommendation models used in 

various web services (Kang et al., 2018). Transformer model architecture is displayed in Figure 

7. 
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Figure 7. Architecture of the Transformer model (Vaswani et al., 2017). 

 

 1.4 Neural network-based reinforcement learning models 

 

Reinforcement learning (RL) is defined as a subfield of machine learning that deals with 

the question of how should some artificial system, or agent, select actions that maximize 

rewards that the agent receives from the environment. Reinforcement learning algorithms are 

often applied to domains where the agent does not have access to a supervisory signal. Instead, 

the agent only has access to some representation of the state of the agent’s environment and to 

reward from this environment. From the representation of the state of agent’s environment and 

reward signals that the agent receives from the environment during interactions, the agent has 

to infer a policy that maximizes agent’s reward. Thus, the basic reinforcement learning 

procedure can be defined in the following way: 

• at time 𝑡 the agent receives an observation 𝑂𝑡 and a scalar reward 𝑅𝑡 from the environment, 

• based the observation 𝑂𝑡  and a policy the agent selects an action 𝐴𝑡, 

• environment receives an action 𝐴𝑡 and emits an observation 𝑂𝑡+1 and a reward 𝑅𝑡+1, 
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• the agent receives an observation 𝑂𝑡+1 and a reward 𝑅𝑡+1, selects a new action 𝐴𝑡 and, if    

necessary, modifies its policy. 

 

There are several algorithms that can be used to solve reinforcement learning problem 

including dynamic programming, Monte-Carlo methods, temporal difference learning (Sutton, 

1988) SARSA (Rummery et al., 1994) and Q-learning (Watkins, 1989). These algorithms are 

based on finding an optimal value function which can then be used to determine optimal policy 

that maximizes the reward that the agent receives from the environment. Value function can be 

defined as a measure of “goodness” or “badness” of some state of the environment. There are 

two basic types of value functions, namely the state-value function 𝑉𝜋(𝑠) and the action-value 

function 𝑄𝜋(𝑠, 𝑎). The state-value function 𝑉𝜋(𝑠) can be defined as an expected cumulative 

discounted reward (return) from some state 𝑠 and then following a policy 𝜋. The action-value 

function 𝑄𝜋(𝑠, 𝑎) can be defined as an expected cumulative discounted reward (return) from 

some state 𝑠, when our agent took an action 𝑎 and then followed a policy 𝜋. Optimal state-value 

function 𝑉∗(𝑠)  and action-value function 𝑄∗(𝑠, 𝑎) can simply defined as a maximum value 

function over all policies. 

𝑉∗(𝑠) =  max
𝜋

𝑉𝜋(𝑠) ( 5 ) 

𝑄∗(𝑠, 𝑎) =  max
𝜋

𝑄𝜋(𝑠, 𝑎) ( 6 ) 

Optimal policy can be determined from the action-value function by simply selecting an action 

with highest action-value function. 

 𝑎∗ =  argmax
𝑎 ∈ 𝐴

𝑄∗(𝑠, 𝑎) ( 7 ) 

Policies themselves can be divided into deterministic and stochastic policies. In deterministic 

policy 𝜋(𝑠), the agent always takes the same action in a given state. In stochastic policy 𝜋(𝑎|𝑠) 

the agent takes certain action in the same state with some probability. 

𝜋(𝑠) = 𝑎 ( 8 ) 

𝜋(𝑎|𝑠) = 𝑝[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] ( 9 ) 

In most domains like for example control of computer game agents, robotic control or self-

driving cars, there is a large number of states which prohibits the use of value function 

representations by traditional means like for example lookup tables. Instead we have to rely on 

approximate solutions using value function approximators with some parameters 𝑤. 

Considering that artificial neural networks are currently the state-of-the-art models in many 

domains, they are ideal models for value function approximation. 
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Deep Q-learning algorithm developed by Mnih et al. (2013) allows us to train artificial 

agents in complex environments by combining RL principles with value function 

approximation using CNNs. The architecture of Deep Q-learning network is illustrated in 

Figure 8. Using these methods the authors were able to learn successful policies for most of the 

50 Atari 2600 games they tested directly from the pixel representation of the game states with 

changes in the score of the game acting as a reward signal. They used Q-learning update rule 

together with CNN for action-value function approximation. They also introduced the so-called 

experience replay mechanism that is used for stabilizing the learning. Experience replay stores 

a tuples of states, actions and rewards from previous time steps during the training in the 

memory and during very weight update it randomly samples past transitions and uses them as 

learning data for value function approximator. It stabilizes the learning procedure by removing 

correlations between the training data. Deep Q-learning also further stabilizes the learning by 

using secondary CNN to approximate target action-value function used in the weight updates 

of primary action value-function approximator. 

  

 

Figure 8. Neural network architecture used by Deep Q-learning based on convolutional neural network. Input to 

the network consists of 84x84x4 pixel array that contains 4 most recent game screens and the output represents 

potential actions that the agent can execute in the environment (Mnih et al., 2015). 

 

There are several variants of Deep-Q learning that improve the performance of this 

algorithm. This includes Double Deep-Q learning (Van Hasselt et al., 2016) which addresses 

the tendency of the Deep-Q learning to overestimate Q-values, or Deep-Q learning with 

prioritized experience replay which can sample more “important” tuples of states, actions and 

rewards more frequently (Schaul et al., 2015). Algorithms based on Deep Q-learning have been 
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recently applied to much more complex domains than simple Atari games. Deep Q-learning 

model developed by Lample et al. (2017) have been able to learn successful policy that 

exhibited performance similar to human players in 3D video game Doom which is partially 

observable in nature. A model that is a combination of neural network value approximation 

model with Monte Carlo tree search was used to beat top human players in a game of Go for 

the first time (Silver et al., 2017).  

The main disadvantage of algorithms based on Deep-Q learning is that they are not directly 

applicable to domains with continuous action spaces control of the limbs of autonomous robots 

or self-driving car control. In domains with continuous action spaces we need to separately 

approximate the policy and the value of the action-state pair. This kind of algorithm is called 

the actor-critic algorithm. The actor part of this algorithm selects an appropriate action based 

on the current state of the environment. The critic part evaluates the value of the current state 

of the environment and the current action selected by the actor. Actor-critic algorithm and 

neural network approximators were combined in the work by Lillicrap et al. (2015). They used 

Deterministic Policy Gradient update rule (Silver et al., 2014) to update the actor network and 

Q-learning update for critic network. This architecture managed to successfully learn policies 

in wide range of continuous control tasks such as vehicle control, monopoded balancing task,  

reaching task or cart-pole swing-up task.  

 

1.5 Generative models based on neural networks 

 

So far we discussed various variants of discriminative models that can classify, select an action 

or make certain inferences from the data. Unlike discriminative models, generative models role 

is not to model a dependence between the input data and some target data, but to generate novel 

instances of data that are from the same distribution as the training data. Such models have 

numerous applications in the realm of artificial intelligence that include image generation and 

modification, simulating models of agent’s environment in reinforcement learning that can be 

used for planning or generation of new training data for improving classification models. 

 There are several generative models based on artificial neural networks. Some of the more 

popular models include Deep Boltzmann Machines (Salakhutdinov et al., 2010), Variational 

Autoencoders (Kingma et al., 2013), PixelRNN (Oord et al., 2016) and Generative Adversarial 

Networks (Goodfellow et al., 2014). We will focus on Generative Adversarial Networks 

(GANs) due to the quality of samples they produce that is superior to other generative models 



15 
 

as well as due to fewer architectural limitations and greater flexibility when designing practical 

models. Also unlike models like PixelRNN they can generate samples in one forward pass of 

the network which lowers computational requirements of this model. 

The basic principle of GANs is to create a game scenario between two artificial neural 

networks called the generator and the discriminator. In this game the generator 𝐺(𝑧) takes as 

an input a vector of latent variables 𝑧 from some distribution and tries to generate samples from 

the same distribution as training data. On the other hand, the discriminator 𝐷(𝑥) takes as the 

input the samples from the generator 𝑥 and classifies them as either “true”, if the discriminator 

thinks that the samples come from the same distribution as training data, or “fake”, if the 

discriminator thinks that the samples come from the generator distribution. In this setting the 

discriminator tries to maximize its capacity to tell apart samples from real distribution and 

samples from generator distribution. On the other hand, the generator tries to produce such 

samples from its distribution that minimize discriminator’s ability to tell them apart, in other 

words the generator learns to “fool” the discriminator by generating data that are similar to 

“real” data.  

The training process of GANs consists of two simultaneous gradient updates to both 

generator and discriminator. First, two batches of training data are sampled from the training 

dataset and from the generator. Usually there are the same number of samples in both batches. 

When the discriminator receives the batch containing samples from the training dataset the goal 

of the discriminator is to classify all samples as belonging to class “real”, therefore the output 

of discriminator 𝐷(𝑥)  should be close to 1. When the discriminator receives the batch of 

samples from generator the goal of the discriminator is to classify all samples as belonging to 

class “fake”, therefore the output of the discriminator 𝐷(𝐺(𝑧))  should be close to 0. At the 

same time the goal of the generator is to produce such samples that are hard to distinguish from 

samples from the training dataset, i.e. the generator tries to push the output of the discriminator 

𝐷(𝐺(𝑧)) to be close to 1. The cost function that is used for updating the parameters of 

discriminator 𝐽(𝐷) can therefore be expressed the in following way, which is a standard cross-

entropy cost function for binary classification problem with one sigmoid output unit. 

 
𝐽(𝐷) =  −

1

2
𝐸𝑥 log 𝐷(𝑥)  −

1

2
𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) (10) 

The cost function used for updating the parameters of generator 𝐽(𝐺) can then be expressed the 

following way. 

𝐽(𝐺) =  −
1

2
𝐸𝑧 log 𝐷(𝐺(𝑧)) (11) 
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The game interpretation of this training procedure is that the generator maximizes of log-

probability of the discriminator being mistaken which can only be achieved by the generator 

producing samples that are undistinguishable by the discriminator from samples from the 

training data. Figure 9. illustrates the training procedure for GANs. 

 

 

Figure 9. Diagram of the training procedure for GANs (Goodfellow et al., 2016). 

 

GANs have many different applications, particularly in the domain of image generation 

and processing. Figure 10. displays example outputs of GAN-based image generation model 

conditioned on text descriptions. 

 

 

Figure 10. Examples of images generated from text descriptions by StackGAN++ (Zhang et al., 2018). 
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Most of the image generation models are based on DCGAN architecture (Radford et al., 

2015) which uses CNN for discriminator and deconvolutional neural network (Zeiler et al., 

2010) for generator. Basic GANs don’t have an ability to generate class-specific instances. The 

architecture of GANs was since then improved in such a way that almost photorealistic images 

can be generated. One example is Plug and Play GAN model by Nguyen et al. (2017). Image 

generation conditioned on some other variables besides the latent variables 𝑧 is also possible. 

Auxiliary Classifier GAN (Odena et al., 2017) use GAN conditioned on image labels to 

generate specific classes by the generator. Conditional model by Isola et al. (2017) uses GAN 

conditioned on images themselves to translate between different representations of images, for 

example between aerial photos to maps or from black and white images to colored images. 

Similar model by Ledig et al. (2017) was used for upsampling low resolution images to high 

resolution photographs with much higher accuracy than traditional interpolation methods. 

Finally StackGAN++ model (Zhang et al., 2018) uses multistage GAN conditioned on text 

description of objects to generate near photorealistic photographs of these objects. 
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2. Strategies for increasing label efficiency of artificial neural 

networks 

 

2.1 Transfer learning and data augmentation strategies 

 

Transfer learning and data augmentation are probably the most commonly used strategies for 

increasing label efficiency of artificial neural networks, particularly in the supervised learning 

setting. It is common both in the research practice and real-world applications to incorporate 

these strategies in the neural network training pipeline.  

 Transfer learning is a process of adapting neural network predictive function trained using 

data from source domain to data in target domain (Weiss et al., 2016). This strategy works very 

well for target domains that share common low-level structure with the source domain. As an 

example, we can consider the problem of adapting image classifier trained on a subset of natural 

image data (for example pictures of cats and dogs) to a new set of natural image data that the 

classifier was not trained on (for example pictures of horses). Both domains share large number 

of commonalities, for example the presence of fur, 4 legs and two eyes. Also, all natural images 

contain contrasting edges. Neural network models such as Convolutional Neural Networks have 

been shown to learn feature detectors that are sensitive to low level features such as edges of 

various orientations or changes in color (Krizhevsky et al., 2012) as well as more advanced 

features such as the presence of body parts or even whole objects (Mordvintsev et al., 2015). 

Therefore, the goal of transfer learning is to utilize these learned feature extractors and adapt 

them to the new task. This can be achieved in two main ways. First, we can freeze the 

parameters of source domain predictor and retrain selected parts of this predictor on data from 

target domain. Second, we can use pretrained parameters as a starting point and fine-tune all 

parameters on the target task.  

 The efficiency of transfer learning in the context of deep neural network models was 

demonstrated by Oquab et al. (2014) where deep convolutional neural network was pretrained 

using ImageNet 2012 dataset (Russakovsky et al., 2014). Then the convolutional layers were 

frozen and output layers were replaced by task specific layers trained using dataset from 

different modality with relatively small amount of data per class. The classification accuracy 

on a new modality was substantially higher when they used the pretrained network as opposed 

to training the whole network from scratch. This method is now standard when training neural 

network classifier on natural images when large number of training data is not available. This 
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method is also applicable in other tasks in the domain of natural image processing such as image 

segmentation (Long et al., 2015), object detection (Girshick et al., 2014) or object pose 

estimation (He et al., 2017). 

 Overfitting, i.e the phenomena when the neural network model achieves good performance 

on training part of a dataset but shows worse performance on testing part of the dataset, is one 

of the main limiting factors in neural network training process. Mismatch between training data 

distribution and test data distribution is one of the main causes of overfitting. For example, in 

the domain of natural images there might be mismatch between the presence of features of 

objects (red car in test set is not present in train set), position of object (object is centered in the 

train set but not in test set), lighting of objects (objects in train set are lit by artificial light, 

objects in test set are lit by natural light) or rotation of object (digits are not rotated in train set, 

but are in test set). These and many other kinds of mismatches are particularly problematic 

when the size of training dataset is small or contains a small variability in data (for example as 

a result of limited data acquisition process), which increases the probability that the data in the 

train set will not represent the variability of data in the test set. Data augmentation aims to 

expand the variability of training data without acquiring additional train data, with the aim to 

increasing the performance of the neural network model. Traditional data augmentation 

techniques include geometric transformations, color space augmentation, random noise 

augmentation or random image parts erasure. More advanced data augmentation techniques 

include synthetic data augmentation by generative neural network models like Generative 

Adversarial Networks. 

 Geometric transformations are some of the most widely used techniques to expand 

variability of training data in the image domain. This family of data augmentation techniques 

include random cropping, random flipping, random rotation, random translation or more 

complex transformations like shear mapping or aspect ratio change. Random cropping 

augments training data by selecting random crop (usually using a fixed aspect ratio) from 

original training image. Random translation shifts training images up-down and left-right. 

Random cropping and random translation are effective augmentation strategies in situations 

where there are object scale and object position biases present in the training data. Random 

flipping flips the training images around vertical or horizontal axis with randomly with certain 

probability, which can alleviate horizontal and vertical object orientation bias in training data. 

Random rotation rotates train images by a random angle which makes the neural network more 

invariant to object rotation in the absence of unbiased training data.  In their seminal work 

Krizhevsky et al. (2012) showed that the combination of a random image cropping and 
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horizontal flipping can substantially reduce overfitting. Some combination of geometric 

transformations are now standard in training large neural network models on image based 

datasets. Taylor et al. (2017) studied the impact of various types of geometric transformations 

and found that random flipping, random rotation and random cropping have positive impact on 

the training of neural network image classifier, with random cropping having a significant 

positive impact on final accuracy of the tested neural network classifier.  

 Color space augmentations change the properties of RGB channels during training. Among 

these augmentations are operations such as color space changes, color temperature changes, 

color channels dropping, hue changes or saturation changes. These operations aim to reduce 

color biases in training data. Similarly, random noise augmentation changes pixel values by 

adding noise (typically from gaussian distribution) to original pixel values, which might help 

to increase the invariance of feature detectors to changes in various properties of natural images 

such as texture or color pattern changes. Random image parts erasure works by selecting a small 

patch or multiple patches from the training images and erasing or replacing the image data in 

that patch with random noise. This approach was shown to improve the accuracy of neural 

network models for image classification and object detection (Zhong et al. 2020). Related to 

random image part erasure is background augmentation method. This method isolates the object 

of interest in the image (using masking) and replaces the background with a randomized picture. 

Background augmentation is usually used in robotics setting in order to increase the model 

invariance to the background change. This is advantageous when robotics model, for example 

task policy or object pose estimation model, is trained in virtual environment that is visually 

distinct from test environment (real-world robotics setup). An example of this approach is the 

work by Tremblay et al. (2018) that uses background augmentation to increase the performance 

of object pose estimation model trained in the virtual environment.  

 Synthetic data augmentation takes a more principled approach than previously mentioned 

methods. The aim of these methods is to train and data generation or data augmentation model 

that produces data points that are close to distribution of training data and thus expanding the 

training dataset. DAGAN framework (Antoniou et al., 2017) trains generative adversarial 

network that outputs augmented versions of training samples and uses these samples to train 

neural network classifiers. Generative adversarial networks can be considered an unsupervised 

learning model, in that they do not need class labels to generate new examples from the target 

distribution. Therefore, DAGAN framework requires a large unlabeled part of the dataset to 

learn augmentation function, unlike previously mentioned methods. In a training regime with a 

small amount of labelled training data this augmentation method substantially improved the 
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performance of the tested image classifier compared to standard image augmentation methods. 

Using additional training examples generated by DAGAN also improved the performance of a 

few-shot learning model.  

 Synthetic data augmentation has also been successfully applied to robotics setting. For 

example, Randomized-to-Canonical Adaptation Networks (James et al., 2019) combine 

background augmentation method with a conditional GAN to generate canonical representation 

of the robotics setup. The authors found that conditional GAN trained on background 

augmented images can successfully generate canonical representation even from real world 

robotics setup. This enables the training of robot grasping policy in a simulator environment 

with abundance of training data and transfer the trained policy to real world environment 

without extensive fine-tuning. 

 

2.2 Few-shot learning strategies 

 

In the previous section we explored strategies that are aimed to either expand the limited amount 

of training data or to exploit pretrained models in order to either lower the amount of data 

needed to train neural network models or to increase the overall accuracy of neural network 

models. Here we will explore few-shot learning strategies specifically designed to make 

learning only from few examples possible.     

  Typically in the image classification setting we have a dataset 𝐷 of many examples per 

class that we use for training and testing the classifier. In order to test the generalization 

performance of a classifier we divide the dataset by class into training subset 𝐷𝑡𝑟𝑎𝑖𝑛, that is used 

for updating the model parameters and 𝐷𝑡𝑒𝑠𝑡 that is used for testing the generalization 

performance. In the few-shot learning scenario we usually train the model using some meta 

dataset 𝐷𝑚𝑒𝑡𝑎 that is divided into 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 training subsets. Both 

𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 contain multiple datasets 𝐷, each of which can also be divided into 

example and testing subsets. The neural network-based classifier in this setting takes as an input 

individual datasets 𝐷 from 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and learns correct classification mechanism for every 

class in 𝐷 in a way that generalizes well to 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 subset with different classes unseen 

during the training. In the few shot learning setting each dataset from 𝐷𝑚𝑒𝑡𝑎 contains 𝑘 training 

examples per class and 𝑁 classes, 𝑘 usually being a very small number between 1 and 5. The 

number of classes in each dataset can vary, but due to the difficulty of the problem the number 

of classes is usually between 5 and 20. Datasets are assigned to 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 by 
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random selection with a condition that none of the classes in  𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 are also in 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. 

General few-shot learning procedure can thus be summarized in the following way: 

• randomly assign classes to train and test subsets, 

• construct 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 - create 𝑇 datasets by randomly sampling (without replacement) 

𝑁 classes from training subset for each dataset, 

• construct 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 - create 𝑆 datasets by randomly sampling (without replacement) 

𝑁 classes from test subset for each dataset, 

• for every dataset in 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 randomly select 𝑘 training examples per class 

• update the weights of the model using training examples from 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 

• test the classification accuracy of the model by averaging the accuracy on datasets from 

𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. 

 

In the few-shot learning scenario, defined in the previous paragraph, we want our ANN 

model to learn a function that maps any possible dataset from some domain to any possible 

labels corresponding to individual classes from that dataset. This requires a dataset with 

different characteristics than datasets for traditional classification tasks. Specifically a dataset 

with a large number of classes and a small number of examples per class is preferable as 

opposed to the dataset with a small number of classes and large number of examples per class. 

The standard dataset for training and testing few-shot learning models is the Omniglot dataset 

(Lake et al., 2011). This dataset was nicknamed the “transpose” of MNIST because it contains 

1623 classes with 20 examples per class as opposed to MNIST dataset that contains 10 classes 

with 6000 examples per class. Omniglot dataset consists of pictures of handwritten characters 

from various alphabets around the world. Each class represents one character from one of the 

alphabets with each example handwritten by a different subject. Figure 11. displays examples 

from the Omniglot dataset.  

 

 

Figure 11. Examples of images from Omniglot dataset (Koch et al., 2015). 
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Another dataset often used for few shot learning is the miniImageNet dataset (Vinyals et al., 

2016) which contains a subset of ImageNet dataset with 100 classes and 600 examples per class. 

This dataset is much more challenging than Omniglot dataset due the nature of images which 

in the case of miniImageNet are colour photographs of objects in the real world.  

In subchapters 2.2.1-2.2.7 we will discuss various approaches based on ANNs to the few-shot 

image classification problem. Multiple few-shot learning models were developed in recent 

years. We will discuss some of the most successful models for few-shot image recognition. 

These include Siamese neural networks, matching networks, meta-learning long short-term 

memory, Prototypical networks, Temporal-convolution-based meta-learner, MAML and 

REPTILE. 

 

2.2.1 Siamese neural networks 

 

Siamese neural networks (Bromley et al., 1993) consist of two subnetworks that share the same 

set of weights and that are connected at the output using a common hidden layer or layers. 

During the training each subnetwork extracts some features from their input, while the common 

hidden layer combines the outputs of the subnetworks. The output of a common hidden layer is 

then used as an input to the subsequent fully connected layers. The final output of Siamese 

neural network usually represents some measure of semantic distance between the pair of 

inputs. Figure 12. depicts a basic schema of Siamese neural network.  

 

 

Figure 12. Schema of the Siamese neural network architecture. Distance layer refers to the common hidden 

layer (Koch et al., 2015). 
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SNNs were first applied to the few-shot classification problem by Koch et al. (2015). They 

used a convolutional neural network architecture for subnetworks combined with a distance 

layer that computed the L1 distance between the flattened output of both subnetworks. The final 

output neuron represents the probability that the two inputs are from the same category. Few-

shot learning task is therefore reduced to a binary classification problem where half of the input 

pairs belongs to the same category and the other belongs to different categories. The network 

is trained using binary cross-entropy cost function with weight regularization. Trained Siamese 

neural network can then be used as a basis for few-shot image classifier. In order to classify a 

test image 𝑋 into one of the 𝐶 possible categories we are given some set of example images 

{𝑥𝑐}𝑐=1
𝐶  for every category. The number of examples per category is usually referred in the 

literature as “shot” and the number of classes as “way”. We can then use the trained SNN to 

calculate the similarity score between the test image 𝑋 and example images for every class. 

Based on the similarity score we can predict the class of the test image 𝑋 by selecting a class 

with a maximum similarity score.  The classification decision can then be defined as 

 𝐶∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐(𝑓(𝑋, {𝑥𝑐})) (12) 

where 𝑓(𝑋, {𝑥𝑐}) is the output of the network for test image and examples for category {𝑥𝑐}. 

SNN few-shot learning accuracy was tested on Omniglot dataset. To test the few-shot 

classification accuracy of the SNN, the network had to correctly classify images into 20 possible 

categories with one example per class. Multiple test datasets were generated and the 

classification accuracy was averaged across these datasets.  In this setting the SNN model 

achieved an accuracy of 92%. For comparison a simple nearest neighbor classifier achieved 

accuracy of only 21.7% and a CNN only 65.2% with one example per class. Big advantage of 

this approach to the few-shot learning problem is that we do not need to change the parameters 

of the network when we want to classify a different set of images, because the trained SNN is 

able to calculate a similarity score for any pair of images, even when they are from classes that 

were not a part of the training data. 

 

2.2.2 Matching networks 

 

Matching networks (Vinyals et al., 2016) is a model that was purposely built for a few-shot 

learning task. Similarly to SNNs, we do not need to change the parameters of Matching 

networks to classify images that are different from training images. Matching network training 
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procedure closely resembles the general meta-learning procedure. During the training we are 

given a support set 𝑆 = {𝑥𝑐, 𝑦𝑐}𝑐=1
𝐶  that contains support images 𝑥𝑐 and corresponding labels 

𝑦𝑐 from 𝐶 possible categories. We are also given a training set 𝑋̂ = {𝑋̂𝑐, 𝑌̂𝑐}
𝑐=1

𝐶
 that contains 

training images 𝑋̂𝑐 and corresponding labels 𝑌̂𝑐 from 𝐶 possible categories. During the training 

we want our network to learn a classifier that given any support set 𝑆 can map a sample from a 

training set 𝑥̂ to a corresponding correct label 𝑦̂. More formally, we want the network to learn 

𝑃(𝑦̂|𝑥̂, 𝑆), where 𝑃 is parameterized by a neural network model. We also want our model to 

generalize well on unseen training sets and support sets. Matching networks compute the 

𝑃(𝑦̂|𝑥̂, 𝑆) in a following way 

𝑃(𝑦|𝑥̂, 𝑆) =  ∑ 𝑎(𝑥̂, 𝑥𝑖)𝑦𝑖 

𝐶∗𝑘

𝑖=1

 (13) 

𝑃(𝑦̂|𝑥̂, 𝑆) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑦(𝑃(𝑦|𝑥̂, 𝑆)) (14) 

where 𝑥𝑖 is a sample from the support set 𝑆, 𝑦𝑖 is the corresponding label 𝑎 is a so called 

attention mechanism and 𝑦 is the output vector of a network. 

The attention mechanism 𝑎(𝑥̂, 𝑥𝑖) is the core feature of matching networks. Generally 

𝑎(𝑥̂, 𝑥𝑖) computes the softmax of some distance measure between the embedding of the training 

image and the support image. Both embeddings are parameterized using an appropriate ANN 

model. Intuitively a Matching network classifier computes the distance measure between the 

data we want to classify and every support example. The support example that has the lowest 

distance between it and data we want to classify will be assumed to belong to the same category 

as the data. Because the labels corresponding to support examples are known, we can therefore 

infer the label of the data. Matching networks take two approaches for the design of the attention 

mechanism. One approach is to define attention mechanism using cosine distance between the 

embeddings of the support example and the training example. Formally the attention 

mechanism 𝑎(𝑥̂, 𝑥𝑖)  is defined as 

 
𝑎(𝑥̂, 𝑥𝑖) =  

exp (𝑐𝑜𝑠( 𝑓(𝑥̂), 𝑔(𝑥𝑖)))

∑ exp (𝑐𝑜𝑠 ( 𝑓(𝑥̂), 𝑔(𝑥𝑗)))𝑘
𝑗=1

 (15) 

where 𝑐𝑜𝑠 is the cosine distance, 𝑓(𝑥̂) is the neural network embedding of training example 

and 𝑔(𝑥𝑖) is the neural network embedding of particular sample from the support set. 

Neural network embedding functions 𝑓(𝑥̂) and 𝑔(𝑥𝑖) use architecture based on CNNs. 

Matching networks use cross-entropy cost function for training.  
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The main disadvantage of the attention mechanism is that the embeddings 𝑓(𝑥̂) and 𝑔(𝑥𝑖) 

are only dependent on current support example 𝑥𝑖. It would be beneficial if the support example 

embedding would also depend on other support examples. Authors therefore introduced so 

called fully context embeddings which used bidirectional LSTM to embed both the training 

example 𝑥̂ and support example 𝑥𝑖 conditioned on the whole support set 𝑆.  

For evaluation purposes Vinyals et al. (2016) used Omniglot dataset and miniImageNet 

dataset. Omniglot dataset was divided to 1200 training classes and 423 test classes independent 

of alphabet. Classes were augmented by rotating the image by multiples of 90 degrees. In 5-

way experiments Matching networks achieved  98.1% accuracy in 1-shot setting and 98.9% 

accuracy in 5-shot setting. In 20-way experiments the accuracy was 93.8% accuracy for 1-shot 

setting and 98.7% for 5-shot setting. In 5-way experiments using miniImageNet dataset 

Matching networks achieved 46.6% accuracy in 1-shot setting and 60.0% accuracy in 5-shot 

setting. 

 

2.2.3 Meta-Learner LSTM 

 

In their work Ravi et al. (2017) took a very different approach to the few-shot learning problem. 

They designed a RNN-based meta learning model that learns an optimization algorithm for 

updating a separate classifier. Their model therefore has two parts. The first part is called the 

learner that takes as an input individual training datasets from  𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and classifies 

individual datapoints from these datasets. The second part is called the meta-learner that takes 

as an input the loss and the gradients from the learner and outputs weights that should improve 

the performance of the learner. The weights of the meta-learner are updated based on the 

performance on separate part of 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 dataset. A trained meta-learner should therefore 

be able to output the weights for an untrained learner that maximize the performance of the 

learner even for the unseen classes. CNN is used for the learner and long short-term memory is 

used for the meta-learner.  

The performance of this model was tested on miniImageNet dataset. The authors reported 

43.44% accuracy in 5-way 1-shot experiments and 60.6% accuracy in 5-way 5-shot 

experiments. Performance of this model is therefore comparable to the performance of the 

Matching networks. 
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2.2.4 Prototypical networks 

 

Prototypical networks by Snell et al. (2017) is an approach to the few-shot learning problem 

similar to Matching networks. Prototypical networks learn an embedding function that maps 

the input data into a high-dimensional metric space in which classification is possible by 

calculating the distance between query data and prototypes for every category. The embedding 

function is parameterized using ANN. As in Matching networks, during the training we are 

given a support set 𝑆 = {𝑥𝑐, 𝑦𝑐}𝑐=1
𝐶  and a training set  𝑋̂ = {𝑋̂𝑐, 𝑌̂𝑐}

𝑐=1

𝐶
. Then using the 

embedding neural network 𝑓𝜃 we can create a prototype for every category in a given dataset 

in the following way 

𝑐𝑘 =  
1

|𝑆𝑘|
∑ 𝑓𝜃(𝑥𝑖)

𝑥𝑖∈𝑆𝑘

 (16) 

where 𝑐𝑘 is the prototype for the category 𝑘, 𝑆𝑘 is the set of examples for the category 𝑘 and 𝑥𝑖 

is a sample from the set of examples 𝑆𝑘. 

The prototype for every category is therefore simply a mean of all support examples embedded 

by the neural network 𝑓𝜃. When we have computed prototype for every class in a dataset we 

can classify a sample from a training set 𝑥̂  by embedding the sample using the same neural 

network  𝑓𝜃 , calculating the distances between the sample and prototypes for every category 

using some distance function 𝑑 and applying softmax function to those distances. The 

probability of sample 𝑥̂ with label 𝑦̂ belonging to category 𝑘 can therefore be expressed as:    

 
𝑝( 𝑦̂ = 𝑘| 𝑥̂) =  

exp (−𝑑( 𝑓𝜃(𝑥̂), 𝑐𝑘))

∑ exp (−𝑑(  𝑓𝜃(𝑥̂), 𝑐𝑗))𝑘′

𝑗=1

 (17) 

Prototypical networks use CNN for embedding network 𝑓𝜃 together with cross-entropy cost 

function. For a distance measure the squared Euclidean distance was found to work best in 

practice as opposed to cosine distance used in Matching networks. In terms of accuracy 

Prototypical networks managed to overcome both Matching networks and Meta-learner long 

short-term memory model by Ravi et al. (2017). For testing purposes the authors used Omniglot 

dataset and miniImageNet dataset. In 5-way Omniglot experiments Prototypical networks 

achieved 98.8% (1-shot) and 99.7% accuracy (5-shot). In 20-way Omniglot experiments 

Prototypical networks achieved 96% (1-shot) and 98.9% (5-shot) accuracy. In 5-way 

miniImageNet experiments the accuracy was 49.72% (1-shot) and 68.2%. 
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2.2.5 Temporal-convolution-based meta-learner 

 

Temporal-convolution-based meta-learner (Mishra et al., 2017) model is based on embedding 

the input data and corresponding labels into a high-dimensional embedding space. The 

sequence of embedded tuples of input data and labels is then used as an input to meta-learning 

model based on 1-D temporal convolutions with an attention mechanism. Based on these inputs 

the meta-learning model should find correct mappings between labels and data even when the 

classes of input data were not encountered during training. More formally the Temporal-

convolution-based meta-learner receives a sequence of example-labels pairs 

(𝑥1, 𝑦1), … , (𝑥𝑡−1, 𝑦𝑡−1) that belong to classes sampled from 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛. Based on these 

example-label pairs the network is supposed to classify an example 𝑥𝑡. CNN with residual 

connections is used for the embedding function. 

In 5-way Omniglot experiments Temporal-convolution-based meta-learner achieved 

98.96% (1-shot) and 99.9% accuracy (5-shot). In 20-way Omniglot experiments this model 

achieved 97.64% (1-shot) and 99.36% (5-shot) accuracy. In 5-way miniImageNet experiments 

the accuracy was 55.71% (1-shot) and 68.88%. 

 

2.2.6 MAML 

 

Model-Agnostic Meta-Learning model (Finn et al., 2017), or simply MAML, is a few-shot 

learning model that aims to train a task and neural architecture-agnostic model that can be 

retrained on a new task only using few examples. This is achieved by using a training procedure 

in which model parameters are learned in such a way that changes in parameter space using 

only small number of training examples from a new task results in large increase in 

performance. Due to task and model invariance of MAML training setup, this few-shot learning 

method can be applied to few-shot image classification problem as well as other image 

processing problems, such as image segmentation or object localization. Few-shot 

reinforcement learning was also successfully demonstrated by authors. 

 Training procedure of MAML model consists of two optimization steps that are called 

inner and outer loop learning steps. In the inner loop learning step a batch of tasks 𝑆𝑏  is sampled 

from a distribution of tasks (e.g. multiple sets of 5 random categories are sampled from a set of 

possible categories), classification accuracy is evaluated using cost function 𝐶𝑆𝑏   and starting 
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network parameters 𝜃 for every set, then n steps of stochastic gradient descent are performed 

on all tasks task resulting in a new set of parameters 𝜃̃. This step can be summarized as 

𝜃̃ =  𝜃 − 𝛼∇𝜃𝐶𝑆𝑏  (𝑓𝜃) (18) 

where 𝛼 is the inner loop learning rate, ∇𝜃 is the derivative of the cost function w.r.t to starting 

network parameters 𝜃 and 𝑓
𝜃
 is the neural network. 

In the outer loop learning step, a different set of training examples 𝑇𝑏 is sampled for tasks in 

𝑆𝑏. Then the classification accuracy is evaluated using cost function 𝐶𝑇𝑏  and updated network 

parameters 𝜃̃. Starting network parameters 𝜃 are updated by computing gradient of the cost 

function 𝐶𝑇𝑏   w.r.t to 𝜃. Outer loop learning step can be summarized as 

𝜃 ←  𝜃 − 𝛽∇𝜃 ∑ 𝐶𝑇𝑏  (𝑓𝜃̃)
𝐵

𝑏=1
 (19) 

 where 𝛽 is the inner loop learning rate, 𝐵 is the number of tasks in the batch, and 𝑓
𝜃̃
 is the 

neural network with updated parameters from inner loop learning step. 

This update effectively pushes the starting network parameters 𝜃 to a position in parameter 

space that is close to effective parameters (in terms of performance) for all tasks in the batch of 

tasks. After convergence, the final network parameters 𝜃 should be located in such a place in 

the parameter space, that is close to optimal parameters for all tasks from the same distribution 

as the training tasks. Only a few training examples for a new task are therefore needed to fine-

tune the network for new task, which makes MAML a good few-shot learning model. Schematic 

representation of MAML training procedure is displayed in Figure 13. 

 

 

Figure 13. Schematic representation of MAML training procedure (Finn et al., 2017). 

 

In 5-way Omniglot experiments MAML achieved 98.7% (1-shot) and 99.9% accuracy (5-shot). 

In 20-way Omniglot experiments this model achieved 95.8% (1-shot) and 98.9% (5-shot) 

accuracy. In 5-way miniImageNet experiments the accuracy was 48.7% (1-shot) and 63.11% . 



30 
 

The outer loop update can alternatively be expressed as: 

𝜃 ←  𝜃 − 𝛽∇𝜃 ∑ 𝐶𝑇𝑏  (𝑓𝜃 − 𝛼∇𝜃𝐶𝑆𝑏  (𝑓𝜃)  )
𝐵

𝑏=1
 (20) 

From the above expression it is apparent that the MAML update requires secondary backward 

pass through the computational graph of the network and computation of Hessian vector 

products, which impacts the computational efficiency of the model compared to standard 

backpropagation training procedure. This can be alleviated by using first order approximation 

of MAML algorithm proposed by Finn et al. (2017) in the same paper, which achieves 

comparable performance to original MAML algorithm. Alternatively, there are algorithms that 

use similar principle as MAML that do not require computing second order derivatives, such 

as REPTILE algorithm (Nichol et al., 2018).  

 

2.2.7 REPTILE 

 

REPTILE algorithm (Nichol et al., 2018) belongs, together with MAML, to a family of meta-

learning based few-shot learning methods. Unlike MAML, REPTILE algorithm does not 

calculate the second-order derivatives of a cost function which substantially lowers the 

computational requirements of this model compared to MAML.  

 REPTILE training procedure, like MAML, consists of two optimization steps. First a task 

is sampled from a distribution of tasks. Then n steps of stochastic gradient descent are 

performed on this task resulting in a new set of parameters 𝜃̃. Then starting parameters θ are 

moved towards the new set of parameters 𝜃̃.  This procedure can be summarized in the 

following way. 

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp 

• Initialize network parameters 𝜃, 

• for 𝑖 iterations do: 

o sample task 𝜏 and compute loss 𝐿𝜏 

o perform 𝑛 steps of SGD:             𝜃̃ = 𝑆𝐺𝐷(𝜃, 𝐿𝜏, 𝑛) 

o REPTILE update with learning rate 𝜀 :  𝜃 ←  𝜃 +  𝜀(𝜃̃ −  𝜃) 

• end for. 

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp 
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The intuition behind REPTILE is that the network parameter vector θ should converge to a state 

that is close (in a Euclidian sense) to manifolds of optimal solutions for every possible task. In 

this state, only a small number of gradient steps using a small number of new training examples 

are required to fine-tune the network to a new task. Figure 14. depicts this intuitive 

representation.  

 

 

Figure 14. Schematic representation of REPTILE training procedure (Nichol et al., 2018). 

 

 The performance of REPTILE model is comparable to performance of MAML across 

benchmark classification tasks. In 5-way Omniglot experiments MAML achieved 97.68% (1-

shot) and 99.48% accuracy (5-shot). In 20-way Omniglot experiments this model achieved 

89.43% (1-shot) and 97.12% (5-shot) accuracy. In 5-way miniImageNet experiments the 

accuracy was 49.97% (1-shot) and 65.99%. 

 

2.3 Semi-supervised learning strategies 

 

Semi-supervised learning (SSL) has a similar goal as few-shot learning, namely improving the 

label efficiency of artificial neural networks, although the approaches taken by these two 

frameworks differ. In few-shot learning framework the aim is to lower the amount of labeled 

training data needed to train neural network model on a new task to minimum, but the tradeoff 

is that we need to provide a large number of training tasks with labelled data in order to train a 

general model that can learn a similar task quickly. Similarly to few-shot learning, the main aim 

of semi-supervised learning is to lower the number of labelled data needed to train a model, but 

instead of using fully-supervised tasks with fully labelled examples as training data, in semi-

supervised learning scenario we utilize a large number of unlabeled training data to improve 

the performance of a model trained using a small amount of labelled data. 
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For many real-world problems obtaining a large number of unlabeled data from the same 

distribution as a smaller labelled portion of data is much easier than obtaining labelled data for 

the entire dataset. Image classification, image segmentation or object detection are good 

examples for this principle due to abundance of pictures that can be obtained on the internet. 

Semi-supervised learning procedure (in the classification context) can therefore be summarized 

in the following way: 

• acquire labelled part of the dataset 𝐷𝑙 and unlabeled part of the dataset 𝐷𝑢, 

• assign part of the labelled data into test set, thus creating a training part of the labelled 

data 𝐷𝑙
𝑡𝑟𝑎𝑖𝑛 and test part of the labelled data 𝐷𝑙

𝑡𝑒𝑠𝑡, 

• update the weights of the model using both the labelled part of the training data 𝐷𝑙
𝑡𝑟𝑎𝑖𝑛 

and unlabeled part of the data 𝐷𝑢, 

• test the performance of the model using test part of the labelled data 𝐷𝑙
𝑡𝑒𝑠𝑡. 

 

Semi-supervised learning approaches can be broadly divided into four separate categories, 

namely consistency regularization methods, proxy-label methods, graph neural network-based 

methods and generative model-based methods.  

Consistency regularization methods rely on applying various perturbations to the input of 

the model that do not change the label of the input and then force the output of the model to 

stay consistent across various perturbations across the same inputs. Examples of this approach 

are Ladder networks (Rasmus et al., 2015), Pi model (Laine et al., 2016), Temporal Ensembling 

(Laine et al., 2016), Virtual Adversarial Training (Miyato et al., 2018) and Mean Teacher model 

(Tarvainen et al., 2017). 

Proxy-label methods aim to expand the labeled portion of the dataset by labeling the 

unlabeled portion of the dataset using a neural network trained using a smaller labeled portion 

of the dataset. These predictions can be generated using a single model or by combining 

multiple predictions for every data example using an ensemble of different models and data 

augmentation techniques. Examples of methods that use this approach are Pseudo-label (Lee, 

Dong-Hyun 2013), Deep clustering for unsupervised learning of visual features (Caron et al., 

2018), Billion-scale semi-supervised learning for image classification (Yalniz et al., 2019) and 

MixMatch (Berthelot et al., 2019). 

Models based on graph neural networks represent the problem of a semi-supervised learning 

using a graph-based representation where the nodes represent the labeled or unlabeled 

datapoints and the edges represent the semantic similarity between the datapoints. Unlabeled 
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datapoints in the dataset are classified by propagating the labels from labeled nodes to unlabeled 

nodes or by applying classifier to node embeddings. Methods like DeepWalk (Perozzi et al., 

2014), Graph convolutional networks (Kipf et al., 2016) or Graph attention networks 

(Velickovic et al., 2017) can be used for semi-supervised learning.  

Semi-supervised methods based on generative models use models such as Generative 

Adversarial Networks to learn a function that approximates the generative distribution of the 

dataset and utilizes this function to improve classification accuracy in semi-supervised learning 

regime. SGAN model (Odena et al., 2016) used GAN model to learn the generative distribution 

of data and adds supervised component to discriminator output that predicts the category of 

examples from the labeled part of the dataset. Bidirectional GAN (Donahue et al., 2017) 

augments the GAN framework by adding an encoder component that learns to invert the output 

of the generator, i.e. it learns to predict the latent vector from the unlabeled examples. This 

latent vector contains information about the semantics of the data, including the class of the 

individual datapoints. This training procedure can be utilized in the semi-supervised learning 

setting. An example of Bidirectional GAN being used in the semi-supervised can be found in 

Kumar et al. (2017). 

A closely related problem to semi-supervised learning is the self-supervised learning 

scenario. In self-supervised learning scenario, a proxy tasks are devised that are similar to the 

task of interest (for example image classification). A good proxy task must be devised in a way 

that the unlabeled training data themselves provide implicit labels needed to learn this task. A 

neural network model trained using this task should develop feature extractors that are useful 

for learning the task of interest. Self-supervised learning can therefore be used for improving 

the performance of fully supervised models and also in semi-supervised learning scenario. 

Examples of this approach are image context prediction model (Doersch et al., 2015), 

colorization model (Zhang et al., 2016), image rotation model (Gidaris et al., 2018), S4L model 

(Zhai et al., 2019), Contrastive Predictive Coding (Oord et al., 2018), Contrastive Multiview 

Coding (Tian et al., 2019) or SimCLR (Chen et al., 2020). 

Self-supervised models are also important in robotics setting where proxy tasks are used to 

improve generalization capabilities and performance of agents performing tasks in virtual or 

real-world environments. UNREAL agent (Jaderberg et al., 2016) uses several proxy tasks such 

as maximizing change in pixel space or future reward prediction to increase the frequency and 

quantity of the feedback signal for reinforcement learning agents. Intrinsic Curiosity Module 

(Pathak et al., 2017) uses intrinsic reward based on maximizing the novelty of visual appearance 

of the environment experienced by the agent to increase the exploratory behavior of the agent 
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and as a result, a lower the number of training steps. Hindsight Experience Replay 

(Andrychowicz et al., 2017) generates proxy tasks by selecting goals and setting synthetic 

rewards from a database of visited environment states, which increases the frequency of rewards 

available to RL system and substantially lowers the number of actions needed to learn an object 

manipulation policy in robotic environment.  

 In the next sections we will take a closer look on some widely used semi-supervised 

learning models. In section 2.3.1 will examine three closely related semi-supervised learning 

methods that constitute a backbone of semi-supervised learning methods based on consistency 

regularization. Section 2.3.2 deals with Mean Teacher model. In section 2.3.3 we will examine 

one of the most influential self-supervised learning model, namely Contrastive Predictive 

Coding.   

  

2.3.1 Ladder Networks, Pi Model and Temporal Ensembling 

 

Ladder networks (Rasmus et al., 2015) use two network paths to generate predictions for 

unperturbed input and perturbed input. Model predictions for unperturbed inputs are used as 

proxy labels for the consistency cost between the outputs of the perturbed and unperturbed paths 

of the model. Standard classification cost is applied for the labelled part of the dataset. In 

addition to the output consistency cost, the more complex version of Ladder networks uses 

denoising function that takes as an input the feature vector from particular layer of perturbed 

path of the network and reconstructs the feature vector from the corresponding layer of the 

unperturbed path. Separate cost function is utilized to minimize the difference between 

denoised feature vectors and feature vectors from the unperturbed path.  

The Pi model (Laine et al., 2016) is similar to Ladder networks in that it uses category 

preserving perturbations of the same input.  Unlike Ladder networks the Pi model applies two 

sets of perturbations to the input. Two different dropout conditions are also applied to both 

paths of the model. Consistency cost in the form of mean squared error is then applied to the 

outputs of both prediction paths. The strength of the consistency cost, relative to cross-entropy 

cost computed from labelled examples is controlled by time-dependent weight parameter that 

ramps up from zero as the training progresses. Pi model cost function can be expressed as  

𝐶(𝜃) =  
1

𝑚
∑[− log 𝑃𝑓(𝑦𝑗|𝑥𝑗 , 𝜃, 𝜂)]

𝑚

𝑗

+  𝑤𝑡

1

𝑛
∑ ‖𝑓(𝑥𝑖, 𝜃, 𝜂) −  𝑓(𝑥𝑖, 𝜃, 𝜂′)‖2

𝑛

𝑖
 (21) 
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where 𝑓 denotes the neural network model,  𝜃 are the parameters of the neural network model, 

𝜂 is the noise applied to the model input, 𝜂′ is the different noise applied to the model input, 𝑥𝑖 

is the input in the batch with index 𝑖, 𝑛 is the number of examples in the unlabeled batch, 𝑚 

represents the size of supervised batch, 𝑦
𝑗
 represents the label for the input 𝑥𝑗 and 𝑗 represents 

the index of the labelled input. Figure 15. displays the schematic representation of Pi model 

training procedure. 

 

 

Figure 15. Pi model training procedure (Laine et al., 2016). 

 

Temporal ensembling (Laine et al., 2016) was introduced in the same paper as the Pi model 

and can be thought as a variation of the Pi model. Like in the Pi model the input data is perturbed 

using label preserving augumentations. The main difference between the Pi model and 

Temporal ensembling lies in the way the target values for consistency cost are generated. In 

Temporal ensembling the model is not evaluated two times for different input perturbations, 

but only once and the target values for consistency cost are ensembled by tracking exponential 

moving average of models past predictions. Because at the start of the training the exponential 

moving average will be biased to zero (since the predictions are initialized to zero vector) this 

is corrected by bias correcting factor inspired by Adam optimizer (Kingma et al., 2014). Then 

the consistency cost is evaluated using these exponential moving averages as the target value. 

Because the targets were generated by the model at different time steps during the training, the 

target will be less noisy than in the Pi model, which might lead to more stable training and 

subsequently to better performance, which was demonstrated in Laine et al. (2016). 

 The loss function for Temporal ensembling can therefore be expressed as 

𝐶(𝜃) =  
1

𝑚
∑[− log 𝑃𝑓(𝑦𝑗|𝑥𝑗 , 𝜃, 𝜂)]

𝑚

𝑗

+  𝑤𝑡

1

𝑛
∑ ‖𝑓(𝑥𝑖, 𝜃, 𝜂) −   𝑧𝑖̃‖

2
𝑛

𝑖
 (22) 

where target values for input 𝑥𝑖  are denoted as 𝑧𝑖̃. 

Target values  𝑧𝑖̃ are calculated by accumulating past model predictions for given example, 

which can be expressed as 
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𝑍𝑖  ←  𝛼𝑍𝑖 + (1 − 𝛼)𝑓(𝑥𝑖, 𝜃, 𝜂) (23) 

𝑧𝑖̃  ←  𝑍𝑖/(1 − 𝛼𝑡) (24) 

where 𝑍𝑖 represents accumulated predictions for input 𝑥𝑖, 𝛼 represents parameter that controls 

the ensembling momentum, and 𝑡 represents the index of current epoch of training. Temporal 

ensambling training procedure is displayed in Figure 16. 

 

 

Figure 16. Temporal ensambling model training procedure (Laine et al., 2016). 

 

 

2.3.2 Mean Teacher model 

 

The Mean Teacher model (Tarvainen et al., 2017) leverages a combination of various semi-

supervised learning techniques to dramatically improve generalization capability in the semis-

supervised learning context. First, like Ladder networks, Mean Teacher predicts the class of the 

unsupervised data points using two sets of noise applied to unsupervised data points. Noisy 

batches are evaluated using two neural networks called the student and the teacher. Predictions 

for every data point in each of the noisy batches should be consistent between the student and 

the teacher, which is achieved using a consistency cost between student and teacher predictions 

during training. Consistency cost can be expressed as 

𝐽(𝜃) =  
1

𝑛
∑ ‖𝑓(𝑥𝑖, 𝜃′, 𝜂′) −  𝑓(𝑥𝑖, 𝜃, 𝜂)‖2

𝑛

𝑖
 (25) 

where 𝑓 denotes the neural network model,  𝜃 are the parameters of student network, 𝜃′ are the 

parameters of the teacher network, 𝜂′ is the noise function applied to teacher input, 𝜂 is the 

noise applied to student network, 𝑥𝑖 is the input in the batch with index 𝑖 and 𝑛 is the number 

of examples in the unlabeled batch. 

Mean Teacher uses mean squared error as the consistency cost, although different cost 

functions, such as cross-entropy are also viable.   In addition to consistency cost, supervised 

cost is also evaluated for labeled portion of the input batch. Supervised cost can be expressed 

as 
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𝑆(𝜃) =  
1

𝑚
∑[− log 𝑃𝑓(𝑦𝑗|𝑥𝑗 , 𝜃, 𝜂)]

𝑚

𝑗

 (26) 

where 𝑚 represents the size of supervised batch, 𝑦
𝑗
 represents the label for the input 𝑥𝑗 and 𝑗 

represents the index of the labelled input. 

Consistency cost in the Mean Teacher model effectively acts as a regularization technique 

that enforces the outputs of the model to be consistent across similar data points, which leads 

to improvement in generalization capabilities of the model. Because the consistency cost uses 

self-generated targets and because in the semi-supervised setting there are usually many more 

unlabeled examples than labelled examples, during the training the consistency cost might come 

to dominate the training process. Mean Teacher model mitigates this problem by introducing 

dynamic consistency cost weight that balances the contribution from consistency cost and 

supervised cost. Total loss optimized in the Mean Teacher training procedure can be expressed  

as 

𝐿𝑜𝑠𝑠(𝜃) = 𝑆(𝜃) +  𝑤𝑡 𝐽(𝜃) (27) 

where 𝑤𝑡 is the consistency cost weight. 

Mean Teacher also incorporates model parameters ensembling technique similar to the PI 

model. In order to improve targets produced by the teacher network, the parameters of the 

teacher network are set as an exponential moving average of the student model. Model 

parameter ensembling procedure can be expressed as 

𝜃𝑡
′ = 𝛼𝜃𝑡−1

′ + (1 − 𝛼)𝜃𝑡 (28) 

where 𝛼 represents parameter that controls the ensembling momentum. Figure 17. displays 

Mean Teacher training procedure. 

 

 

Figure 17. Mean Teacher model training procedure (Tarvainen et al., 2017). 
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2.3.3 Contrastive Predictive Coding 

 

Contrastive Predictive Coding (Oord et al., 2018) is a self-supervised model that uses spatial 

structure of images to pretrain a neural network feature extractor that is useful in both fully-

supervised setting as well as in semi-supervised setting. Henaff et al. (2020) further adapted 

Contrastive Predictive Coding to semi-supervised image recognition. Using a very small 

number of labelled examples (less than 20 per class), the pretrained feature extractor combined 

with relatively small output classifier is able to match the performance of fully supervised 

AlexNet model on the ImageNet dataset. 

Contrastive Predictive Coding achieves this level of performance by utilizing spatial 

prediction task trained using contrastive loss. More specifically, in a self-supervised training 

phase each training image is divided into several overlapping image patches 𝑥𝑖,𝑗, where 𝑖 and 𝑗 

are the indices of the image patch. Then a feature vector 𝑧𝑖,𝑗 =  𝑓𝜃(𝑥𝑖,𝑗) is generated for every 

image patch using a neural network-based feature extractor 𝑓𝜃. A fully convolutional neural 

network 𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is then applied to resulting feature vector map. This network has a masked 

input that only takes into account image patches that lie directly above and below the feature 

vector of interest. The spatial prediction task is then based on predicting the feature vector of 

an image patch separated from the image patch of interest by some spatial gap 𝑘. The prediction 

can be expressed as 

𝑧̂𝑖+𝑘,𝑗 =  𝑊𝑘𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑧𝑖,𝑗)  (29) 

where 𝑧̂𝑖+𝑘,𝑗 is the prediction of patch separated by spatial gap 𝑘 and 𝑊𝑘 is the prediction matrix. 

To increase the quality of resulting features augmentation techniques such as color channel 

dropping, random flips and random crops are applied to image patches. Contrastive loss is used 

in the self-supervised training phase to estimate the quality of the spatial predictions. More 

specifically the distance between the feature vector of the patch of interest 𝑧𝑖,𝑗 and the predicted 

feature vector of spatially distant patch  𝑧̂𝑖+𝑘,𝑗 is compared to the distance between the patch of 

interest and feature vectors of patches randomly sampled from other images in the dataset 𝑧𝑙 

using cross-entropy loss. The distance between patches from the same image 𝑧̂𝑖+𝑘,𝑗
𝑇 𝑧𝑖,𝑗 should 

be lower than distances between patches from the separate images 𝑧̂𝑖+𝑘,𝑗
𝑇 𝑧𝑙′. Therefore the 

contrastive loss can be expressed as:  

𝐶𝐶𝑃𝐶 =  − ∑ log
exp (𝑧̂𝑖+𝑘,𝑗

𝑇 𝑧𝑖,𝑗)

exp(𝑧̂𝑖+𝑘,𝑗
𝑇 𝑧𝑖,𝑗) + ∑ 𝑧̂𝑖+𝑘,𝑗

𝑇 𝑧𝑙′𝑙𝑖,𝑗,𝑘

 (30) 
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After the self-supervised training phase the feature vectors  𝑧𝑖,𝑗 are used as an input to a fully 

supervised output classifier. The output classifier is then fine-tuned using a small number of 

labelled images using cross-entropy cost function.  

 

2.4 Label-efficient neural networks at scale 

 

In sections 2.1, 2.2 and 2.3 we introduced some of the most widely used methods for increasing 

label efficiency of artificial neural networks. These methods, although successful, can only be 

applied to problems where there are numerous examples of similar problems, as in few-shot 

learning problems, or a large number of unlabeled examples for certain problem, as in semi-

supervised learning problems. If fully supervised training of artificial neural networks could be 

characterized as a problem specific method, few-shot learning methods and semi-supervised 

learning methods can therefore be specified as domain-specific methods. Neural network 

models that can easily be adapted across different domains, could substantially increase the 

cognitive flexibility of current machine learning systems and thus decrease the number of 

domain-specific models and datasets needed to create a complex machine learning pipelines. 

This is especially important in robotics where an artificial agent can encounter a vast number 

of different types of problems that are difficult to anticipate beforehand. More general models 

are therefore required for the creation of artificial agents that can effectively operate in complex 

real-world environments.  

 User-created content on the internet provides vast amount of training data. The problem 

with user-created content, like blog posts, videos or public forum posts, is that most of this data 

is unlabeled, which implies that learning setup based on highly general self-supervised task 

needs to be applied. In the natural language processing domain GPT-2 model (Radford et al., 

2019) aims to exploit abundant user generated content to learn a general-purpose language 

model that solves multiple language tasks without fine-tuning. A language model can be 

formalized as a self-supervised prediction task where given a sequence of language tokens, such 

as words, the model predicts next token in the sequence. More formally, given an example 

sequence 𝑥 composed of language tokens (𝑠1, 𝑠2, … , 𝑠𝑛) the language model predicts the 

probability of every token in the sequence given previous tokens in the sequence which can be 

expressed as a product of conditional probabilities. 
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𝑝(𝑥) =  ∏ 𝑝(𝑠𝑛|𝑠1, 𝑠2, … , 𝑠𝑛−1)

𝑛

𝑖=1

 (31) 

GPT-2 uses Transformer network architecture for its language model architecture. The 

main change compared to previous Transformer-based architectures is its unprecedented 

number of parameters with up to 1.5 billion weights and 48 layers. Smaller versions of this 

architecture were also tested in order to approximate the impact of the size on the performance 

of this model. Training dataset contained more than 40 GB of text data, mainly sourced from 

online massage board Reddit. The authors then tested resulting language model on several 

language-based tasks, including common sense reasoning task like Winograd Schema 

Challenge (Levesque et al., 2012), reading comprehension, summarization, translation and 

question answering. For every task separate standardized dataset was used. GPT-2 model 

achieved state of the art results in language modelling task it was directly trained on as well as 

in some other tasks that it was not explicitly trained on, like for example Winograd Schema 

Challenge. Special prompts were used to bias the network to perform specific tasks it was not 

trained on. For example although the network was not explicitly trained on text summarization, 

simply adding a text of an article, followed by “TL;DR:” as an input to the model, the model 

was able to output short summary of said article. Another example is the translation between 

languages where when adding several inputs in the form “sentence in language 1 = sentence in 

language 2” followed by “prompt target sentence in language 1 =” the model was able to 

translate the target sentence. The authors argue that this behavior emerged as a consequence of 

the size of the dataset and generality of the language modelling task, where if the network 

“wants” to maximize the performance on this task, it has to learn to recognize all the various 

subtasks that are prevalent in the training corpora and solve them. Then to perform a few-shot 

learning task, the user just needs to find correct prompt that signals the network the task user 

wants it to perform. In this setting the number of prompts that are used as an input to the model 

is analogous to number of training examples in a traditional few-shot learning setting. The 

authors also found that substantially increasing the number of parameters of the model improves 

the few-shot learning performance of GPT-2, which hints at further improvements in few-shot 

learning performance of neural-network models that can be realized just by increasing the 

number of parameters of the model. 

GPT-3 model (Brown et al., 2020) expands on the ideas explored in the GPT-2 paper. In 

this work the authors expanded both the number of parameters of the Transformer language 

model and the size of training dataset. The number of parameters of the model was expanded 
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from 1.5 billion parameters to 175 billion parameters to further explore the impact of the size 

of the model to a few-shot learning performance. The training dataset was expanded from 40 

GB of text data to 570 GB of test data. The number of tasks that was evaluated also expanded. 

In addition to tasks that have been used in GPT-2 paper, in this work tasks such as common 

sense reasoning about physical world, arithmetic operations, word scrambling and manipulation 

task, SAT analogy task or a novel word usage task were added. On multiple tasks including 

common sense reasoning tasks, language translation to English or open domain question 

answering task GPT-3 either approached or surpassed performance of state-of-the-art models 

that were fine-tuned on a particular task. Figure 18. displays the performance of the GPT-3 

model across 42 language benchmarks as a function of the number of model parameters. The 

authors also tested whether text generated by GPT-3 can fool human judges to think that the 

text was generated by human being by generating short news articles by the model. On average 

human judges were able to distinguish between human generated articles and GPT-3 generated 

articles with 52% accuracy which is very close to random chance.  The authors also tested the 

impact of the model size on few-shot learning performance and confirmed the continual scaling 

of the few-shot learning performance when the number of trainable parameters is increased. 

 

 

Figure 18. GPT-3 few-shot learning accuracy across 42 language benchmarks as a function of the number 

of parameters (Brown et al., 2020). 

 

DALL-E model (Ramesh et al., 2021) extends the principles explored in GPT-2 and GPT-

3 papers to the domain of text-to-image generation. Instead of just predicting the next token in 
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a sequence of text tokens, this model uses a combination of Variational autoencoder (Kingma 

et al., 2013) combined with transformer-based autoregressive model to generate novel images 

based on the text description. DALL-E uses a large-scale model with 12 billion parameters 

combined with 250 million text-image pairs collected on the internet. The training procedure 

consists of two main steps. First a Variational Autoencoder is trained to compress input images 

to a 32x32 grid of discrete image tokens. This 32x32 grid can be described as a “visual 

codebook” that encodes the content of the image into discrete one-hot vectors that can be used 

to reconstruct given image. In a second step image tokens are combined with text tokens and 

the transformer model is used to predict combined text-image tokens is similar fashion to GPT 

models. Trained transformer model can then predict most probable sequence of image tokens 

from starting text-image token. Resulting image tokens are then used as an input to pretrained 

Variational Autoencoder that outputs reconstructed image that should correspond to the text 

tokens used as an input.  

DALL-E model exhibits similar ability to adapt to new tasks to GPT models. Besides 

generating novel images based on the content of the text description, DALL-E can do style 

transfer between images, manipulate various visual attributes of the images, changing pose of 

the object in the image, combine visual concepts in a plausible manner, incorporate 

geographical or temporal knowledge into generated images or even basic forms of common-

sense reasoning. Example outputs of DALL-E model across 4 different tasks are shown in 

Figure 19. 

 

 

Figure 19. Sample of outputs from the DALL-E model that demonstrates the ability of combining visual 

concepts, manipulating visual attributes of a scene and style transfer. (Ramesh et al., 2021). 

 

 Models like GPT-3 and DALL-E demonstrate that large-scale models and datasets can 

learn multiple tasks without any fine-tuning on these tasks or without designing special-purpose 
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architectures for various tasks. The main disadvantage of these models is the amount of 

computational resources needed to train these models which makes them impractical to train 

for small research institutions and commercial subjects. Also some tasks, such as arithmetic 

based tasks, are still hard to solve using these methods. Despite these disadvantages this 

approach might be very effective in learning complex cross-domain relationships within 

datasets. Adding more data domains like sound, environmental maps, video, or 3D objects, 

combined with an increasing model size might lead to a development of powerful world-models 

that can guide learning and decision making of general-purpose artificial agents.  
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3. Experimental results 

 

3.1 Categorical Siamese Networks 

 

Categorical Siamese Networks (Tuna et al., 2018) extend the Siamese networks model, which 

detects semantic similarity among pairs of images, to output directly the best matching 

category. Our approach has also been inspired by the Prototypical Networks model with the 

main difference being that instead of the arbitrary distance function used in PN, we parametrize 

the distance function by an ANN. Conceptually, unlike the PN, based on the prototype theory 

of categorization, our model can be seen as instantiating the exemplar view (Medin et al., 2018). 

In this view there is no single category prototype, but instead, categories are formed by 

representations of their instances called exemplars. Our hypothesis was that including the 

categorical decision process in the training of our model will increase the classification 

accuracy in comparison to the SNN. We also hypothesized that our model would perform better 

than the PN, due to our ANN-parameterized distance function. Another important 

distinguishing feature of our model, apart from the architecture, is the training procedure 

described below. 

 

3.1.1 Method description 

 

The architecture of the Categorical Siamese Networks (CSN) model, displayed in Figure 20, 

contains two main parts. The first part is the embedding sub-network 𝑓𝜃 that projects the input 

images into a high-dimensional embedding space using multiple convolutional layers similarly 

to the SNN. The concrete architecture of  𝑓𝜃 depends on the task being solved and we further 

describe it in results section. 

 

 

Figure 20. The architecture of Categorical Siamese Network.  
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The second part is a convolutional neural network 𝑔𝜔 that takes as an input concatenated 

feature maps for the query image 𝑥̂ and a category example image 𝑥𝑖. The network output 𝑔𝜔, 

given by the activation of a single output unit, represents the semantic similarity as the distance 

between the query and the support example. 

The architecture is used in an episode-based categorization procedure displayed in Figure 

21 where outputs of 𝑔𝜔, each indicating the similarity of the given query 𝑥̂ and examples 𝑥𝑖  ∈

 𝑆𝑘 are averaged over each category 𝑘 producing the output 𝑌𝑘. The output values 𝑌𝑘 for each 

category are then processed using the SoftMax function as described below and the category 

with a maximum value is selected as the final output of the classication process (winner). 

 

 

Figure 21. Episode-based categorization procedure outputting the winning category, where 𝑤 denotes the 

number of categories and 𝑠 the number of examples in each support set.  

 

 The training procedure of our CSN model is displayed in the following algorithm. The 

RandSel(M;  n) operation denotes the process of randomly selecting 𝑛 elements from the set 

𝑀. 𝐷𝑡𝑟𝑎𝑖𝑛 denotes the training subset and 𝐷𝑡𝑒𝑠𝑡 the testing subset of the initial dataset. 

 The output for category k is denoted as 𝑌𝑘, and computed as an average from all the outputs 

from the network for the given query sample 𝑥̂ and all support examples 𝑥𝑖 from the class 𝑘, as 

displayed in Eq. 32, where 𝑐𝑎𝑡(𝑓𝜃(𝑥̂), 𝑓𝜃(𝑥𝑖)) is the concatenation of embeddings for 𝑥̂ and 𝑥𝑖, 

outputted from the embedding network 𝑓𝜃 , and 𝑆𝑘 are randomly selected training examples of 

a category k. 

𝑌𝑘(𝑥̂, 𝑆𝑘) =  
1

|𝑆𝑘|
∑ 𝑔𝜔( 𝑐𝑎𝑡(𝑓𝜃(𝑥̂), 𝑓𝜃(𝑥𝑖)) )

𝑥𝑖∈𝑆𝑘

 (32) 



46 
 

Furthermore, 𝑃( 𝑦̂ = 𝑘| 𝑥) expresses the probability that the label 𝑦̂ of the query sample 𝑥̂ 

is the label of category 𝑘, where ∑ exp (−𝑌𝑘(𝑥̂, 𝑆𝑗))
|𝑉|
𝑗=1  is the sum of the distances for all other 

categories in 𝐷𝑡𝑟𝑎𝑖𝑛. 

𝑃( 𝑦̂ = 𝑘| 𝑥̂) =  
exp (−𝑌𝑘(𝑥̂, 𝑆𝑘))

∑ exp (−𝑌𝑘(𝑥̂, 𝑆𝑗))
|𝑉|
𝑗=1

 (33) 

Weights of the network components 𝑓𝜃  and 𝑔𝜔 are then updated using the stochastic gradient 

descent minimizing the negative log-likelihood loss 𝐽 according to Eq. 34. 

𝐽 ← 𝐽 +  
1

𝑤𝑞
(− log  𝑝( 𝑦̂ = 𝑘| 𝑥̂)) (34) 

The training procedure for CSN, which closely fallows the training procedure for can be 

summarized in the following way.  

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp 

• Divide the classes in the initial dataset by random sampling into training subset 𝐷𝑡𝑟𝑎𝑖𝑛 

containing 𝑁𝑐 classes,  and testing subset 𝐷𝑡𝑒𝑠𝑡 containing 𝑁𝑡 classes, 

• for 𝑛 episodes do: 

o 𝑉 ← 𝑅𝑎𝑛𝑑𝑆𝑒𝑙(𝐷𝑡𝑟𝑎𝑖𝑛, 𝑤) 

o 𝑓𝑜𝑟 𝐾 ∈ 𝑉 𝑑𝑜: 

▪ 𝑆𝑘  ← 𝑅𝑎𝑛𝑑𝑆𝑒𝑙(𝐾, 𝑠) 

▪ 𝑄𝑘  ← 𝑅𝑎𝑛𝑑𝑆𝑒𝑙(𝐾\𝑆𝑘, 𝑞) 

o end for 

o for 𝑘 = 1 to |𝑉| do: 

▪ for (𝑥̂, 𝑦̂)  ∈  𝑄𝑘 do: 

• compute 𝑌𝑘(𝑥̂, 𝑆𝑘) using Eq. 32 

• compute 𝑃( 𝑦̂ = 𝑘| 𝑥̂) using Eq. 33 

• update loss using Eq. 34 

▪ end for 

o end for 

o update weights of 𝑓𝜃 and 𝑔𝜔 using gradient descent to optimize Eq. 34 

• end for. 

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp 
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3.1.2 Results 

 

We tested our model on two benchmark datasets, the Omniglot (Lake et al., 2011) and the Mini-

ImageNet (Vinyals et al., 2016). For each dataset we created a suitable CSN model architecture 

described below. In order to explore the hypothesis that our model would perform better than 

the PN model because it uses a distance function parameterized by the network rather than an 

arbitrary one, we created a smaller CSN network with parameters comparable to the PN 

architecture. 

In all experiments we used the Xavier method (Glorot et al., 2010) for initializing the 

weights and Adam optimization algorithm for updating the weights. Apart from the SoftMax 

activation function used for final evaluation, all layers of all our networks use leaky ReLU 

(Maas et al., 2013) activation function. Similarly to related models, we used a step-wise learning 

rate annealing. Our CSN models differed in the architecture used, initial learning rate and 

annealing schedule, and in the number of training epochs. 

The Omniglot dataset contains 1623 classes of handwritten characters from 50 different 

alphabets from around the world with 20 examples per character. We resized the images to 

28×28 pixels and divided the dataset to 1200 training classes and 423 test classes independent 

of the alphabet. We also augmented the classes by rotating the images by multiples of 90 

degrees resulting in 4800 and 1692 classes as in Vinyals et al. (2016). 

The architectures of networks 𝑓𝜃  and 𝑔𝜔  are displayed in Figure 22. To get the most 

accurate comparison with similar models we used an embedding network architecture with the 

same number of parameters as Vinyals et al. [68], and most importantly, the number and size 

of the convolutional layers. Mimicking the architecture of Vinyals et al. (2016), all 4 

convolutional layers of 𝑓𝜃 contained 64 neurons with a 3×3 filter size followed by batch 

normalization. In order to prevent information loss at this level of processing, we did not use 

the 2×2 max-pooling layers and just took advantage of the convolutional subsampling using 

stride 2 in the second and fourth layers of the network (layers 1 and 3 had stride 1). 
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Figure 22. Architecture of 𝑓𝜃 and 𝑔𝜔 networks for the Omniglot experiments. RB in 𝑔𝜔 represents a 

residual block depicted in Figure 23. 

 

In Omniglot experiments, 𝑔𝜔 consisted of two residual blocks (256 neurons) with 

architecture displayed in Figure 23 with 2×2 max-pooling between them and two fully 

connected layers in the outer-most part of the network (with 512 hidden and 1 output neurons). 

The same residual block architecture was also used in Mini-ImageNet experiments and 

contained three 3×3 convolutional layers with batch normalization and one 1×1 residual 

convolutional layer. 

 

 

Figure 23. Architecture of convolutional residual block. 

 

We trained our model for 30,000 episodes using the training procedure outlined in previous 

section. Each episode contained 5 query points per class. During training we tested the models 

on 1000 testing episodes after each 2000 training episodes. The initial learning rate was 0.0005 

and we decreased it to a half every 2000 episodes until episode 10,000. The results in terms of 

classification accuracy for 5-way and 20-way classification each with 1-shot and 5-shot tasks 

are displayed in Table 1.  
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Table 1. Classification accuracies for Omniglot in comparison with selected models with 95% confidence 

intervals where available. 

 

In order to compare our model with Prototypical Networks we used the same 𝑓𝜃 as in all 

other Omniglot experiments. To consistently compare our results with the PN, the 𝑔𝜔 network 

contained only two fully-connected layers as in outermost part of 𝑔𝜔 in our Omniglot 

architecture described above (512 and 1 neurons). Additionally, we observed the same training 

practice as Snell et al. (2017) using 60 instead of 20 classes in each training episode. The results 

for 20-way classification with 1-shot and 5-shot tasks are displayed in Table 2. 

 

 

Table 2. Classification accuracies for Omniglot with small CSN in comparison with Prototypical Networks 

and Siamese Networks. 

 

Mini-ImageNet dataset contains a subset of ImageNet dataset with 100 classes and 600 

examples per class. This dataset is much more challenging than the Omniglot dataset due to the 

nature of images which in the case of Mini-ImageNet are color photographs of objects in the 

real world. The images in this dataset were resized to 84×84 pixels. Similarly, to related works, 

we did not use any image preprocessing. We used the standard data split by Ravi and Larochelle 

(2017) to 64 classes used for training, 16 for validation, and 20 for testing. 

The architectures of networks 𝑓𝜃 and 𝑔𝜔 are displayed in Figure 24. The embedding 

network 𝑓𝜃, consisted of 4 residual blocks (displayed in Figure 23) with a gradually growing 

size (64-96-128-256 neurons) each followed by 2×2 max-pooling with stride 1. 𝑔𝜔 had the 

same architecture as for Omniglot (two 256-neuron RBs with pooling between and 2 fully 

connected layers). 

Model 1-shot 5-shot 1-shot 5-shot

Siamese Networks (Koch et al., 2015) 97.3% 98.4% 88.2% 97.0%

Matching Networks (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%

Prototypical Networks (Snell et al., 2017) 97.4% 99.3% 96.0% 98.9%

Relation Networks (Sung et al., 2018) 99.6% ± 0.2% 99.8% ± 0.1% 97.6% ± 0.2% 99.1% ± 0.1%

SNAIL (Mishra et al., 2017) 99.07 ± 0.16% 99.78% ± 0.09% 97.64% ± 0.30% 99.36% ± 0.18%

CSN (ours) 98.16 ± 0.08% 99.52% ± 0.04% 97.7 ± 0.13% 99.23% ± 0.06%

5-way 20-way

Model 1-shot 5-shot

Siamese Networks (Koch et al., 2015) 92.0% NA

Prototypical Networks (Snell et al., 2017) 96.0% 98.9%

Categorical Siamese Networks (ours) 96.81% 98.97%

20-way
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Figure 24. Architecture of 𝑓𝜃 and 𝑔𝜔 networks for the Mini-ImageNet experiments. RB2* does not have the 

1×1 convolution in the residual connection because the number of neurons does not change from RB1 to RB2. 

 

We trained the network for 30,000 episodes for 1-shot experiments and for 20,000 episodes 

for 5-shot experiments. Each episode contained 15 query points per class. During the training 

we tested the models on 1000 testing episodes after each 1000 training episodes. The initial 

learning rate was 0.0001 and annealed to a half every 8000 episodes until episode 16,000. The 

results for 5-way classification with 1-shot and 5-shot tasks are displayed in Table 3. 

 

 

Table 3. Classification accuracies for Mini-ImageNet in comparison with selected models with 95% 

confidence intervals where available. 

 

The results of our experiments show that the performance of our model is comparable with 

the state-of-the-art models. Compared to model by Mishra et al. (2017), our model has slightly 

worse performance, but on the other hand, it consists of a smaller number of layers and has 

fewer parameters.  

The classification accuracy of our model in 5-way Omniglot experiments is also slightly 

lower compared to the Relational Network model by Sung et al. (2017). However, there was a 

difference between us and Sung et al., who used many more query points, namely 19 for 1-shot 

and 15 for 5-shot learning. In order to reach the most accurate comparison with the related work 

and also to compensate for our hardware limitations, we used just 5 query points for all 

Omniglot experiments.  

Model 1-shot 5-shot

Matching Networks (Vinyals et al., 2016) 43.6% 55.3%

Prototypical Networks (Snell et al., 2017) 46.61% ± 0.78% 65.77% ± 0.70%

Relation Networks (Sung et al., 2018) 50.44% ± 0.82% 65.32% ± 0.70%

SNAIL (Mishra et al., 2017) 55.71% ± 0.99% 68.88% ± 0.92%

CSN (ours) 52.17% ± 0.43% 66.01% ± 0.52%

5-way
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By outperforming the Prototypical networks in the Omniglot experiments, we have shown 

that including the categorical decision process in the training has indeed been beneficial for the 

model's classification accuracy.  

Similarly to other deep learning architectures for few-shot learning, our model is very 

computationally demanding and cannot be operated without a powerful GPU with large 

memory capacity. Due to the computational complexity which makes experimentation quite a 

lengthy process, we have not yet tested all possible options of our model. For instance, we could 

have given the model much more than 30 thousand training episodes whereas Sung et al. (2017) 

had reported more than 200,000 training episodes. A more detailed search of the model 

hyperparameters might also lead to better model performance. 

 

 

3.2 Few-shot semantic segmentation using Seg-REPTILE algorithm 

 

In recent years Deep learning was successful in producing models that can achieve high 

performance on several challenging tasks including image classification, image segmentation, 

or instance segmentation. Deep learning models based on Convolutional Neural Networks 

(CNNs) such as Fully Convolutional Networks (FCN) (Long et al., 2015), Deeplab (Chen et 

al., 2017) or Dual Attention Networks (Fu et al., 2019) are currently the state-of-the art models 

for semantic image segmentation. Like other Deep learning models these models require a large 

number of annotated examples. Due to the high annotation cost of the data required for training 

such models, publicly available datasets for semantic image segmentation such as Pascal VOC 

(Everingham et al., 2015), MS COCO (Lin et al., 2014) or Cityscapes (Cordts et al., 2016) 

contain only a fraction of training examples in the large image classification datasets such as 

ImageNet (Russakovsky et al., 2015). Because of the difficulty of obtaining annotations in the 

semantic segmentation class few-shot learning methods, that aim to reduce the necessary 

number of training examples, could potentially be even more beneficial in the context of 

semantic segmentation than they are in the context of image classification. 

 Semantic segmentation task is inherently more difficult than category classification, 

because instead of one label, it requires a 2D map of labels, separating a target object from the 

background. Few-shot classification models such as Siamese neural networks (Koch et al.,   

2015), Prototypical networks (Snell et al., 2017) or MAML (Finn el al., 2017) achieve 

classification accuracy approaching fully supervised models, using only a fraction of labelled 
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data. Due to an inherently higher difficulty of semantic segmentation and limited availability 

of training data, few-shot approaches to semantic segmentation seem viable, but they have not 

yet been sufficiently explored, compared to their use for categorization. Among the first 

attempts to few-shot semantic segmentation is Shaban et al. (2017) who combined a 

segmentation model based on a fully-convolutional network (Long et al., 2015) with a model 

trained to generate a set of parameters conditioning the segmentation model to segment objects 

of particular category using only a few examples. Dong et al. (2018) introduced a metric 

learning approach (similar to Prototypical networks) that relies on creating per class prototypes 

from a limited amount of training data that can be used for final segmentation. Guided networks 

by Rakelly et al. (2018) use a small number of training images with limited annotation (one 

point per object) to perform semantic segmentation. This model also uses two networks, one 

for generating latent representation of a task from a small number of sparsely annotated images 

and one that uses this representation to generate a segmentation map. 

We explore a few-shot segmentation model we call Seg-REPTILE (Tuna et al., 2019), 

based on the REPTILE meta-learning algorithm. The main advantage of our approach is that 

our approach is architecture agnostic. Therefore, our approach can be easily applied to future 

innovative semantic image segmentation architectures. We evaluate the accuracy of our model 

using standard semantic segmentation architecture. 

 

3.2.1 Method description 

 

In our experiments, to be consistent with the setup used by Shaban et al. (2017), we used the 

network architecture FCN32 (Long et al. 2015). High level schema of the Fully Convolutional 

Network architecture is depicted in Figure 25. The only difference is that we chose Adam 

optimizer (Kingma et al., 2014). We also adapted the Adam optimizer to the REPTILE update 

by treating the term (𝜃̃ −  𝜃) as a gradient. The convolutional feature extractor was pretrained 

using the ImageNet dataset.  
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Figure 25. High-level schema of Fully Convolutional Network architecture (Long et al., 2015). 

 

We used PASCAL VOC 2012 image segmentation dataset (Everingham et al., 2015) and 

applied the same category splits as Shaban et al. (2017). The performance was evaluated on a 

one way 5-shot tasks, which means that during training every iteration a random category is 

sampled from a set of 15 training categories from the training subset. Then every single SGD 

iteration, 5 supports images that contain at least one pixel from that category are sampled from 

the training data. All pixels belonging to categories that are different from the training category 

are relabeled as background. During testing the similar procedure is performed, although the 

categories are taken from the validation subset and the network is retrained using only the 5 

support examples selected at the beginning of the test episode. After each test episode the 

network parameters and Adam optimizer statistics are reset to the state before the test. We used 

the same performance metric as Shaban et al. (2017), namely the per class mean intersection 

over union computed across all 5 test classes (excluding background). The learning rates for 

Adam optimizer and for REPTILE were set to 0.0001. For every REPTILE update during 

training we performed 24 Adam updates, and during testing 64 Adam updates. The network 

was trained for 1000 REPTILE updates. 

 

3.2.2 Results 

 

In Table 5 and Table 6 we compare our model with Shaban et al. (2017) using the same 4 test 

splits (named PASC5-0, PASC5-1, PASC5-2 and PASC5-3). In Table 4 we show which 

categories are included in different test splits. 
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Table 4. Categories included in various test splits 

 

We have not compared our model to Dong et al. (2018) and Rakelly et al. (2018) due to a 

different metric used in their work. Accuracy of our model for most test splits, except PASC5-

1, is comparable to the model by Shaban et al. There is a large difference in the number of 

parameters between the two models. Our model does not contain the conditional model that 

contains similar number of parameters as the segmentation model which might explain the 

difference in segmentation accuracy. Example segmentations from our model are shown in 

Figure 26. 

 

 

Table 5. Performance comparison of the models using 1 example per class. We used the mean intersection over 

union (MIOU) metric from Shaban et al (2017). 

 

 

Table 6. Performance comparison of the models using 5 examples per class. 

 

 

Figure 26. Examples of segmentation from our model. 

Test split Categories

PASC5-0 ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle']

PASC5-1 ['bus', 'car', 'cat', 'chair', 'cow',]

PASC5-2 ['diningtable','dog', 'horse', 'motorbike', 'person']

PASC5-3 ['potted plant','sheep', 'sofa', 'train', 'tv-monitor']

Method (1-shot) PASC5-0 PASC5-1 PASC5-2 PASC5-3 Mean

(Shaban et al., 2017) 33,6 55,3 40,9 33,5 40,8

Ours 39,8 47,6 38,08 34,1 39,9

Method (5-shot) PASC5-0 PASC5-1 PASC5-2 PASC5-3 Mean

(Shaban et al., 2017) 35,9 58,1 42,7 39,1 43,9

Ours 40,9 50,5 39,9 36,1 41,9
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3.3 Detecting Wearable Objects via Transfer Learning 

 

Transfer learning is a well-known technique how to tackle the problem of limited amount of 

labelled data in training deep neural networks. It has been successfully used in the field of 

camera surveillance image processing which suffers from poor data quality and quantity. In our 

work (Kraus et al., 2019) we investigated this technique in our task of wearable object detection 

and investigated generalization capabilities of well-known neural network architectures such as 

VGG (Simonyan et al., 2014), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017). 

Our task was to distinguish if people in the images were or were not wearing a backpack. We 

created new annotations for the DukeMTMC-attribute dataset (Lin et al., 2019) to overcome 

the discrepancies among the attributes. Within the transfer learning we explored a setup with 

frozen feature weights, but also the model fine-tuning, which turned out to perform much better. 

 There are many open challenges in the domain of camera surveillance. For example, the 

identification of individual people from photos or videos, or other vision tasks such as the 

attribute recognition. Distinguishing wearable objects or outfits of the observed people is used 

in the cases when the identity is unknown or cannot be distinguished. Detecting the objects 

carried by people is a difficult task even if the quality of images is quite high, but in practice 

surveillance systems are often very heterogeneous. They use cameras with different resolution 

and positioning, the lighting conditions are often changing during the recording and the field of 

view recorded by the cameras is not continuous in general. Thus the image quality may vary 

significantly. 

 Our motivation is to overcome these difficulties. To process videos from individual 

cameras and to detect the characteristic wearable objects and clothes, such as the person is 

wearing a red jacket and a black backpack. This high-level information may be used for finding 

correspondences in the multiple camera images. Having a system detecting such attributes 

might be utilized in forensic search as well. 

The transfer learning paradigm has been successfully applied in the domain of human re-

identification. Li et al. (2012) proposed a metric-transfer approach and outperformed former 

methods based on the visual features extraction and matching. Geng et al. (2016) enhanced the 

performance of the transferred model by employing person identification and person 

classification (distinguishing one person from others). Chen et al. (2017) proposed joint training 

of the identification subnet with an additional network performing a ranking task. 
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Lin et al. (2019) came with an idea to include feature recognition to enhance the 

performance of the neural model in the identification task. Within their work, they re-annotated 

two re-identification benchmarks: DukeMTMC-reID and Market-1501 (Zheng et al. 2015). 

Their results show that learning through optimizing a composite loss of both re-identification 

and attribute classification leads to better performance in re-identification task. Wang et al. 

(2018) applied semi-supervised learning paradigm to the attribute annotation problem. Their 

assumption was that attributes might be used as defining features for learning person identities 

in the unlabeled data.  

Yu et al. (2016) showed that a weakly-supervised deep learning architecture with special 

detector layers can be used to classify pedestrian attributes without the need of bounding box 

annotations. This approach, which does not use any form of transfer learning, would indeed 

require a large dataset, which is usually a problem for real-world camera surveillance 

applications. Xiang et al. (2019) show how incremental few-shot learning can overcome the 

problems with the amount of labeled data and predefined feature sets needed for majority of the 

classification systems. An interesting example of deep learning in attribute recognition task is 

the deep hierarchical contexts model by Li et al. (2016). It uses a custom neural network 

architecture that builds up pose-based deep representations of humans, compares them, and 

provides a scene-level feature description, from which it derives attributes. For example it 

detects the activity people are doing and estimates the wearable attributes semantically related 

to the activity in all people from the group. Thus it can detect attributes that might, in some 

cases, not be detectable by a human observer. Another novel model was proposed by Ji et al. 

(2017), which combined the standard CNN architecture with recurrent neural networks that 

captures the sequential relations among various pedestrian attributes. 

 

3.3.1 Method description 

 

In this work we focus on building a system for feature recognition for automatic camera 

surveillance. Such a system has to be compatible with different camera types, resolutions, view-

points, etc. Since there is a limited number of suitable datasets for the task we chose to work 

with the available DukeMTMC-attribute dataset (Lin et al., 2019), which adds additional 

annotations to the DukeMTMC-reID dataset (Lin et al., 2019). DukeMTMC-reID is a subset of 

DukeMTMC (Ristani et al., 2016) re-identification dataset created from 85-minute long high-

resolution video clips from 8 different cameras. Images are captured every 120 frames and 
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cropped to bounding boxes containing people. DukeMTMC-attribute consists of 702 training 

and 1100 testing entities (individual people) from DukeMTMC-reID annotated with 24 

additional features related to visible properties, such as the gender (male/female), the properties 

of outfit (upper-part-black) or whether they are carrying items such as bags or backpacks. For 

the purposes of our work, we chose to focus on just the backpack attribute. Our first experiments 

with original DukeMTMC-attribute dataset showed that the default annotations are not fully 

suitable for our purpose, because the original attributes are assigned based on the entities, rather 

than visual assessment of the attribute in the individual images. Such annotations are beneficial 

for enhancing the performance in the re-identification task as shown by Lin et al. (2016), but 

the attribute relevance might be restricted when we use it for recognition of carrying a backpack 

on separate images. There are some mismatches in annotation relevant to our task that can 

negatively influence the training process, such as occlusion by objects, occlusion by person 

with different attribute value, visibility of a backpack, and few real annotation errors. Therefore, 

we decided to re-annotate the dataset. 

Based on our observation, we re-annotated the images into three classes: with a backpack, 

without a backpack, and unresolved. We put the image to an unresolved class either when there 

were more people in an image or when the backpack was not well observable. From the total 

of 34,183 original annotations: 61.8% were unchanged, 37.0% were marked as undecidable, 

and 1.2% were changed to the opposite category. It means that 13,045 annotations were 

modified, of which 3.0% were changed into the opposite category and 97% were marked as 

undecidable. Examples of images with our annotations for the three categories are displayed in 

Figure 27. Note that the original images in the dataset are already cropped out of the camera 

footage and thus have different sizes and resolutions. 
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Figure 27. Examples of images from re-annotated DukeMTMC dataset. 

 

For the purposes of our work, we exclude the unresolved class from our dataset. Our task 

can be described as a binary classification problem, the positive class means that the person is 

wearing a backpack and the negative class means the opposite. We display the numbers of 

training and testing images in the dataset after our reannotation in Table 7.  

 

 

 

Table 7. Dataset statistics. 

 

 In our re-annotated data there is noticeable imbalance between positive and negative 

examples. We decided not to compensate for it either in terms of data augmentation or in 

designing special loss function in our models. However, we take this imbalance into account 

and use the balanced accuracy (BACC) as a performance measure for our experiments. 

Mathematically, balanced accuracy can be expressed as: 

𝐵𝐴𝐶𝐶 = (
𝑇𝑃

𝑃
+

𝑇𝑁

𝑁
)/2 (35) 

where 𝑇𝑃 stands for classified true positives, 𝑃 for all positive examples, and 𝑇𝑁 for classified 

true negatives and 𝑁 for all negative class samples. Nevertheless, for possibility of comparison 

Positive Negative All

Train 6540 3593 10133

Test 6911 4491 11402

All 13451 8084 21535
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with other models, we also display the standard accuracy (ACC) in the final results from the 

best models. 

 In our experiments we worked with three widely-used neural network architectures for 

image classification: the VGG, the ResNet, and the DenseNet. We used models pretrained using 

the ImageNet dataset. We evaluated two different depths of each architecture. That brings us 

diverse sizes of feature vectors as well as a possibility to make decision about generalization 

capacity based on depth of the model. The complete list of the 6 architectures with the most 

important characteristics is displayed in Table 8. 

 

 

Table 8. Characteristics of neural network architectures used in our experiments. 

 

 We chose to experimentally evaluate two different paradigms in transfer learning. In setup 

A, we used a feature extractor with frozen weights, where the weights of the convolutional part 

of the original network trained on the ImageNet dataset are left intact, while the topmost fully 

connected layer or layers of the model (the classifier) was replaced by a new classifier network 

tailored for the new task. We gathered the features of the images from our dataset using the 

feature extractor. Subsequently, we trained a new classifier from the scratch to perform the 

binary classification.  

In the case of transfer learning with model fine-tuning, we also started with a network 

trained on the ImageNet, but unlike the first setup, the whole model was further trained to 

perform the new task on the target dataset. The architecture of the feature extractor part of the 

pre-trained network remained the same and only the topmost layer of the classifier was adapted 

to fit the new task. In the case of model fine-tuning, we used only a small learning rate to prevent 

losing the feature structure from the rich ImageNet dataset. Nevertheless, we expected that the 

network would quite soon converge in the new task. We labeled this scheme as setup B. 

For the requirements of setup A and to speed up the network convergence in setup B, we 

normalized our dataset using standard normalization setup used for ImageNet training. Given 

the fact that the dimensionality of images in the ImageNet dataset is 224×224 pixels and the 

Architecture Layers all Fully connecetd Feature size

VGG16 16 4 4096

VGG19 19 4 4096

ResNet34 34 1 512

ResNet50 50 1 2048

DenseNet121 121 1 1024

DenseNet161 161 1 2208
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dimensionality of images in our dataset varies between approximately 100×240 pixels, we also 

needed to adjust the size of the images. We experimentally evaluated several techniques, for 

example positioning the image in one corner of the 224×224 square and filling the remainder 

with the mean value, so the network would ignore it. Finally, we decided to use the same method 

as Lin et al. (2019), which was just to stretch the image to the desired size. Albeit the stretched 

images did not look very natural for a human, there were no significant differences in the 

network performance. 

To compensate for the relatively small size of our dataset, we decided to augment our data 

by flipping each image horizontally as suggested by Krizhevsky et al. (2012). We consider 

horizontal flipping as not harmful to the plausibility of our dataset. We used the same operation 

on both training and testing sets to keep similar data distribution. 

In both setups of our experiments, we compared all six architectures from Table 8 pre-

trained on the ImageNet dataset. We used the same data pre-processing pipeline in all 

experiments. In setup A, we evaluated several classification architectures as described below, 

while in setup B only the last fully-connected layer was replaced with a layer connected to one 

output neuron with sigmoid activation function. In setup A, we initialized weights using He’s 

normal initialization (He et al., 2015) which limits the range of the random initialization of 

weights based on the size of the previous layer, and thus speeds up the convergence of the 

model. This is useful for us since hidden layer sizes in our tested classifiers vary. In setup B, 

we used standard Xavier weight initialization (Glorot et al., 2010). For all experiments, we used 

Binary Cross Entropy (BCE) cost function: 

𝐵𝐶𝐸 =  − ∑[𝑡𝑘
𝑛

𝑁

𝑛

ln 𝑦𝑘
𝑛 + (1 − 𝑡𝑘

𝑛) ln(1 − 𝑦𝑘
𝑛)] (36) 

where  𝑡𝑘
𝑛 is the label and 𝑦𝑘

𝑛 is the network output. We trained all our networks using Adam 

optimizer algorithm (Kingma et al., 2014) with the same parameters across all experiments. 

These parameters were 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8. We did not use any weight decay. 
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3.3.2 Results 

 

3.3.2.1 Hyperparameter search 

 

The first step in our experimental setup was to determine the optimal combination of minibatch 

size and learning rates. For every combination of selected minibatch sizes and learning rates, 

we repeated the experiment 10 times in setup A and 5 times in setup B and averaged the results 

across runs for the particular combination of hyperparameters. We show our results on the 

DenseNet161 architecture in setup A in Table 9 and for ResNet50 architecture in setup B in 

Table 10. 

 

 

Table 9. BACC for hyperparameter search in setup A using DenseNet161. 

 

 

Table 10. BACC for hyperparameter search in setup B using ResNet50. 

 

 We identified different combinations of learning rates and minibatch sizes that performed 

the best on the test set. Surprisingly, we were able to find a combination that performs 

reasonably well in both setup A and setup B, which was learning rate 0.0001 and minibatch 

size 16. We used these hyperparameters in all subsequent experiments. Even though that this 

combination was not the best in setup B (the best result was achieved with learning rate 0.00001 

and minibatch size 4), we chose minibatch size 16 because of larger minibatches lead to faster 

training (wall clock time), especially when computing on the GPUs. 

 

 

 

4 16 64

0,01 79,12 ± 0,36 79,31 ± 0,31 79,31 ± 0,26

0,001 79,34 ± 0,4 79,54 ± 0,29 79,89 ± 0,31

0,0001 80,04 ± 0,22 80,21 ± 0,22 80,2 ± 0,21

0,00001 80,04 ± 0,15 79,91 ± 0,11 79,71 ± 0,03

Learning rate

Batch size

4 16 64

0,001 81,68 ± 0,53 84,98 ± 0,62 87,73 ± 0,76

0,0001 90,25 ± 0,61 91,36 ± 0,22 91,24 ± 0,25

0,00001 91,57 ± 0,25 90,17 ± 0,24 88,45 ± 0,28

Batch size

Learning rate
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3.3.2.2 Comparison between setups 

 

 In setup A, we experimented with the architecture of the trained classifiers. We used only 

fully-connected feedforward networks with different number of hidden layers and their sizes. 

As well as in setup B, the output of all classifiers is one neuron with sigmoidal activation 

function, while for hidden layers we used RELU. We experimented with different size of the 

hidden layer derived from the size of the input layer which varies with a particular feature 

extractor architecture. The names and parameters of tested classifiers are displayed in Table 11 

where 𝑁 denotes the number of neurons in the input layer. We summarize the best results in 

terms of balanced accuracy for all six feature extractors and all five classifiers in Table 12. 

 

 

Table 11. Characteristics of the output classifier used in Setup A. Layers denotes the number of hidden layers in 

the classifier. ‘Hidden’ denotes the number of neurons per hidden layer. N denotes the size of the feature vector 

used as an input to output classifier (see Table 8). 

 

 

Table 12. BACC for all feature extractors and classifiers in setup A. 

 

In order to find the optimal model, we compared the above-mentioned architectures using 

previously determined learning rate and minibatch size. The highest ACC and BACC on the 

testing data for every network architecture was averaged across 10 runs in setup A and 5 runs 

in setup B. We show the results in Table 13 and 14. The network architecture with the highest 

accuracy on test data was DenseNet161. This is consistent with the performance of deep neural 

networks on other image-based datasets, where increased depth of neural network architecture 

generally leads to better generalization. 

 

Classifiier name layers hidden

Linear1 2 ­­­

Linear2a 3 N/4

Linear2b 3 N/2

Linear2c 3 3N/4

Linear2d 3 N

ResNet34 ResNet50 VGG16 VGG19 Dense121 Dense161

Linear1 75,58 77,27 75,42 73,55 77,85 79,53

Linear2a 77,42 78,64 74,54 73,05 79,03 80,09

Linear2b 77,66 78,58 74,35 73,12 79,25 80,07

Linear2c 77,73 78,39 74,32 73,15 79,18 80,25

Linear2d 77,71 78,35 74,18 72,91 79,01 80,21

Feature extractor

Classifier name
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Table 13. BACC and ACC of our best models on the test set in setup A. 

 

 

Table 14. BACC and ACC of our best models on the test set in setup B. 

 

To take a closer look at the extracted features that we use for classification we used the 

well-known t-SNE algorithm (van der Maaten et al., 2008). We used a freely available t-SNE 

implementation from the Python-based Scikit-learn library (Pedregosa et al., 2011) with the 

default parameters. We randomly selected 1000 samples from each class, i.e. images of people 

with backpacks and without backpacks separately from the testing set. Note that our choice to 

use a fixed number of random samples from each class does not respect the real distribution of 

the classes in the dataset which is slightly imbalanced. Figure 28 illustrates the t-SNE for the 

DenseNet161 feature vectors from setup A and setup B. In the figures it is clearly visible that 

the features from the feature extractor with frozen weights are very different from the fine-tuned 

ones and that it is obviously a very hard task to separate the two classes, which explains the 

noticeably worse models performance in setup A. 

 

 

 

 

 

 

 

 

Architecture Classfier BACC ACC

ResNet34 Linear2c 77,73 ± 0,19 79,03 ± 0,14

ResNet50 Linear2a 78,64 ± 0,16 80,01 ± 0,16

VGG16 Linear1 75,42 ± 0,08 76,88 ± 0,09

VGG19 Linear1 73,55 ± 0,12 75,29 ± 0,09

DenseNet121 Linear2b 79,25 ± 0,2 80,56 ± 0,15

DenseNet161 Linear2c 80,25 ± 0,22 81,47 ± 0,15

Architecture BACC ACC

ResNet34 90,99 ± 0,31 91,88 ± 0,28

ResNet50 90,43 ± 0,16 91,3 ± 0,27

VGG16 88,8 ± 0,52 89,61 ± 0,39

VGG19 87,52 ± 0,99 88,4 ± 1,16

DenseNet121 91,55 ± 0,31 92,34 ± 0,25

DenseNet161 91,88 ± 0,22 92,65 ± 0,14
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Figure 28. t-SNE visualization for 1000 randomly chosen features from the last layer of DenseNet161. Pictures 

a) and b) depict setup A with frozen feature extractor weights for the train set and test set, respectively. Pictures 

c) and d) depict setup B with fine-tuned feature extractor weights for the train set and test set. 

 

 In setup A, we are testing how well these deep architectures generalize. In setup B we fine-

tuned the feature extractors themselves which turned out to be crucial for successful transfer to 

our target dataset and task. As we intuitively expected, the setup B that uses fine-tuned 

convolutional feature extractors achieved much better performance on both testing and training 

data compared to setup A. It is most likely due to the fact that the distribution of the data in our 

dataset is substantially different from the distribution of data in the ImageNet dataset that was 

used for the pre-training of the tested feature extractors. For example, our data have different 

aspect ratio than the typical image from ImageNet, have lower resolution and lower visual 

quality. This is evident from the differences in the BACC as well as from the feature 

visualizations using the t-SNE method. These visualizations show that features from the fixed 

feature extractor are difficult to linearly separate, which explains the performance gap between 

the setups. 
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3.4 Semi-supervised Learning in Camera Surveillance Image Classification 

 

In this work (Tuna et al., 2021) we build upon our previous work in the domain of pedestrian 

attribute recognition (Kraus et al. 2019). Our work unfolds in two directions, the use of data 

augmentation to reach better performance in the supervised learning paradigm as a continuation 

of our previous work, but also a new path in which we experiment with the semi-supervised 

learning models. Namely, we propose a novel semi-supervised model for binary classification 

of wearable objects that we call Binary Mean Teacher, based on the Mean Teacher (MT) model 

(Tarvainen et al., 2017). 

We evaluate our models in several different setups. First we evaluate the influence of data 

augmentations in the supervised setup with full label set, but also with very limited small subset 

of the training data. Next, we explore and evaluate our Binary Mean Teacher (BMT) model that 

we adapted for our task and dataset and compare the performance of BMT in the limited data 

case, i.e. just one thousand labels. We evaluate this semi-supervised model with various 

quantity and quality of the unlabeled data. 

 

3.4.1 Method description 

 

For the experiments with a simple supervised learning both with and without transfer learning 

we used our DukeMTMC-backpack dataset as described in Kraus et al. (2019). In this case we 

kept the samples with correct yes and no labels and left the uncertain class out. Note that, as we 

kept the original data split from DukeMTMC-attribute and left out the uncertain cases, our 

testing set remained slightly larger than the training set, which renders the task more difficult 

than with usual benchmarks.  

For experiments with semi-supervised learning we took our DukeMTMC backpack and 

used either the full labeled training set or kept only a portion (2%, 8%, 10%) of the labels and 

removed the labels from the remainder of the dataset. The case in which there is only data from 

DukeMTMC-backpack with a particular portion of labels removed will be referred to as DS0. 

In order to explore the influence of the magnitude of the unlabeled part of the training set on 

the network performance we decided to enhance our unlabeled parts of the dataset in two ways. 

First, we enhanced the unlabeled part of DS0 by 6389 images that we relabeled as uncertain in 

the DukeMTMC-backpack dataset and named it DS1. Additionally, we decided to use a 

completely different, yet a similar dataset, namely both training and testing sets of the Market-
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1501 dataset (Zheng et al., 2015). The combination of DukeMTMC-backpack with Market-

1501 will be referred to as DS2. It is important to note that in all DS0, DS1 and DS2 cases the 

amount of the labeled data remains the same, therefore the actual ratio between labeled and 

unlabeled data varies among these datasets. Note that our dataset mixing does not oblige the 

original assumption for the SSL that labeled and unlabeled parts of the dataset must have the 

same distribution. However, we believe that since there is a strong similarity among 

DukeMTMC and Market-1501 datasets, that they are both made out of camera-surveillance 

images by cropping out people and used for attribute recognition, the distributions will be 

reasonably similar. We noticed that the class imbalance for the backpack attribute in the 

Market-1501 dataset is much bigger, we can observe whether such imbalance can disrupt the 

performance of the BMT model. We provide the dataset statistics in Table 15.  

 

 

Table 15. Naming scheme and statistics of the datasets used in our experiments. 

 

Note that, the case of DS0 with 100% labels is not a real case of semi-supervised learning since 

there are no unlabeled data. However, it can work nicely as another supervised baseline that 

uses the same augmentation technique and distance-based regularization, yet with no 

contribution of the consistency regularization.  

 As a standard procedure, we used contrast normalization per channel. We adapted the size 

of images in our dataset, which usually have size of approximately 100×240 pixels to ImageNet 

size, which is 224×224 pixels by stretching. Although the stretched images did not look very 

natural, there were no significant differences in the network performance. 

 For our semi-supervised learning experiments we created a semi-supervised model based 

on the Mean Teacher (MT) model. To change the MT model for our purposes we not only 

needed to change the shape of the last fully connected layer. Since our task is binary, we only 

have one output neuron and our primary (supervised) cost function is the Binary Cross Entropy 

(BCE) so our supervised cost is 

𝑆(𝜃) =  − ∑[𝑦𝑗

𝑚

𝑗

log 𝑦̂𝑗 + (1 − 𝑦𝑗) log(1 − 𝑦̂𝑗)] (37) 

Labels DS0: DukeMTMC-backpack DS1: DS0 + uncertain DS2: DS0 + Market-1501

10133 100% 61,33% 28%

1000 10% 6,05% 2,76%

800 8% 4,84% 2,21%

200 2% 1,21% 0,55%
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where  𝑦
𝑗
 stands for the binary label and 𝑦̂

𝑗
 stands for the network output 𝑓(𝑥𝑗 , 𝜃, 𝜂) for labeled 

input 𝑥𝑗 given noise 𝜂.  

In our preliminary experiments we realized that the MSE cost used for the unsupervised 

part of the model given just one output neuron does not lead to successful learning. Therefore 

we altered the model to compute the unsupervised consistency cost directly as MSE from the 

last convolutional layers of the student and the teacher networks as displayed in Figure 29. Our 

unsupervised cost is then computed as: 

𝐽(𝜏) =  
1

𝑛
∑ ‖𝑔(𝑥𝑖, 𝜏′, 𝜂′) −  𝑔(𝑥𝑖, 𝜏, 𝜂)‖2

𝑛

𝑖
 (38) 

where 𝑥𝑖  are the training samples augmented using noise 𝜂 for the student network and  𝜂′ for 

the teacher network. Parameters 𝜏 ⸦ 𝜃 and  𝜏′ ⸦ 𝜃′ are the weights of the student network and 

the teacher network up to the last convolutional layer. The output of the whole student network 

can therefore be expressed as 𝑓(𝑥𝑗 , 𝜃, 𝜂) = ℎ(𝑔(𝑥𝑗)) where 𝑔 is the convolutional feature 

extractor and ℎ is the fully connected layer atop of the architecture. Similarly, the output of the 

whole teacher network can be expressed as 𝑓(𝑥𝑖 , 𝜃′, 𝜂′) = ℎ(𝑔(𝑥𝑖)). We combined the two 

losses 𝑆(𝜃) and 𝐽(𝜏) in the following way: 

𝐿𝑜𝑠𝑠(𝜃) = 𝑆(𝜃) +  𝑤𝑡 𝐽(𝜏) (39) 

 where 𝑤𝑡 is the consistency cost weight. 

Following the original formulation of MT model, the parameters of the teacher network are 

set using parameters ensembling procedure as an exponential moving average of the student 

model. Model parameter ensembling procedure can be expressed as 

𝜃𝑡
′ = 𝛼𝜃𝑡−1

′ + (1 − 𝛼)𝜃𝑡 (40) 

where 𝛼 represents parameter that controls the ensembling momentum. 

 

 

Figure 29. Schema of the Binary Mean Teacher model. Adopted from Tarvainen et al. (2017). 
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 In all our experiments we used DenseNet121 architecture adapted for our binary 

classification task. The output layer contains one output neuron representing whether the person 

on the image is with or without a backpack. In all our experiments where there was no 

pretraining we used the Xavier weight initialization (Glorot et al., 2010). As described in 

previous section we used the composite loss function that contains supervised loss (Eq. 37) and 

unsupervised loss (Eq. 38) weighted with parameter 𝑤𝑡. We trained all our networks using well 

established Adam optimizer algorithm (Kingma et al., 2014) with standard parameters 𝛽1 = 0.9, 

𝛽2 = 0.999, 𝜀 = 10−8 and no weight decay. Due to high computational demand we used exactly 

100 training epochs in all experiments including the hyperparameter search. As the performance 

measure we use standard accuracy. 

 

3.4.2 Results 

 

3.4.2.1 Data augmentation experiments 

 

In our first set of experiments we explored the influence of data augmentations in the case of 

fully supervised learning with a limited dataset and with full dataset. Our assumption behind 

these experiments was that even with a very limited amount of data, using a reasonable 

augmentation technique, we can achieve a performance comparable to the full dataset training. 

We explored the full model training as well as model fine-tuning with the model pretrained 

using ImageNet. For our experiments we chose to use the same set of augmentations as the 

original MT for the ImageNet and evaluate them separately and in combination. The only 

difference in our augmentation strategies compared to the original MT is in the crop and resize, 

which was slightly adapted to keep the backpack and the torso of the person in the image intact. 

For the sake of clarity we label the augmentations using arbitrary codes as shown in Table 16. 

 

 

Table 16. Parameters and names for augmentation techniques that we use. 

 

Name Technique Parameters

A Random rotation max. 10 degree

B Varying aspect ratio crop and resize 224x224, scale=(0,8;1), ratio=(0,8;1,2)

C Random horizontal flip

D Random color jitter brightness=0,4; contrast=0,4; saturation=0,4; hue=0,1
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  In search for optimal hyperparameters we experimented with a varying learning rate and 

minibatch size for various sizes of training data sets in both setups: full training and model fine-

tuning. We tested batch sizes of 4–64 samples and initial learning rates from 10−2 to 10−5. 

While for the learning rate we identified the best value over all tested combinations and learning 

setups, which was 10−4, ideal minibatch sized varied from 4 to 16. However, the differences in 

performance were rather small so we decided to settle with minibatch size 8 as best value. Note 

that such a small minibatch size could not be feasible for the Binary Mean Teacher, where a 

certain ratio of unlabeled and labeled samples has to be kept in each minibatch. Unlike our 

small optimal minibatch size, the SSL uses larger minibatches of approximately 128 or more 

samples. We assume this is necessary due to the nature of the dataset which can in some cases 

contain only several labeled samples per minibatch which would not be feasible to make a data 

split with such a small size. The influence of the augmentation strategy on the accuracy of our 

models is shown in Figure 30.  

 

 

Figure 30. The influence of different augmentation strategies and their combinations on accuracy. 

 

The best performing models were the ones that used model fine-tuning and a combination of 3 

and more augmentations. It seems that the cropping and resizing (B) as well as the color jitter 

(D) have the best overall influence on the performance in our task. 

 In the context of our domain, the well-labeled images are not in abundance. Therefore, we 

were interested how well a standard supervised model can generalize over the whole testing set 

when trained with only a small amount of labeled data. We chose small portions in accordance 

with the semi-supervised learning experiments which go up to one third of the dataset and 

compared it with full dataset. Results are displayed in Figure 31.  
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Figure 31. The influence of the fraction of training data (of the original training dataset) on the fully supervised 

model accuracy. 

 

Note that the testing set we used was the same as in another task and contained more than 

11,000 images. The smallest portion of labels, which was 2% of our training set equals to 

approximately 200 images. This graph illustrates how augmentations can compensate for the 

lack of data even when no unlabeled data are used. The effect of augmentation is much more 

visible in the case of full training which however, performs generally worse than the fine-tuned 

setup. If pre-trained models are used, the weights already respond well to low-level features so 

the augmentations that generally increase the variability of the training data have smaller 

influence on the model performance. 

 

 

3.4.2.2 Binary Mean Teacher experiments 

 

 In the second set of experiments we tested the accuracy of our Binary Mean Teacher model 

in semi-supervised setting. We used model fine-tuning with ImageNet, but also trained the 

models from the scratch. Adding more complexity we tested the model on three variations of 

the labeled and unlabeled dataset listed in Table 15, starting from the basic DukeMTMC-

backpack and then adding additional unlabeled data. We also took varying numbers of labeled 

data from our train set (e.g. one thousand or the whole 10,000) while the remainder was added 

to the unlabeled part of the training set. Namely the excluded part which was hard to label by 

hand (uncertain category as described in Table 15 as DS1), which basically matches the 
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distribution of the labeled part of the dataset, but is inconclusive for categorization (contains 

occlusions, multiple persons,... etc). Then in DS2 we combine two different, yet similar datasets 

which both contain images of people from surveillance cameras, DukeMTMC and Market-

1501. Although there are strong similarities, the distribution of backpack vs. no-backpack cases 

in Market-1501 is different than in our dataset. Nevertheless, we presume that higher number 

of unlabelled data will improve the accuracy of our model despite the different dataset 

distributions. This can be very useful in practical applications where there is an abundance of 

data, but the labels for the data are hard to achieve. Therefore a reasonable small set of good 

examples along with well-tailored augmentation strategies can help balancing this problem.  

We have found the Binary Mean Teacher model to be very sensitive to hyperparameter 

selection. Therefore we paid particular attention to hyperparameter tuning process. Because of 

the large number of hyperparameters that can influence the final accuracy, we focused on 

exhaustive parameter search only for a small subset of hyperparameters that we found most 

affected the final accuracy. These include learning rate, unsupervised weight, EMA decay rate 

and ramp-up length. We performed hyperparameter search on these parameters with range 

[0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001] for learning rate, [20, 30, 40, 50, 60, 70, 

80] for unsupervised weight, [0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999] for EMA decay rate 

and [1, 5, 10, 15, 20] for ramp-up length. We performed the hyperparameter search using 1000-

label subset of DS2 and then reused these hyperparameters in subsequent BMT experiments. 

We performed the hyperparameter tuning process separately for fine-tuning and full 

training setup. Other hyperparameters were fine-tuned using various heuristics with original 

parameters used in the original MT research by Tarvainen et al. (2017) as a starting point. We 

used minibatch of size 64 due to the memory limitations of our hardware. In each minibatch we 

used 48 unlabeled and 16 labeled examples (8 examples with backpack and 8 without 

backpack). We found that using minibatch composition with a fixed number of labeled and 

unlabeled examples led to higher classification accuracy than sampling labeled and unlabeled 

examples randomly due to high imbalance between labeled and unlabeled examples. We also 

explored different minibatch compositions but we found previously mentioned composition to 

work best across multiple experiments. We fixed the ramp-down length at the value 20 in the 

initial exploratory experiments and then left it fixed because we had found this parameter did 

not significantly alter the performance. We used all the previously mentioned data 

augmentations at once, which is the same as in original MT setup for the ImageNet dataset. In 

Table 17 and 18 we summarize the final hyperparameter selection. 
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Table 17. Hyperparameters for Binary Mean Teacher for all setups. 

 

 

Table 18. Optimal hyperparameters for Binary Mean Teacher for specific setups. 

 

Next, we compare the classification accuracy of our Binary Mean Teacher model with 

strong supervised baseline. We used the optimal set of hyperparameters that we determined in 

previous experiments. In Table 19 we compared the classification accuracy of our model to a 

supervised baseline in a scenario when both supervised baseline and BMT model is trained 

using randomly initialized weights. In Table 20 we do the same comparison but instead of 

randomly initialized weights we use weights initialized using the ImageNet dataset. In both 

experiments we provide a varying number of labelled examples. More specifically we measure 

the accuracy of both the supervised baseline and BMT model using 2%, 8%, 10% and 100% of 

all labelled data in our dataset. 

 

 

Table 19. Comparison between fully supervised models and Binary Mean Teacher using randomly initialized 

weights. 

 

 

Hyperparameter Value

Minibatch size 64

Minibatch composition 16 labelled, 48 unlabeled

Ramp up length 10 epochs

Ramp down length 20 epochs

Data augmentation ABCD

Setup Learning rate Consistency cost Ensembling momentum

Full training, all labels 0,001 50 0,995

Full training, 1000 labels 0,0005 70 0,999

Fine-tuning, all labels 0,0001 70 0,9999

Fine-tuning, 1000 labels 0,001 60 0,99

Learning type Dataset Augmentations 100% 10% 8% 2%

Supervised DS0 None 85,39 74,96 72,35 63,1

Supervised DS0 ABCD 88,44 78,47 77,95 69,38

BMT DS0 ABCD 83,28 89,14 81,77 75,33

BMT DS1 ABCD 83,73 88,53 82,45 75,56

BMT DS2 ABCD 85,09 89,57 83,17 75,67
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Table 20. Comparison between fully-supervised models and Binary Mean Teacher using ImageNet 

initialized weights. 

 

The main advantage of the Binary Mean Teacher compared to the baseline appears when 

we train both models from randomly initialized weights. In this setting we observe 5-10% 

difference in classification accuracy in favor of the Binary Mean Teacher model. In tests using 

1000 labeled training images (8% labelled images), randomly initialized Binary Mean Teacher 

model achieved 90% classification accuracy. Randomly initialized baseline without any image 

augmentations achieved 75% accuracy using the same amount of training images which 

demonstrates the superiority of our approach compared to baseline in this setting.  

The difference is much smaller when we initialize the weights of both supervised baselines 

and Binary Mean Teacher using the weights pretrained on the ImageNet dataset. In this setting 

Binary Mean Teacher achieved 92% accuracy and the baseline achieved 90% accuracy. This 

suggests that a supervised model pretrained on a suitable large dataset should be used as a 

baseline when testing semi-supervised models. In this setting the Binary Mean Teacher model 

has only a slight accuracy advantage compared to supervised baseline, which demonstrates the 

power of well-established fine-tuning paradigm. This finding is contrary to most semi-

supervised research where the gap between supervised models and semi-supervised models is 

much higher because of absence of baselines pretrained on large-scale image datasets such as 

ImageNet. We suspect that much larger unlabeled datasets would be needed to fully leverage 

the potential of semi-supervised models like our Binary Mean Teacher model in binary 

classification task studied in this work.  

In 2% labeled examples setting the Binary Mean Teacher model achieved slightly lower 

accuracy than the baseline. This can be attributed to the hyperparameter tuning procedure that 

used the 1000 label (8%) setting. This suggests that settings with a different number of labeled 

examples requires different hyperparameter settings to achieve optimal results. We did not 

perform exhaustive hyperparameter tuning for every setting with a different number of labeled 

examples due to computational constraints. 

 

Learning type Dataset Augmentations 100% 10% 8% 2%

Supervised DS0 None 92,73 86,96 86,19 78,29

Supervised DS0 ABCD 93,5 89,91 88,89 82,07

BMT DS0 ABCD 92,85 90,72 90,04 79,21

BMT DS1 ABCD 92,98 90,47 89,75 78,96

BMT DS2 ABCD 93,53 91,75 90,83 77,7
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3.5 Dataset and methods for training 6D Object Pose Estimator for Imitation 

Learning from RGB Video  

 

Traditional programming of robots to perform manipulation tasks is expensive and time 

consuming. An alternative approach is to use machine learning methods to generate an initial 

solution to the task at hand, based on a demonstration by a skilled human or by another robot. 

This initial solution consists of trajectories in the space of observed variables. The appropriate 

actions needed to steer the robot along these trajectories are then computed by using a model 

of the robot’s dynamics or they can be learnt, typically by reinforcement learning. 

 In this work (Tuna and Sedlar et al., 2021), we focused on using data acquired by observing 

routine manual work without a necessity to set up expensive motion tracking devices or to 

install on-teacher sensors or markers. Therefore, we aim to develop methods to extract useful 

information from recordings by a standard RGB camera which provides a third-person view of 

the scene. We assume that the human demonstrator uses a hand tool to perform a task, e.g., a 

glue gun to apply glue along specified trajectories. The problem we address is how to detect the 

tool and how to track its 6D pose, which refers to position of the object in the 3D space relative 

to some reference point (for example camera) and pitch, yaw and roll of the object. The ability 

to train a 6D pose estimator for a new object without the need of its 3D model is useful also in 

other areas such as virtual reality or object grasping. 

 The key challenge of the above approach is to accurately and reliably learn the 6D 

trajectory of the tool manipulated by the demonstrator during the demonstration of a task. 

Tracked objects typically lack distinctive textures and are partly occluded by the human body. 

This makes the training of the pose estimator difficult and it is a priori unclear whether the 

tracking accuracy will be sufficient for the robotic task. 

 To address these challenges we first have collected, annotated and published a dataset for 

manipulation tasks with 3 tools: glue gun, grout float, and roller. The dataset consists of RGBD 

camera recordings along with ground truth 6D pose trajectories of each tool, calibration data, 

and computed tool bounding boxes, as well as segmentation masks for the training set. Then 

we adapted state-of-the-art 6D pose estimation method DOPE (Tremblay et al., 2018) and used 

this methods to evaluate the accuracy of a 6D pose estimation algorithm using restricted amount 

of training data, as well as generalization to a new environment, tasks, camera viewpoints, 

demonstrating subjects or left/right hand. We also evaluated the benefits of training data 

augmentation and proposed augmentation methods suitable for improving the generalization 



75 
 

capability of 6D model when tested on new environments, different tasks, demonstrators hand 

or camera viewpoints. We devised a novel augmentation method based on the blending of 

original background and random background (called BgBlend) and showed its effectiveness 

compared to standard augmentation methods.  

 Motivated by applications in robotics, 6D object pose estimation has recently attracted 

significant attention. In case of richly textured objects, methods based on matching of local 

invariant features such as SIFT (Munich et al. 2006) or SURF (Bay et al. 2006) produce 

reasonable results.  

 The more complicated 6D estimation of texture-less objects can be handled by models 

based on mixing of real and synthetic training data such as SSD-6D (Kehl et al. 2017) or DOPE. 

Methods such as BB8 (Rad et al., 2017) and PoseCNN (Xiang et al., 2017) typically proceed 

by first localizing and segmenting the object in the image and proposing a rough estimate of 

the object 6D pose based on its location. This initial estimate is then optionally refined using 

an iterative refinement procedure. In Pauwels et al. (2015), parallel processing of multiple 

camera viewpoints and interaction with a 3D model of the scene and objects was used for real-

time object detection and tracking.  DPOD (Zakharov et al., 2019) uses a deep convolutional 

encoder-decoder architecture to estimate a correspondence map between the object in the 2D 

image and the 3D model of the object, which is then used to compute an 6D pose of an object 

via a PnP algorithm (Lepetit et al., 2009). Pix2Pose (Park et al., 2019) uses similar 

correspondence mapping between the 2D image and the 3D model combined with generative 

adversarial training to improve the models handling of occlusions. CorNet (Pitteri et al., 2019) 

detects poses of object corners in the input image and uses poses of these corners and the poses 

of corners in a 3D model of an object to compute the 6DoF via a PnP algorithm. 

 Another recent method called CosyPose (Labbe et al., 2020) estimates the 6D poses from 

RGB images of multiple objects captured from unknown viewpoints. CosyPose and in more 

general, other render and compare methods such as DeepIM (Li et al., 2018), require a known 

3D model of the object, which is used to synthesize millions of training examples and is also 

used for alignment at test time. However, obtaining accurate 3D models quickly is a non-trivial 

task and hence here we investigate a scenario more practical for an imitation learning set-up, 

which only requires the user to record few short training videos with the hand-held tool. 

 The DOPE algorithm (Tremblay et al., 2018) predicts the object 3D bounding box vertices 

and centroid locations in the 2D coordinate system of the input RGBimage. These 2D 

predictions are then passed to the EPnP algorithm (Lepetit et al., 2009) to find a transformation 
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of the 3D bounding box into the camera coordinate system. This approach was shown to 

outperform other models like the PoseCNN. 

 Several datasets for 6D pose estimation have been collected in recent years. One of the 

frequently used static datasets for 6D estimation is Linemod (Hinterstoisser et al., 2012), which 

consists of 15 texture-less household objects with annotations and test set that include these 

objects in cluttered scenes. An extended version called Linemod-Occluded (Brachmann et al., 

2014) also provides annotations for all objects in one of the test sets, introducing a more 

challenging, occluded testing scenario. The T-LESS dataset (Hodan et al., 2017) features 30 

objects, all from industrial environment, which lack an easily discriminative color and are 

symmetrical along one or more axes. Another such industry-oriented dataset is ITODD (Drost 

et al., 2017), the ground truth annotations are however not available for the test images. One of 

the recent ones, the YCB-M dataset, consists of real-world static scenes recorded on 7 different 

cameras (Grenzdörffer et al. 2020). The authors trained the DOPE algorithm and compared its 

accuracy on RGBD data from each of the cameras, concluding that the most accurate 6D 

estimation was obtained from Asus Xtion and Intel RealSense RGBD sensors, which was also 

used for our dataset collection.  

All of the above-mentioned datasets capture static objects with only the camera moving 

around different angles. However, for a more realistic real-world 6D pose estimation, it is 

beneficial to train the estimators on datasets depicting manipulated objects. Creating such 

datasets is even more technically challenging, the existing datasets are thus small, or employ 

methods that simplify the annotation task. For example, Marion et al. (2018) created the 

LabelFusion pipeline which uses 3D reconstructions of real-world scenes to generate a large 

number of synthetic RGB-D data with pose annotations. Alternatively, the authors of the YCB-

Video dataset (Xiang et al., 2017) avoided full manual annotation by keeping the recorded 

objects at fixed positions and moving the camera only, so that most of the 6D poses could be 

calculated through global optimization. However, as the objects were fixed in one position lying 

on the table, the bottom viewpoints are missing from the dataset, whereas we cover most of the 

object viewpoints in our dataset as we manipulate them in hand. A real human activity RGB 

dataset was proposed by Kokic et al. (2020) and is focused on task-oriented grasping. A part of 

the dataset is synthetic, another part consists of real RGB-D videos of manipulated objects. 

However, the annotations are mainly focused on the hand joints positions and only a small part 

of the objects are provided with their meshes and 3D poses.  

Probably the most related to ours is the work of Krull et al. (2014) who created a dataset 

consisting of three objects recorded with Kinect. While we also used an RGB-D camera for 
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object detection, we obtained the reference 6D object pose from a HTC Vive controller attached 

to the object, whereas Krull et al. (2014) used manual annotation. The biggest difference 

between this dataset and ours is in the size. The dataset from Krull et al. (2014) provides 3187 

images in total, whereas we provide nearly 40,000 frames for the train dataset and over 60,000 

frames for the test set. We are unaware of any other 6D pose estimation video dataset besides 

ours that would enable evaluation of trained models for so many different levels of 

generalization, i.e., across different human operators, left-handed and right-handed 

manipulation, task variations, camera viewpoints, occlusions and backgrounds. To demonstrate 

its utility, we measure the impact of each of these challenges on the accuracy of 6D pose 

estimation provided by the DOPE algorithm. 

 

3.5.1 Method description 

 

Our Imitrob dataset provides annotated videos of various manipulation tasks with hand-held 

tools in a real-world environment. The dataset is designed for application of 6D pose estimators 

in industrial tasks, such as imitation learning or object grasping. It consists of two main parts: 

• Test dataset and evaluation metrics for benchmarking 6D pose estimation methods, 

• Train dataset and augmentation methods for training 6D pose estimators that do not 

require a 3D model. 

The Test dataset provides real-world benchmarking data for 6D pose estimation. It enables 

evaluation of various setup combinations, including the camera viewpoint, demonstrating 

subject, performed task, manipulated tool, the hand used for manipulation, or presence of clutter 

in the scene. Inspired by common trajectory-dependent industrial tasks, we focus on the 

scenario where the robot is observing manipulation with a tool and imitates the trajectories 

presented by a human operator. The operator is holding the tool in one hand and performs 

various tasks, such as application of hot glue with a glue gun along various trajectories on a 

frame, polishing a surface with a grout float, or flattening a cloth with a roller. In order to learn 

from such demonstrations, the robot has to identify the tool’s 6D pose. A successful task 

imitation requires the robot to replicate the trajectory with its own end effector. Different setups 

provided in our dataset are displayed in Figure 32. 

The Imitrob dataset features three tools (glue gun, grout float, and roller), four 

demonstrators (subjects S1-S4), and manipulations by each hand (left LH and right RH). The 

6D poses of the tools were measured by the HTC Vive and the image data were recorded using 
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two RGB-D cameras from front (C1) and right-hand side (C2) viewpoints. Figure 33 displays 

the data acquisition setup we used. While we do not utilize the depth component in this work, 

it is included in the dataset, along with the raw data and the code for custom data extraction. 

 

 

Figure 32. Overview of different setups in the test part of the dataset. 

 

 

Figure 33. Overview of the data acquisition setup. 

 

 The Test dataset contains six tasks with different tool trajectories: three for glue gun (frame, 

dense wave, sparse wave), two for grout float (round, sweep), and one for roller (press) (see 

Tasks in Figure 32). In addition, the glue gun frame task was recorded in two environments: 

with only the gluing frame on the table (NoClutter, default) and with a clutter of other objects 

around the frame (Clutter) (see Clutter in Figure 32). Each task was performed by all four 

demonstrators (S1-S4) to simulate the variability of tool manipulation by humans. The dataset 

could thus be used also for learning task-specific motions from human demonstration. 

 All the RGB-D images collected in the Imitrob dataset are accompanied by a reference 6D 

pose of the tool. The 6D poses were acquired from HTC Vive at 30Hz frequency and 

interpolated to match the time stamps of the camera frames. The Test dataset contains 45 233, 

12 048, and 4 379 annotated frames for glue gun, grout float, and roller, respectively. 
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 The Train dataset is designed for training 6D pose estimation methods that do not require 

a 3D model of the object. Instead of creating a complex 3D model, the dataset captures the tools 

in various orientations to provide sufficient viewpoint variability for 6D pose training. Each 

tool was moved randomly in one hand for a short time (20-40s) to simulate the range of possible 

6D poses during manipulation. For the purpose of training with data augmentation, the tools 

were recorded in front of a green background, which enables automatic object segmentation. 

We include the segmented data (as well as the reference 6D pose from HTC Vive) in the Train 

dataset. Figure 34 displays examples of the data from the Train part of the dataset. 

 

 

Figure 34. Examples of the data from the Train set.  

 

 We provide a collection of augmentation methods convenient for the Train dataset. 

Augmentation enhances training data and thus allows training of better 6D pose estimation 

models. The following sections describe the proposed augmentation techniques (we will later 

evaluate their performance on the Test dataset and propose the best combination). For 

comparison, NoAug denotes no augmentation of the training data. Overview of different 

augmentation techniques is provided in Figure 35. 

 

 

Figure 35. Examples of different augmentation techniques.  
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First, we segment each image into foreground (in our case the tool and hand) and 

background. We leverage the green background in the Train dataset for simple thresholding and 

crop the segmentation mask by the convex hull of the bounding box vertices projected into the 

2D image. The result is a binary mask of the tool and hand within the projected bounding box 

(Mask-Thresholding, see Figure 35b). We enhance the segmentation by F, B, Alpha Matting 

(FBA) (Forte et al., 2020), which in addition estimates the foreground opacity and color along 

the boundaries. The output is an RGBA image with the foreground opaque, background 

transparent, and boundaries convenient for background augmentation (MaskFBA, default, see 

Figure 35c). 

Background augmentation increases robustness of trained models to new environments. 

We examine several background randomization techniques. BgRandom replaces the 

background with a random image sampled from the Mini-ImageNet dataset (60 000 images). 

The remaining three methods keep the original background for 25% of the training set 

examples; for the remaining 75%. BgAlternate replaces the background with a random image. 

BgBlend (default) is a novel augmentation method that blends the background with a random 

image (blending ratio 0.5). BgNoise blends the background with random color noise (blending 

ratio 0.5). See Figure 35d-f for comparison of the background augmentation methods. 

In all augmentation setups (with the exception of NoAug), we apply geometric 

randomization, namely a random crop and horizontal flip of the image. The crop is constrained 

to keep all vertices of the 3D bounding box inside the image. 

We chose DOPE as our 6D pose estimation model because unlike methods such as 

CosyPose and DeepIm, DOPE does not need a 3D model of an object to estimate the pose. 

Instead, only visual data and ground truth 6D pose data are needed. We created a dataset that 

reflects our scenario in which we demonstrate a task with new object in a real-world setting 

without training in a simulator. Although training in a simulator has been demonstrated to be 

effective for training accurate 6D pose estimator, data acquired in a simulator do not contain 

realistic interaction between the demonstrator, object of interest and the surrounding 

environment, which might introduce various unwanted biases in the data. We use DOPE to 

experimentally determine which aspects of real-world environment, such as the change of the 

human demonstrator, the camera view or the task variability, impact the generalization 

capabilities of 6D estimation methods the most. We also investigate the impact of various 

augmentation strategies on the generalization capabilities of the DOPE model across different 

aspects of the real-world environment.  
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We estimate the object pose separately in each frame and concatenate the individual frame 

predictions into a complete trajectory. Since we focus our evaluation on the 6D object pose 

estimation, we do not apply any postprocessing to the individual frame predictions with any 

temporal or dynamic model. 

Our implementation of the DOPE method was based on the referenced PyTorch 

implementation by Tremblay et al. (2018). We trained our models for 10 epochs using the Adam 

optimizer, batch size 16 and learning rate 0.0001. We downsized the input frame dimensions 

by half to enable training with the larger batch size, which decreased the training time without 

negative impact on the accuracy. The ground truth belief maps we used for the DOPE training 

contain a 2D Gaussian with 2 pixel standard deviation and 2 pixel radius at each point (bounding 

box vertices and centroid). 

We evaluate the performance of a 6D pose estimator on the benchmarking Test dataset 

using three measures. The first one computes the displacement of object bounding box vertices 

and the centroid while the other two measure the rotation and translation errors, respectively. 

ADD pass rate (Tremblay et al., 2018) is defined as the average 3D Euclidean distance of 

the corresponding bounding box vertices and centroid between the predicted and ground truth 

6D poses. The 𝐴𝐷𝐷𝑡 (ADD pass rate) measures the percentage of model predictions 𝑚𝑝 with 

ADD lower than the selected threshold 𝑡: 

𝐴𝐷𝐷𝑡 =  
#𝑚𝑝[𝑤ℎ𝑒𝑟𝑒 𝐴𝐷𝐷(𝑚𝑝) < 𝑡]

#𝑚𝑝
∗ 100 (41) 

A higher ADD pass rate for a given threshold indicates better prediction accuracy of the object 

bounding box. In our experiments, we report ADD pass rates for thresholds 𝑡 = 2 cm (𝐴𝐷𝐷2), 

5 cm (𝐴𝐷𝐷5) and 10 cm (𝐴𝐷𝐷10). For comparison of models trained with and without 

augmentation, we use the ratio of their ADD pass rates: 

𝐴𝐷𝐷𝑡
𝑟𝑎𝑡𝑖𝑜 =  

𝐴𝐷𝐷𝑡
𝑎𝑢𝑔

𝐴𝐷𝐷𝑡
𝑛𝑜𝑎𝑢𝑔 (42) 

where 𝐴𝐷𝐷𝑡
𝑎𝑢𝑔

 and 𝐴𝐷𝐷𝑡
𝑛𝑜𝑎𝑢𝑔

 correspond to ADD pass rates for training with and without 

augmentation. 

 Rotation error 𝐸𝑟𝑜𝑡 measures the angle between the predicted and ground truth orientation 

in the following way: 

𝐸𝑟𝑜𝑡  =  𝑎𝑟𝑐𝑜𝑠 (
𝑡𝑟𝑎𝑐𝑒(𝑅𝑝

−1𝑅𝑔𝑡) − 1

2
) (43) 

where 𝑅𝑝 corresponds to the predicted part of rotation-translation matrix and 𝑅𝑔𝑡 corresponds 

to ground truth rotation-translation matrix. 
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 The translation error 𝐸𝑡𝑟𝑎 measures the Euclidean distance between the ground truth (𝑡𝑔𝑡) 

and predicted (𝑡𝑝) translation vectors:  

𝐸𝑡𝑟𝑎  =  ‖𝑡𝑔𝑡 − 𝑡𝑝‖
2
 (44) 

 

3.5.2 Results 

 

We present results of the DOPE 6D pose estimator on our Imitrob dataset for various 

experimental setups. We train all models on the Train dataset and evaluate their performance 

on the Test dataset using the ADD pass rate measure with 2 cm (𝐴𝐷𝐷2), 5 cm (𝐴𝐷𝐷5), and 10 

cm (𝐴𝐷𝐷10) thresholds. First, we show ablation studies to motivate our choice of selected 

parameters, namely the input image resolution and training batch size as well as the data 

augmentation method. Then we focus on factors affecting the quality of the results, including 

the difference between the demonstrating subject, hand, or camera viewpoint in the train and 

test data, as well as the effect of clutter and manipulation task in the test data. 

 

3.5.2.1 Hyperparameter search and the impact of data augmentation  

 

First we explore the impact of downsizing the input images and increasing the batch size on the 

quality of DOPE 6D pose estimation. Table 21 presents a comparison of ADD pass rates for 

the original (848×480 pixels, batch size 8) and downsized (424×240 pixels, batch size 16) 

frames. While the similarity in performance for the 2 cm threshold could be attributed to a trade-

off between a larger batch size and loss of details, the increased batch size clearly improved the 

accuracy for the 5 cm and 10 cm thresholds. We therefore use the 424×240 pixel resolution 

and batch size 16 for all other experiments. 

 

 

Table 21. Comparison between ADD pass rates for models trained using input images with different resolution. 

 

 After we determined the impact of input image resolution and batch size in the next set of 

experiments we compared the effect of different augmentation techniques on the 6D accuracy. 

ADD threshold 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

gluegun 7,4 49,8 75,6 9,9 57,8 79,8

grout float 12,5 75,6 93,0 9,7 73,9 97,7

roller 4,5 40,3 67,4 4,3 48,6 84,9

average 8,1 55,2 78,7 8,0 60,1 87,5

848 x 480 pixels 424 x 240 pixels
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Table 22 shows results for the background augmentation method. Real-world images 

(BgRandom, BgAlternate, BgBlend) clearly outperform color noise (BgNoise) as random 

background for augmentation. Also, it is beneficial to keep the original background for a portion 

(in our case 25%) of training images (BgAlternate, BgBlend) rather than to replace the 

background everywhere (BgRandom).The best results were achieved on average by BgBlend, 

which blends the original background and a random image together. The use of BgBlend 

augmentation (𝐴𝐷𝐷5 = 60.1%) vastly increased the accuracy compared to training without 

augmentation (NoAug, 𝐴𝐷𝐷5 = 29.2%). In all other experiments, we therefore use the BgBlend 

background augmentation. 

 

 

Table 22. Comparison between ADD pass rates for different augmentation methods. 

 

3.5.2.2 Examination of environmental factors  

 

To be transferable, the 6D pose estimation algorithm should be invariant to the subject that 

manipulates the tool. We examine the generalization of the DOPE estimator across 4 different 

subjects (S1-S4) using the Train dataset for training and the Test dataset for testing. We used 

three different test setups. In the “All subjects” setup we train one model on all 4 subjects (i.e., 

S1-S4) and test it on each subject separately (i.e., S1, S2, S3, and S4). In the “Different subjects” 

setup we train one model for each combination of 3 subjects (e.g., S1-S3) and test it on the 

remaining subject (i.e., S4, in this example). Finally, in the “Same subject” setup we train one 

model for each subject (e.g., S1) and test it on the same subject (i.e., S1, in this example). In 

Table 23 we average the model accuracy for each setup across all test subjects (i.e.,S1, S2, S3, 

and S4). Table 23 shows that the “All subjects” setup (𝐴𝐷𝐷5 = 58.8%) outperformed the 

“Different subject” setup (𝐴𝐷𝐷5 = 52.0%), which in turn clearly outperformed the “Same 

subject” scenario (𝐴𝐷𝐷5 = 31.1%). Additionally, using the 𝐴𝐷𝐷𝑡
𝑟𝑎𝑡𝑖𝑜 metric that is defined as 

a ratio of model trained with augmentation and without augmentation, we can observe that the 

augmentation improves performance more for “Different subject” (𝐴𝐷𝐷5
𝑟𝑎𝑡𝑖𝑜 = 2.3) scenario 

than for “All subjects” (𝐴𝐷𝐷5
𝑟𝑎𝑡𝑖𝑜 = 2.0) and “Same subject” (𝐴𝐷𝐷5

𝑟𝑎𝑡𝑖𝑜 = 1.7) scenarios. 

 

ADD threshold 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

gluegun 1,1 17,0 36,3 1,1 18,9 41,7 6,7 36,5 53,4 5,6 45,4 72,2 9,9 57,8 79,8

grout float 5,3 45,4 80,3 3,3 43,6 86,1 7,7 60,4 84,2 9,6 71,8 95,8 9,7 73,9 97,7

roller 3,4 25,3 56,6 3,8 26,3 52,9 2,9 39,8 85,5 6,3 52,2 85,6 4,3 48,6 84,9

average 3,3 29,2 57,8 2,7 29,6 60,2 5,8 45,6 74,4 7,2 56,5 84,5 8,0 60,1 87,5

BgBlendNoAug BgNoise BgRandom BgAlternate
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Table 23. Generalization across demonstrators (subjects). 

 

 In the next set of experiments we study robustness of the 6D pose estimator to change of 

the camera viewpoint between training and testing (inference) stage. Our setup contains one 

front camera (C1) and one right-hand side camera (C2). We trained models using either C1 or 

C2 or both cameras in the Train dataset and evaluated their performance separately for C1 and 

C2 in the Test dataset. Table 24 compares results for three scenarios. In the “Same” scenario 

we train and test on the same camera. In the “Other” scenario we train on one camera and test 

on the other camera. In the “Both” scenario we train on both cameras simultaneously. For all 

three tools, the accuracy of using different camera viewpoints during training and testing was 

very low; on average, the results were better for the transfer from C1 to C2 (𝐴𝐷𝐷2 = 0.0%, 

𝐴𝐷𝐷5  = 12.1%, 𝐴𝐷𝐷10  = 11.2%) than for the transfer from C2 to C1 (𝐴𝐷𝐷2  = 0%, 𝐴𝐷𝐷5  = 

0.1%, 𝐴𝐷𝐷10  = 1.0%). The accuracy was significantly higher when the camera used for testing 

was included in the training. Whereas the best results for evaluation on C1 were achieved by 

models trained on both C1 and C2 (Both scenario), for evaluation on C2 the best results were 

achieved by models trained only on C2 (Same scenario). 

 

 

Table 24. Generalization across camera viewpoints. 

 

ADD threshold 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

gluegun 10,1 57,2 80,1 6,2 52,6 78,2 3,4 32,8 69,4

grout float 9,5 77,2 97,5 6,0 64,1 95,3 1,8 38,8 81,6

roller 3,9 41,8 78,1 4,4 39,1 77,3 0,7 21,8 53,8

average 7,9 58,8 85,2 5,6 52,0 83,6 2,0 31,1 68,3

NoAug 3,1 28,9 57,7 1,9 22,3 52,3 1,2 18,7 51,6

All subjects Different subject Same subject

ADD threshold Training camera 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

Same 8,7 61,6 84,6 5,8 53,3 82,6

Other 0,0 0,2 1,8 0,1 2,2 12,0

Both 13,7 63,6 83,4 6,3 50,6 75,0

Same 2,4 50,7 90,1 6,7 66,0 96,2

Other 0,0 0,0 0,1 0,0 1,2 21,5

Both 13,2 78,1 97,8 6,7 77,3 97,3

Same 5,9 56,7 80,9 0,4 37,2 89,0

Other 0,0 0,1 1,2 0,0 0,0 0,0

Both 8,2 66,3 85,8 0,0 19,1 72,8

Same 5,7 56,3 85,2 4,3 52,2 89,3

Other 0,0 0,1 1,0 0,0 1,1 11,2

Both 11,7 69,3 89,0 4,4 49,0 81,7

Same 1,7 28,7 66,0 3,2 41,8 74,3

Other 0,0 0,0 0,6 0,0 0,8 8,0

Both 3,0 23,5 54,3 3,5 34,8 61,1

roller

average

NoAug

Test C1 Test C2

gluegun

grout float
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In imitation learning setting where the subject holds the object in their hand while 

demonstrating certain task, the object of interest can be held in different hand during the training 

and testing phases. Therefore we devised an experiment that explores generalization of the 6D 

pose to holding the tool in the left (LH) or right (RH) hand. We trained models on the Train 

dataset using either LH or RH or both and evaluated them on the Test set separately for LH and 

RH. Three different scenarios are compared in Table 25. In the “Same” scenario we train and 

test on the same hand. In the “Opposite” scenario we train on one hand and test on the other. In 

the “Both” scenario we train on both hands. While training and testing on the same hand 

(“Same” scenario, 𝐴𝐷𝐷5 = 48.7%) is clearly better than the opposite hand (Opposite scenario, 

𝐴𝐷𝐷5 = 24.0%), using both LH and RH for training further improved the accuracy (Both 

scenario, ADD5 = 58.8%). The data augmentation was more beneficial for training on both 

hands (Both scenario, 𝐴𝐷𝐷5
𝑟𝑎𝑡𝑖𝑜 = 2.1) than for training only on the same (Same, 𝐴𝐷𝐷5

𝑟𝑎𝑡𝑖𝑜 = 

1.7) or opposite hand (Opposite scenario, 𝐴𝐷𝐷5
𝑟𝑎𝑡𝑖𝑜 = 1.5). 

 

 

Table 25. Generalization across left and right hand of the demonstrator. 

 

In Table 26 we show generalization of the 6D pose estimator to clutter in the test data. We 

compare evaluation for the glue gun task frame with only the gluing frame on the table 

(NoClutter, default) and with a clutter of other objects around the frame (Clutter). In both the 

“clutter” and “no clutter” scenarios the final accuracy using the augmentation is comparable. 

We have found that our augmentation technique (BgBlend) was significantly more beneficial 

in the “Clutter” scenario compared to “NoClutter” scenario as seen by comparing the ADD 

ratios for these two scenarios. The 𝐴𝐷𝐷2
𝑟𝑎𝑡𝑖𝑜, 𝐴𝐷𝐷5

𝑟𝑎𝑡𝑖𝑜, and 𝐴𝐷𝐷10
𝑟𝑎𝑡𝑖𝑜 improvement ratios 

ADD threshold Training hand 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

Same 5,6 60,9 77,6 1,8 25,6 56,9

Opposite 0,7 8,6 25,0 1,1 22,8 54,8

Both 8,3 60,8 87,0 8,2 51,4 74,9

Same 3,2 60,7 95,3 3,4 57,1 93,7

Opposite 1,2 31,1 74,5 2,3 53,4 81,2

Both 7,9 70,8 97,8 11,0 83,8 98,3

Same 5,9 49,9 83,0 1,6 37,9 73,4

Opposite 0,8 23,3 45,1 0,3 4,9 22,7

Both 9,4 49,9 89,3 4,9 35,7 75,4

Same 4,9 57,2 85,3 2,3 40,2 74,6

Opposite 0,9 21,0 48,2 1,2 27,0 52,9

Both 8,5 60,5 91,4 8,0 57,0 82,8

Same 1,9 29,4 57,1 1,5 22,5 51,9

Opposite 0,9 13,7 35,0 0,8 18,4 47,6

Both 4,0 31,3 58,4 2,0 25,6 52,6

gluegun

grout float

roller

average

NoAug

Test LH Test RH
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were, respectively, 5.2, 2.7, and 1.9 for “NoClutter” scenario, compared with 33.2, 12.5, and 

4.2 for “Clutter” scenario.  

 

 

Table 26. Generalization across different levels of background clutter. 

 

Table 27 shows ADD pass rates as well as rotation and translation errors for individual 

tasks. While the 6D pose estimator performed comparably on different tasks of the same tool, 

the best results were achieved mostly for the grout float. Overall, the average rotation and 

translation errors were 𝐸𝑟𝑜𝑡 = 6.5 degrees and 𝐸𝑡𝑟𝑎 = 3.4 cm, respectively. 

 

 

Table 27. Generalization across tasks. 

 

In Figure 36 we present example qualitative results of the DOPE 6D pose estimator trained 

on Train dataset using the default data augmentation (i.e., segmentation by MaskFBA, 

background randomization BgBlend, and random crop and flip) and tested on Test set. The 

predicted bounding box is visualized in red while the ground truth bounding box, acquired 

through the camera-to-tracker and tracker-to-tool calibration is visualized in green. 

 

 

 

ADD threshold 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

gluegun (frame) 8,6 61,8 90,1 11,0 61,5 83,7

NoAug 1,7 22,8 47,7 0,3 4,9 19,8

ClutterNoClutter

tool task 2 cm 5 cm 10 cm E-rot (deg) E-tra (cm)

frame 8 53,3 77,1 11,8 5

densewave 10,6 61,9 88,6 5 3,6

sparsewave 8,3 66 91 5 3,4

round 9,2 74,4 98,7 3,9 2,7

sweep 9,3 82,7 98,1 4,3 2,2

roller press 4,3 50,5 86,3 8,7 3,7

gluegun

grout float

ADD threshold
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Figure 36. Qualitative results on Test dataset. Ground truth bounding box bounding box is depicted in green, 

prediction in red. From left to right: glue gun, grout float, roller. 

 

 

3.5.2.3 Results summary   

 

In this work we have provided a dataset designed for the purposes of training a 6D object pose 

estimator in the imitation learning setting. We have identified multiple factors that can change 

between the training phase and testing phase of a 6D pose estimator, including the appearance 

of the demonstrator, the handedness of the demonstrator, the appearance of the background, the 

camera angle, the amount of the background clutter and the type of task performed. If any of 

these factors change between the testing phase and the training phase, this can adversely affect 

the performance of the 6D object pose estimator. Therefore, our dataset is composed of subsets 

that reflect these different factors. This enables us to quantify the impact of various factors on 

the 6D performance which we tested using state-of-the-art 6D object pose estimator called 

DOPE. We have also tried to increase the invariance of the 6D object pose estimator to changes 

in various environmental factors using multiple input augmentation methods, including a novel 

augmentation method (BgBlend) that works by blending the original background with a random 

image while keeping the original background for a portion (in our case 25%) of the training set. 

 Based on the quantitative results we can conclude that BgBlend augmentation method is 

superior to other augmentation methods that we tested including augmentation with random 

noise (BgNoise), full background replacement (BgRandom) and partial background 

replacement (BgAlternate).  We hypothesize that the reason why BgBlend works better than 

full or partial background replacement is that when we fully replace the background we remove 

environmental clues, such as position of the arm or the subtle shadow of the object, which the 
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6D estimator might use to determine the object pose. Using image background blending instead 

of background replacement preserves these environmental clues and at the same time changes 

the appearance of the background enough to increase the invariance of the 6D pose estimator 

to changes in various environmental factors. We have left future quantitative analysis of which 

environmental clues contribute to the performance of 6D object pose estimator to future work. 

Our results demonstrate that BgBlend data augmentation increases the ability of the 6D pose 

estimator to generalize to a new subject, opposite hand or a cluttered environment. Biggest 

improvement was achieved in the cluttered environment case in which various distractor objects 

are inserted in the test scene. This suggest that our data augmentation method is particularly 

suited for situations where the working environment of the demonstrator changes between the 

training and testing phase.  The benefit of a data augmentation is limited when the angle 

between training and test camera is large (as in the case of a front and a side camera), because 

a 2D augmentation does not compensate for a lack of test set tool 3D orientations in the training 

set. The performance on different manipulation tasks with the same tool is comparable provided 

that the training data covers the range of tool orientations in the tasks reasonably well. 

 We have also found that the amount of occlusion of the tool by the manipulating hand in 

the training data influences the quality of the 6D pose estimation. The experiments using the 

opposite hand or a different camera angle imply that a front camera (C1) is better suited for 

recognition of the tools 6D pose than a side camera (C2), probably due to less occlusion of the 

tool by the hand. These results also imply that the tool is held in the right hand, the side camera 

should be placed on the left-hand side, and vice versa, to minimize the occlusion. 
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Conclusion 

 

In this thesis we explored various approaches for improving label efficiency of neural networks. 

We presented contributions to several approaches including, few-shot image classification, 

few-shot semantic image segmentation, transfer learning and semi-supervised learning in 

pedestrian attribute recognition domain and augmentation techniques for 6DOF object pose 

estimation.  

In Chapter 1 we examined basic theory of artificial neural networks and basic types of 

neural network models and their applications.  In Chapter 2 we introduced various approaches 

for improving label efficiency of neural networks, including transfer learning, data 

augmentation, few-shot learning and semi-supervised learning. We also introduced concept of 

label efficiency as a result of training a sequential model on large scale unlabeled datasets. In 

Chapter 3 we present our algorithmic and experimental contributions.  

In subchapter 3.1 we proposed a Categorical Siamese Networks model as an extension of 

Siamese Networks which directly outputs the categorical decision and utilizes it during training. 

Although simpler in terms of an architecture and the number of model parameters compared to 

other state-of-the-art models, our model reaches comparable to these models.  

In subchapter 3.2 we proposed the Seg-REPTILE algorithm that adapts the REPTILE few-

shot learning algorithm to a problem of semantic image segmentation. We compared the 

performance of this algorithm to at the time only comparable few-shot semantic segmentation 

algorithm. In certain subsets of the test data Seg-REPTILE surpassed the performance of 

comparable algorithm and overall, we achieved comparable performance to the state-of-the-art 

algorithm.  

In subchapter 3.3 we explored the deep transfer learning paradigm in the task of pedestrian 

attribute recognition. We have created a re-annotated DukeMTMC-attribute dataset that 

removes ambiguous and incorrect data from the original dataset that could lead to lower 

classifier performance. We used transfer learning approach to train three image classification 

architectures pretrained on the ImageNet dataset, namely the VGG, the ResNet and the 

DenseNet to perform our binary classification task. We compared the performance of two 

different transfer learning approaches, the fixed feature extractor approach and the model 

finetuning. We have found the model finetuning to be far superior to the fixed feature extractor 

approach. DenseNet161 architecture reached the best performance in both tested setups, namely 

about 80% BACC using the fixed feature extractor approach and about 92% BACC using the 
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model finetuning approach. In conclusion, we found that transfer learning is a good approach 

to tackle the lack of quality and quantity of data in the attribute recognition task in the domain 

of video surveillance.  

We continued the exploration of improving the label efficiency in a pedestrian attribute 

recognition domain in subchapter 3.4, where we explored the application of semi-supervised 

learning paradigm in this domain. We proposed a semi-supervised model called Binary Mean 

Teacher for the task of detecting the presence of wearable objects in surveillance data. We also 

explored the influence of various combinations of input data augmentation techniques on 

performance of both supervised baselines and our semi-supervised learning model. We show 

that the lack of labelled training data can be compensated by both data augmentations in case 

of simple supervised learning as well as with use of the semi-supervised learning paradigm. In 

tests using 1000 labeled training images, randomly initialized Binary Mean Teacher model 

achieved much higher classification accuracy compared to randomly initialized baseline 

without any image augmentations which demonstrates the superiority of our approach 

compared to baseline in this setting. The difference between Binary Mean Teacher and the 

baseline was much lower when both models were pretrained using the ImageNet dataset. This 

demonstrates both the strength of traditional fine-tuning in our task and the need for much 

higher number of unlabeled examples for the Binary Mean Teacher model to fully show its 

performance advantage. 

 Finally in subchapter 3.5 we addressed the problem of 6D object pose estimation of hand 

tools manipulated by human demonstrators in an industrial environment from RGB image data. 

To investigate this problem, we have collected a challenging real-world benchmark video 

dataset, called the Imitrob dataset, of four human demonstrators performing six manipulation 

tasks with three different tools recorded from two camera viewpoints (front and side). Using 

state-of-the-art object pose estimation algorithm we examined various factors that can change 

between the training phase and testing phase of a 6D pose estimator that can affect the 

generalization of the 6D estimator to unseen environmental factors. We experimentally tested 

the impact of various factors on 6D estimator performance. We evaluated multiple 

augmentation techniques to see to what degree these augmentation techniques can increase the 

invariance of the 6D estimator to changes in various environmental factors. We experimentally 

showed that using augmentation based on blending the original background with random 

background sampled from dataset of real-world images is superior to full background 

replacement and random noise augmentation. We also determined which factors can 

augmentation techniques be applied to effectively. We conclude that augmentation techniques 
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can compensate very well to changes in the presence of background clutter or to a person that 

manipulates the object but cannot compensate for large change in the camera angle. 
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