
COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS PHYSICS AND INFORMATICS

Testing the hierarchical neural network DBN in
invariant object recognition

Master's thesis

2012 Bc. Milan Halabuk

1

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS PHYSICS AND INFORMATICS

DEPARTMENT OF APPLIED INFORMATICS

Testing the hierarchical neural network DBN in
invariant object recognition

(Master's thesis)

BC. MILAN HALABUK

Study program: Cognitive Science

Study division: 2503 Cognitive Science

Supervisor: doc. Ing. Igor Farkaš, PhD.

Evidence number: b7af6c19-1030-41ee-93a3-13ced6a8e9ac

Bratislava, 2012

2

3

4

DECLARATION

I declare that this thesis was composed by myself, that the work contained here is my own

except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

Bratislava .
Milan Halabuk

5

ACKNOWLEDGEMENTS

Thanks to my friends and parents, for their support, encouragement and help. I also want to

thank to my supervisor Igor Farkaš for guidance and support. It has been a pleasure to

work with such knowledgeable supervisors.

6

Abstract

Purpose of this work is to test ability of Deep belief network in object classification

problems. This model is deep network with two phase training. The first one is

unsupervised pre-training based on stack of Restricted boltzman machines. The second one

is fine-tuning which uses back-propagation of error derivates. In this work are used two

main datasets for experiments. The first dataset is composed of 11 leaves classes. This

dataset includes rotational, color, size and noise variability. The second dataset is

composed of normal and abnormal faces. The goal was to find out relationship among

different network topologies, dataset parameters and final testing error. I found out that

unsupervised pre-training, which is used for weight initialization helps to achieve better

classification performance than random weight initialization. Significance of this help

depends on type of dataset. In faces dataset this help is bigger (6.8%) than in leaves dataset

(1.1%). I also confirm that a higher number of neurons and hidden layers increased

classification performance.

Key words

Deep belief networks, object recognition, leaves dataset generator

7

Abstrakt

Cieľom tejto práce bolo otestovať schopnosti Deeb belief network pri úlohach z

klasifikácie objektov. Model Deep belief network pozostáva z dvojfázového tréningu.

Prvou fázou je trénovanie bez učiteľa, ktoré je založené na postupnom trénovaní a

následnom spájaní boltzmanových strojov. Druhá fáza pozostáva z dolaďovania výkonu

pomocou metódy spatného šírenia chyby. V tejto práci sú experimenty vykonávané na

dvoch rôznych datasetoch. Prvý pozostáva z 11 tried listov. Tento dataset obsahuje listy,

ktoré majú variabilnú rotáciu, veľkosť, jas a úroveň šumu. Druhý dataset je zložený z

obrázkov normálnych a potencionálne nebezpečných tvárí. Cieľom bolo nájsť vzťahy

medzi topológiou siete, parametrami datasetu a finálnou testovacou chybou. Ukázalo sa, že

predtrénovanie, ktoré sa použiva na inicializáciu váh pomáha dosiahnuť celkovo lepšie

výsledky. Avšak veľkosť tejto pomoci výrazne závisí od zvoleného datasetu. Pri

klasifikácii tvári bol prínos pretrénovania 6.8%. V prípade listov to bolo 1.1%. Taktiež sa

potvrdilo, že vyšší počet neurónov a skrytých vrstiev má priaznivý vplyv na celkovú

úspešnosť klasifikácie.

Kľúčové slová

Deep belief networks, rozpoznávanie objektov, generátor listového datasetu

8

Table of Contents

1. Introduction.. 12

1.1 Connectionism and neural networks..12

1.2 Symbolic and sub-symbolic representation... 13

2. Basic properties of neural system ... 14

2.1 Model of artificial neuron..15

2.1.1 Artificial neuron types..16

2.1.2 Types of activation function...16

2.2 Artificial neural network (ANN)... 17

2.2.1 Main properties of typical ANN:... 17

2.2.2 Learning of ANN... 18

2.2.3 Multilayer perceptron..19

2.3 Introduction to deep architectures .. 21

2.4 Stochastic models.. 21

2.4.1 Model of stochastic neuron..21

2.4.2 Restricted Boltzmann Machines.. 22

2.5 Deep Belief Network (DBN)... 28

2.5.1 Unsupervised pre-training..28

2.5.2 Fine-tuning (supervised training) ..28

2.5.3 Advantages of unsupervised pre-training...29

2.5.4 Application of DBN... 30

3 Experimental part... 32

3.1 Motivation and goals... 32

3.2 Creation of leaves dataset.. 33

3.2.1 Leaves gathering.. 33

3.2.2 Photo method... 34

3.2.3 Leaves database example ..34

3.2.4 Texture creation..35

3.2.6 Implementation of dataset generator..37

9

3.2.7 Functionality of dataset generator..37

3.3 Faces dataset ... 40

3.4 DBN implementation...41

3.5 Experiments on leaves dataset with DBN... 41

3.5.1 Experiment 1..42

3.5.2 Experiment 2..46

3.5.3 Experiment 3..50

3.5.4 Experiment 4..54

3.5.5 Experiment 5..58

3.6 Investigation of how unsupervised pre-training influence performance...................59

3.6.1 Evaluation of results.. 60

3.7 Experiment on faces dataset.. 61

3.7.1 Description of experiment..61

3.7.2 Evaluation of results.. 62

4. DISCUSSION..63

5. CONCLUSION...64

REFERENCES... 65

APPENDIX... 68

10

List of Figures

Figure 1: Visualization of Formula 1..15
Figure 2: Step activation function.. 16
Figure 3: Sigmoidal activation function...17
Figure 4: Example of interconnected neurons in multilayer neural network (2 input units, 3
hidden units, 1 output unit)...18
Figure 5: Activation of probabilistic neuron. (X axle represents sum of all inputs, Y
represents probability of firing)..22
Figure 6: Illustration of bidirectional connection between hidden (h) and visible (v) units in
Restricted Boltzman machine...23
Figure 7: RBM (hidden and visible layers and connection between them)[4].....................24
Figure 8: Stack of RBMs [14].. 27
Figure 9: A sight represent Levice, Slovakia (GPS coordinates: 48.214526,18.606523)
[google maps] .. 34
Figure 10: Raw image.. 36
Figure 11: Covered to black and white + colors are normalizes.. 36
Figure 12: Inverted color and increased contrast... 36
Figure 13: Resized to 64x64 pixels.. 36
Figure 14: Screenshot of Dataset Generator application interface:
http://dbn.meshmatrix.com/..38
Figure 15: Screenshot of bottom part of application, which shows generated output in
visual form..39
Figure 16: Screenshot of bottom part of application, which shows generated output in
textual form.. 39
Figure 17: Example of normal face class from Faces dataset [18]......................................40
Figure 18: Example of abnormal face class from Faces dataset [18]...................................41
Figure 19: Example of Dataset 1 (For whole picture please see attachment)......................43
Figure 20: Example of Dataset 2 (For whole picture please see attachment)......................47
Figure 21: Example of Dataset 3 (For whole picture please see attachment)......................51
Figure 22: Example of Dataset 4 (For whole picture please see attachment)......................55
Figure 23: Example of feature detectors which are formed for hidden neurons..................60
Figure 24: Performance comparison between Unsupervised pre-training and random
initialization..62

11

List of Tables

Table 1: Example of raw leaves pictures..35
Table 2: Creation of final texture... 36
Table 3: Results of experiment 1.. 43
Table 4: Influence of number of pre-training epoch on final test error (Experiment 1).......44
Table 5: Influence of the number of neurons on final error (Experiment 1).......................44
Table 6: Influence of learning rate on final error (Experiment 1).. 44
Table 7: Results of experiment 2.. 47
Table 8: Influence of number of pre-training epoch on final test error (Experiment 2).......48
Table 9: Influence of the number of neurons on final error (Experiment 2).......................48
Table 10: Influence of learning rate on final error (Experiment 2)...................................... 48
Table 11: Results of experiment 3.. 51
Table 12: Influence of number of pre-training epoch on final test error (Experiment 3).....52
Table 13: Influence of the number of neurons on final error (Experiment 3).....................52
Table 14: Influence of learning rate on final test error (Experiment 3)................................52
Table 15: Results of experiment 4.. 55
Table 16: Influence of number of pre-training epoch on final test error (Experiment 4).....56
Table 17: Influence of the number of neurons on final error (Experiment 4).....................56
Table 18: Influence of learning rate on final error (Experiment 4)...................................... 56
Table 19: Results of experiment 5.. 59
Table 20: Results with unsupervised pre-training.. 59
Table 21: Results without unsupervised pre-training... 60

12

1. Introduction
The main target of this work is an object recognition. I choose two dataset to test real

classification performance. The first one is leaves dataset, because it poses a nice real

world example and it could exhibit typical problems of classification. Input data are highly

variable and noisy. This variability includes class (different kinds of leaves) and intra class

variability (different leave units from the same class). It also includes variability in size,

color and rotation. Leaves datasets are created by my own data-generator, which is

described below. The second dataset contains pictures of faces (there are two groups of

faces – normal and abnormal). The goals of this project are to find appropriate features to

learn, find an appropriate dataset parameters (like size and variability), find out learning

parameters for classifier (to achieve sufficient results) and compare it to another method.

As a classifier is used Deep Belief Network (DBN) because of good results in image

classification [1, 17, 19, 21].

This document describes my work on project in two main steps. At the beginning

there is theoretical part with explanation of fundaments. In the second part there are

presented achieved results (Source codes and datasets are in attachments).

1.1 Connectionism and neural networks
Neural networks (artificial and non-artificial) are important part of recent cognitive science

and are related to connectionist theory. They are very important part of computer based

artificial intelligence. Neural network is universal mathematical approach in study and

modeling of learning process, adaptation process and artificial cognitive systems. Whole

concept of interconnected simple units is based on metaphor of human brain. They are

biologically motivated mechanisms of knowledge acvisition and learning (applicable on

different levels of abstraction) [23, 24]. Many of connectionists think that brain executes

computations and that neural computing explain human cognition [24, 25]. In general, we

suppose that we can use neural networks to explain mental processes. Connectionism in

artificial intelligence and cognitive science is consider like a process of parallel

information processing. Artificial neural networks have important role in cognitive science,

linguistic [14], neuroscience [26], controlling of different processes of natural and social

13

science. In these wide spectrum of possible applications neural networks are not used only

for modeling learning and adaptation process. They are also used for solving wide

spectrum of different tasks and problems like object classification [17, 21], speech

recognition [14], financial forecasting [27] and navigation [19]. But one of the main

purpose of studying neural networks is their relation to human brain. In cognitive science

and neuroscience neural networks are part of basic theoretical methods that model activity

of our brain. In these two scientific disciplines are created basic connectionistic principles

and is shown plausibility of neural networks for modeling different kinds of activities and

aspects of human brain. One of the main purpose of studying artificial neural networks is

finding relation between implemented mechanisms (interaction between neurons) and

cognitive phenomena [26]. Connectionism represents important knowledge base which is

able to interpret and explain different cognitive activities of human brain. This

connectionistic representation of human brain is plausible with our knowledge about brain

structure and it is supported by information about brain physiology.

1.2 Symbolic and sub-symbolic representation
In this part is explained difference between symbolic and sub-symbolic approach in

studying of cognitive processes. In symbolic approach the central idea is a concept of

symbol. The symbols are transformed to another symbols by using concrete hierarchical set

of rules. Symbolic point of view is often consider like algorithmic. Many experts consider

this approach as method with right level of abstraction (mostly in context of higher

cognitive processes like reasoning, planing and usage of language). The main advantage is

usage of mathematical language and therefore it is easy to read for human. Sub-symbolic

approach is based on connectionism. The main concept is based on idea, that these

processes, which occurs in neural network, include many of interconnected neurons.

Neurons are elementary processing units and weighted connections between them

represent long term memory. One of drawbacks of neural networks as non linear

transformation system is that operations inside are not transparent and they resemble black

box. Parameters of network – weights are not explicitly set. It is practically impossible. So

it is necessary to provide suitable learning mechanism, which can network use for

adjusting weights. Learning process is similar to human learning – it is based on examples.

14

During learning process weights are changed in appropriate way. Result of this process is

requested behavior of neural network. In the connectionistic approach an information is

represented by individual neurons, which are interconnected and form the network. The

important aspect in representation of information is recent impulse, which is spread

thought neural network. This impulse is essential in decision process (to discover active

neurons). Spreading of this impulse is realized be simple calculations which are provided

by each neuron.

2. Basic properties of neural system
A neuron cell is the basic building block of the nervous system (NS). The main difference

between neuron and normal cell is that neurons are specializes to transmit information

inside the body. Neurons are highly specialized cells and are responsible for processing of

input information and communicating (sending) output information to next neuron or to

specific organ (e.g. Muscle). Communication between neurons is based on electrochemical

interaction. For purpose of this work and further explanation of artificial neural networks

are important these key properties of typical neuron:

• receiving signals from other connected neurons

• processing of received signal

• sending processed signal in form of action potential to another interconnected

neurons

2.1 Model of artificial neuron
Artificial neuron is a mathematical model, which is based on abstraction of biological

neuron. Typically it is simplified simulation of biological neuron. There are many different

models of neurons. These models differs in complexity. From simple models, which use

simple discrete activation functions to models which are trying to model complex

processes inside biological neural cell. One of the most common models of neuron is the

model introduced by McCulloch and Pitts.

15

Y =Net (∑
i=1

N

(wi x i)+wb) (2.1)

Figure 1: Visualization of Formula 1

In Figure 1 is presented how output of neuron is calculated. The whole process is

mathematically described in Formula 2.1. xi represents input of neuron (typical neuron

has many inputs). wi represents weights, which are like memory of neuron. In this

memory is usually saved last experience of concrete neuron (it is like sensitivity for exact

connection between two neural units). Higher weight also mean that this input is more

important than input with lower weight. These weights influence each input vector so they

actually influence all neural network. Special kind of weight is wb . It is bias of each

neuron. In biological neuron is bias also called threshold (for activation of neuron). That

means if sum of all inputs (without bias) is less that threshold than the neuron stays

inactive (passive state). Net (x) is activation function of neuron and this function

computes output of whole neuron. Result of whole process is typically send to another

neuron for further processing and it is called Y .

2.1.1 Artificial neuron types

Based on type of output data we can divide neurons into 2 groups – discrete and

continuos. Discrete usually support 2 types of output value. Typical discrete neuron is

binary neuron (output values 0 and 1 or -1 and 1). Discrete activation function and

visualization of this function is shown in Formula 2.2 and Figure 2. Continuos neurons

have real number as an output. Standard continuos neuron uses sigmoid activation function

(Formula 2.3, Figure 3).

16

2.1.2 Types of activation function

Figure 2: Step activation function

u=∑
i=1

n

wi xi y={1 if u≥θ
0 if u<θ } (2.2)

Formula 2.2 represents step activation function. For input greater than threshold θ returns

1. For input smaller than threshold returns 0.

Figure 3: Sigmoidal activation function

f (x)= 1

1+e−kx (2.3)

Formula 2.3 represents sigmoidal activation function. For x close to infinity it returns 1.

For x close to negative infinity it returns 0. When x = 0 then output is 0.5.

17

2.2 Artificial neural network (ANN)
Typically ANN is an adaptive system that is changing own structure based on information

that is going thought the network during learning process. Artificial neural networks are

tools for modeling non-linear statistical data. Usually are used for modeling complex

relationships between input and output data vectors (finding patterns in data).

The word network referees to interconnection between neurons in different layers.

Example of system with 3 layers is shown in Figure 4. This example has 3 layers of

neurons. In the first layer are input neurons. These neurons represent input vector. Input

neurons send data to second layer which is usually called hidden layer. At the end the

signal from hidden layer is send to final or output layer. As is mentioned in section 2.1. the

connections are weighted. The number of neurons may vary a lot. More complex systems

have more layers of neurons.

2.2.1 Main properties of typical ANN:

• Interconnection pattern (it defines which neurons are interconnected)

• Type of learning procedure (defines the type of learning process that is used for

updating the weights)

• Type of activation function (defines the basic behavior of neuron)

Figure 4: Example of interconnected neurons in multilayer neural network (2
input units, 3 hidden units, 1 output unit)

18

2.2.2 Learning of ANN

The main goal in learning process is to set up neural network in a way that will produce

correct output (result). In biological networks is the experience of concrete neuron saved in

dendrites. In ANN the previous experiences are saved in connection between neurons – in

the weights. There are two main groups of learning methods (methods for changing

weights).

First is supervised learning. In this type of learning the exact output value for each

input vector is known. When real network output is different than expected – the weights

are changed. Purpose of this change is to lower the difference between real and expected

output. For each type of learning exists error function (it computes current error), that is

minimized during process of learning (for detailed explanation of supervised learning and

error function please refer to section 2.3.3.2). This process of changing weights is repeated

until the error function result is not sufficient.

Another type of changing weights is unsupervised learning. During this process the

network has not access to correct output results. ANN has to find out which input vector is

connected to concrete output values. Typically these networks have to model similarities of

training data and merge similar inputs into groups.

2.2.3 Multilayer perceptron

Typical example of artificial neural network is a multilayer perceptron (MLP). It is

feedforward network. It means that signal is spread only in one direction. The signal flow

is from input neurons to output neurons. MLP consists of multiple layers of neurons and

each layer is fully connected to the next one. Fully connected means that for each neurons

in first layer exist exact the same number of connections as a number of neurons in second

layer (example in Figure 4). Each neuron uses nonlinear activation function (typical

sigmoidal function). MLP uses supervised learning method called back-propagation.

Back-propagation training method

In the next chapter is described principle of the back-propagation learning rule. This

learning algorithm is the essence of fine-tuning – training phase of deep belief network,

19

which is used in my experiments. The back-propagation algorithm consists of two main

parts – forward pass and backward pass.

Forward pass – computes output of the network. It means that for one input vector the

output of the each neuron in each layer is computed. This process is done one layer after

another, starting from the lowest layer which uses the data vector as input. At the end the

output of the network is then compared to the expected output vector. The final error can

be represented as function of difference between desire output and real output (for more

details see Formula 2.4).

E=∑
i=1

n
1
2
(ti−oi)

2 (2.4)

Formula 2.4 represents mean square error of overall network (n is number of output

neurons, t is desire output, o is current output of the network).

Backward pass – Derivatives of final error are propagated backwards through the weights.

It means that error is computed for each neuron separately based on weights and error of

previous neuron. In Formula 2.5 is shown how to compute error for neurons in final layer.

Than error is propagated backwards through net and individual errors for all hidden

neurons are computed. Computation of error for neurons in hidden layer is shown in

Formula 2.6.

δk=ok (1−ok)(t k−ok) (2.5)

Formula 2.5 represents error on output neuron (k is number of current neuron, δ is error, o

is current output, t is desire output)

δh=oh(1−oh) ∑
k ∈Downstream(h)

wkhδk (2.6)

20

Formula 2.6 is error on hidden neuron (w is the weight matrix, δ is error, h is number of

current neuron, k is number of neuron from previous layer, δ is error, o is current output)

After computing all errors the weights can be changed.

Δ w ji=ηδ j x ji (2.7)

Formula 2.7 represents final change of weight between neurons i and j. It is end of one

learning cycle. This act of change is actually the essence of learning procedure. The whole

process continue until the overall net error (Formula 2.4) is on sufficient level or is not

another stoping criterion called.

2.3 Introduction to deep architectures
Important feature of ANN is possibility to add multiple hidden layers. In many case it is

sufficient to use only one hidden layer, but the same function can be represented in a much

more compact way with a deeper net [30]. In the deep networks neurons form progressive

and more complicated feature detectors. It has been proven that its better to do the

classification with such deeper net [31]. “It would be worthwhile to explore learning

algorithms for deep architectures, which might be able to represent some functions

otherwise not efficiently representable. Where simpler and shallower architectures fail to

efficiently represent (and hence to learn) a task of interest, we can hope for learning

algorithms that could set the parameters of a deep architecture for this task.” [30]

Schmidhuber with his team claim that their Multicolumn deep neural network is in traffic

sigh recognition benchmark better than human [35]. Deep nets architecture were inspirited

by visual systems of mammals [32]. There are comparison of sparse DBN output to the V2

area of the visual cortex [13].

In next chapter is described Deep belief network (DBN) as example of stochastic

deep architecture. The main motivation for creating such networks was poor performance

of classical back propagation algorithm in nets with more layers [31]. Main problem of

21

back-propagation is initialization of weights, which cause tendency to get stuck in poor

local optimum [31]. In the recent years, the way of training deep models is improved by

using an unsupervised learning algorithm that is used by generative models called deep

belief networks (DBN) one layer at a time [2].

2.4 Stochastic models
Now we take a look on stochastic models of neural nets. Especially we will describe DBN

as a classical example of such network. First we need to describe basic concepts of

probabilistic neuron, which is base of the network. Then we will describe Restricted

Boltzmann machine (RBM) [33], which is composed of probabilistic neurons and represent

one layer of DBN.

2.4.1 Model of stochastic neuron

Probabilistic neurons typically have a state of 1 or 0. The probability of turning on is

determined by the weighted input from other neurons. Illustration of sigmoidal function in

Figure 5 represents probability of firing of neuron si .

Figure 5: Activation of probabilistic neuron. (X axle
represents sum of all inputs, Y represents probability of

firing)

22

2.4.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a form of artificial neural network. RBM is

undirected graph, which is formed by one visible and hidden layer. Inside are

symmetrically connected units that make stochastic (also called not deterministic or

probabilistic) decisions about being on or off [34]. All units are fully connected to the

units in the next layer. Difference between Boltzman machine and restricted Boltzman

machine is in absence of visible-to-visible or hidden-to-hidden connections. Illustration of

typical RBM is in Figure 6. Inventor of RBM was Smolensky (1986) [33]. RBM are base

building blocks of more complex classification system like Deep Belief Network. In the

next section are described fundaments of RBMs like sampling and training process.

Figure 6: Illustration of bidirectional connection
between hidden (h) and visible (v) units in Restricted

Boltzman machine

The goal of RBM is to generate input vectors with high probabilities. This means that we

want to learn network base features of input vectors and connect this features to input data

(image).

There are 2 main phases – data and reconstruction (Figure 7). At the beginning

signal (e.g. an image) is initialized to input vector (time t=0). Then signal is spread to

hidden layer. Neurons in Hidden layer are also called feature detectors. This spread of

signal is special form of sampling, which is explained in formula 2.8. This formula

23

represents probability of firing of j–th neuron in layer h. Base on this probabilities are

computed (sampled) output values (for more details check pseudocode below) for hidden

and visible unit in data and reconstruction phase.

P (h j=1∣v)= 1

1+exp (−∑
i=1

n

(wij vi)−b j)
(2.8)

Formula 2.8 is probability of firing for j–th neuron in hidden layer (n – number of inputs

neurons, v – array of visible neurons, b – bias of hidden neuron, w – weight matrix).

After data phase there is second phase (time t=1), which is called reconstruction or

phantasy. Signal is spread back to visible units and than goes back to hidden (Figure 7).

Well trained RBM generates same data in both phases. Data and Reconstruction are

important for changing of weights in learning process. Let see how it works.

Learning of RBM

The key element in learning process of a RBM is changing the weights. Result of this

change is that the model gets higher probability of generating the requested data. This

process could consist of multiple iteration of parallel updating visible and hidden neurons.

However there is a much efficient way to train RBM. Hinton [34] discovered that learning

works good only with use one step of reconstruction. He called this method contrastive

divergence. This method is described in pseudocode 1-2 and Formulas 2.9-11. Key feature

of this method is that only one reconstruction of model is needed.

24

Figure 7: RBM (hidden and visible layers and
connection between them)[4]

Δ wij=α(〈vi
0 h j

0 〉−〈vi
1 h j

1 〉) (2.9)

Formula 2.9 represents changing of weights during learning process.

Δb j=α(〈h j
0〉−〈h j

1 〉) (2.10)

Formula 2.10 represents changing of bias for hidden units.

Δ ci=α(〈 vi
0〉−〈vi

1〉) (2.11)

Formula 2.11 represents changing of bias for visible units.

In Formula 2.9 the 〈vi
0 h j

0〉 represents the number of cases when i-th visible neuron and j-

th hidden neuron fire together (for input vector v). As was mention before in contrastive

divergence algorithm, sampling is typically done only once for each input. The model is

driven by a reconstruction of the data [31, 34]. In other words the weight between visible

and hidden units is strengthened if booth units are on. If both units are on during

reconstruction phase the weights are weakened. Because of this preference of generating

data instead of reconstruction the RBM learn to generate data instead of reconstruction. If

25

the data and reconstruction are identical, the weights are not changed. Similar procedure is

applied on biases b and c, which are presented in Formula 2.10 and 2.11. Change of bias on

j-th hidden neuron is represented as difference of activation of hidden neuron j during data

and reconstruction phase. Analogically change of bias on i-th visible neuron is represented

as difference of activation of visible neuron i during both phases.

Pseudocode 1: Example of update method in RBM [30, 36]

RBMupdate(v[0], alpha, W, b, c):
for all hidden units i:
 compute Q(h[0][i] = 1 | v[0])
Formula 2.8 - sigmoid(b[i] + sum_j(W[i][j] * v[0][j]))
 sample h[0][i] from Q(h[0][i] = 1 | v[0])

for all visible units j:
 compute P(v[1][j] = 1 | h[0])
Formula 2.8 - sigmoid(c[j] + sum_i(W[i][j] * h[0][i]))
 sample v[1][j] from P(v[1][j] = 1 | h[0])

for all hidden units i:
 compute Q(h[1][i] = 1 | v[1])
Formula 2.8 - sigmoid(b[i] + \sum_j(W[i][j] * v[1][j]))
 sample h[1][i] from Q(h[1][i] = 1 | v[1])

W += alpha * (h[0] * v[0]' - h[1] * v[1]')
b += alpha * (h[0] - h[1])
c += alpha * (v[0] - v[1])

● v[0] is a sample from the training distribution for the RBM (v[x]' represent transposed
matrix)

● alpha is a learning rate for the stochastic gradient descent in Contrastive Divergence

● W is the weight matrix

● b is the RBM biases vector for hidden units

● c is the RBM biases vector for input units

Pseudocode 1 shows example of training (updating weights W and biases b, c). In the first

step are computed probabilities of firing of i-th neuron in hidden layer for input vector

v[0]. These probabilities are computed for each unit in hidden layer (Formula 2.8). Base on

this probabilities is created sample vector h[0] (one possible distribution of activations).

Analogically are computed probabilities and samples for reconstruction of visible units

v[1] and for hidden units h[1]. At the bottom of pseudocode is described change of weights

(Formula 2.9-11).

26

Stacking of RBMs

After training of one layer of RBM this procedure can be applied again with additional

layers. This is done by adding one layer on the top of the network. This method of stacking

RBMs is called layer-wise [5]. As you can see in the Figure 8, newly added layer hd

become new hidden layer and old(previous) hidden layer h1 produces inputs for it. Weights

between previous hidden and visible layers are locked. This procedure can be repeated as

many times as is needed (it depends on how many layers final network should contain). “It

can be proved that each time we add another layer of features we improve a variational

lower bound on the log probability of the training data” [29]. Adding more layers improve

probability of generating training (input) data [30]. For more detailed explanation of

stacking RBMs together refer to Pseudocode 2.

Pseudocode 2: Pre-training of DBN [30, 36]

PreTrainUnsupervisedDBN(X, alpha, L, n, W, b):

 initialize b[0]=0

 for l=1 to L:

 initialize W[i]=0, b[i]=0

 while not stopping criterion:

 sample g[0]=x from X

 for i=1 to l-1:

 sample g[i] from Q(g[i]|g[i-1])

 RBMupdate(g[l-1], alpha, W[l], b[l], b[l-1])

27

Figure 8: Stack of RBMs [14]

● X is the input (training) distribution for the network

● alpha is a learning rate for the stochastic gradient descent in Contrastive Divergence

● L is the number of layers to train

● n=(n[1], ...,n[L]) is the number of hidden units in each layer

● W[i] is the weight matrix for level i, for i from 1 to L

● b[i] is the bias vector for level i, for i from 0 to L

Pseudocode 2 illustrates the process of unsupervised pre-training of Deep Belief Network.

The main part of the pseudocode is loop. Each iteration of this loop creates and train one

layer of the network. Inside this loop is initialization of weights and biases (there is unique

weight matrix for each layer). Another important matrix is g[l] which represents sampled

outputs of network for layer l. The last part of the pseudocode is function RBMupdate

(explained in previous section) which provide weight changes for the final layer.

2.5 Deep Belief Network (DBN)
“Deep belief nets are probabilistic generative models that are composed of multiple layers

of stochastic, latent variables. The latent variables typically have binary values and are

often called hidden units or feature detectors.” [2]. DBN can be viewed as composition of

restricted type of Boltzmann machine (learning module) and is useful for representation of

high dimensional and complicate data. It is trained in a greedy layer-wise fashion

(generative model with many layers of hidden causal variables). The common way how to

use Deep Neural network for image classification is with cooperation of unsupervised

pertaining and supervised fine-tuning. The main fields of use are dimensionality reduction

and object recognition. Learning time of MLP does not scale well (problem with effective

training of multiple hidden layers). Stack of Restricted boltzman machines is used for

initialization of weights in network. This process of initialization is called pre-training.

Each layer of the network tries to model the distribution of its input, using unsupervised

training [3]. Second phase (after pre-training) is called fine-tuning. In this phase a final

layer of neuron is added (each output neuron represent one category).

28

2.5.1 Unsupervised pre-training

Each layer of the network tries to model the distribution of its input, using unsupervised

training in a Restricted Boltzmann Machine (RBM). The unsupervised greedy layer-wise

training serves as initialization, replacing the traditional random initialization of multi-

layer networks [2].

2.5.2 Fine-tuning (supervised training)

After a DBN has been initialized by pre-training (RBM), this procedure of fine-tuning will

optimize all the parameters (weights). It can be performed by adding a final layer of

variables that represent the desired outputs and back-propagating error derivatives.

“When networks with many hidden layers are applied to highly-structured input data, such

as images, back-propagation works much better if the feature detectors in the hidden

layers are initialized by learning a deep belief net that models the structure in the input

data“[2]. In other words the whole network is trained like MLP with back-propagation

learning method [4, 5].

2.5.3 Advantages of unsupervised pre-training

In the next section is investigated why does unsupervised pre-training works successfully.

“Searching the parameter space of deep architectures is a difficult task because the

training criterion is non-convex and involves many local minima. This was clearly

demonstrated in recent empirical work [9] showing consistently that with hundreds of

different random initializations, gradient descent converged each time to a different

apparent local minimum, with solutions obtained from random initialization and purely

supervised training consistently getting worse for architectures with more than 2 or 3

levels. This points to why, until recently, deep architectures have received little attention in

the machine learning literature.” [8] In the other words we can look at pre-training like on

regulation mechanism, that minimize variability and bias weight values towards such

configuration of parameter space that is better for classification tasks (higher performance

in classification).

29

Features of unsupervised pre-training:

• Better generalization ability.

Results from various range of experiments with object recognition datasets (dataset

examples size from 10000 – 50000) shows that for the same topology of network

the test error is lower when unsupervised pre-training is used [8, 9, 10, 11, 12].

• Smaller difference in test performance.

The difference in final test error between different test runs on the same dataset is

lower when unsupervised pre-training is applied. This impact is bigger when more

hidden layers are used. [8, 9]

• Scaleability of network.

The advantage of using pre-training is visible when network topology is robust

(many neurons in layer). When the network size is constrained to small size the

performance is decreased (in some cases is even worse than without pre-training)

[8, 9]

2.5.4 Application of DBN

In this section are described examples of implementations of Deep Neural Nets. This type

of networks were invented in 2006 by G. Hinton and still are not very common. There is

range of possible applications in generating, recognizing images [15, 17, 19], video

sequences [16] and voice recognition [20]. Through cognitive science perspective there are

interesting application for post-processing EEG signals [21].

Application in Image processing.

Raia Hadsell [19] with her group presented example of deep learning for long range vision

application. They tried to classify complex terrain features from robot position up to the

horizon of the area where robot was positioned. This classification of important features

allow high-level strategy to be applied. Deep belief network was trained to learn

30

informative and important features of the input image. The main goal of this experiment

was to predict traversability of concrete terrain in a realtime. They achieved impressive

results.“The classifier is able to see smoothly and accurately to the horizon, identifying

trees, paths, man-made obstacles, and ground at distances far beyond the 10 meters

afforded by the stereo supervisor.” [19]

Another example of DBN application is classification of 3D object presented by

Nair and Hinton. [17] They used NORB database for evaluation of performance. This

database contains of stereo paired images of different 3D object. There is variation in

lightning conditions and viewports. Images are stereoscopic (2 pictures for each sample).

Their model achieved 6,5% error rate on test dataset. This is good result compared to best

published (5,9%). They also compared it to SVM which scores 11,6%.

Alex Krizhevsky [21] provided interesting experiment. He used convolutional DBN

for classifying 1,6 million tiny images from CIFAR-10 dataset. This dataset contain of

various images of objects from 10 categories. His best test classification success was

78,9% (The best published result was achieved with Multi-column Deep Neural Network

[22] with 88,79% successfully classified images).

Application in speech recognition

A. Mohamed and his team experiment with speech recognition by using DBN. They

showed that “The DBNs learned using the sequence-based training criterion outperform

those with frame-based criterion using both three-layer and six-layer models, but the

optimization procedure for the deeper DBN is more difficult for the former criterion.“[20]

Application in EEG signals filtering

D. Wulsin and his team applied DBN to classification and abnormally data detection from

EEG (electroencephalography). They found that DBN performance was comparable to

another standard classifiers and classification was 1.7 – 103.7 times faster than comparable

classifiers. “These results indicate that DBNs and raw data inputs may be more effective

for online automated EEG waveform recognition than other common techniques.” [21]

31

Leaves recognition application

One part of my experimental setup is test performance of DBN on my own leaves dataset.

There are few projects in leaves recognition [6, 7]. But these project do not use DBN as

classifier and use different approach in dataset creation (no huge variability and no noise).

Also there is no widely used dataset, so it is hard to compare performance between

different approaches (it is not good to compare results based on different datasets).

32

3 Experimental part

3.1 Motivation and goals
In this section are described experiments with DBN classifier. I used two different dataset

classes (leaves and faces). At the beginning is described process of generating leaves. Then

are presented experiments and comparisons between different setups of Deep network.

This work is focused on how unsupervised pertaining helps to improve error rate of whole

classifying system. I wanted to find out relation between number of neurons and layers

(topology) and its influence on performance.

3.2 Creation of leaves dataset
I have decided to create my own dataset for testing because there is an absence of complex

configurable leaves dataset, which is suitable for testing the performance of classifiers.

There are popular datasets like CIFAR-10, MNIST or NORB, but these do not include

leaves. I consider it like good example for testing classification performance of artificial

neural networks. I wanted to test my ability for handle complex process from creation of

dataset to successful classification. Leaves are nice example for possible application in real

world environment (e. g. application for mobile phones). Another and main motivation for

creating own dataset generator was ability to generate number of different kinds of training

sets and find interesting relations between features of datasets and features of networks (e.

g. how noise level or number of samples influence test performance). In next section is

described how was this dataset generator created and how to use it. Generator is accessible

for public use at the web page: http://dbn.meshmatrix.com .

3.2.1 Leaves gathering

For purpose of my work I have decided to collect leaves from my home town location

Levice, Slovakia. The location is marked on Figure 9 with A sign.

33

http://dbn.meshmatrix.com/

Figure 9: A sight represent Levice, Slovakia (GPS coordinates: 48.214526,18.606523)
[google maps]

3.2.2 Photo method

For purpose of taking pictures has been used Sony HX-1 camera with tripod. I used 3

lights placed around the scene, because there was a demand to prevent shadows, which

may cause problems for further processing. I used long exposures (1/15 of second) for

brighter output pictures. For detailed information of camera setup please look at EXIF info

of each picture (in attachment). Some of collected leaves were creased so I tried to flatten

them by putting them into a book for 2 weeks. Finally I have created 2 databases of leaves

images – with flattering and without. I have also some problems because some leaves

change color from green to yellow or brown during this process. This was the reason why I

was unable to use all leaves in the experiments

3.2.3 Leaves database example

I have collected more than 200 samples of 17 kinds of leaves. The example of these leaves

is presented in table 1. It is example from non flattered picture dataset. For full leaves

database with original source photos is in attachment.

34

Apple Apricot Sweet Chestnut

Field Maple Hornbeam Platonoides Maple

Red Maple Oak Pear

Cottonwood Willow

Table 1: Example of raw leaves pictures

These images are essence for dataset generation. For further processing I chose 11 tree

categories with best picture quality (e.g. walnut picture was bad, because of yellow color).

Also key aspect why there was decision to reduce number of categories was insufficient

quantity of some samples (I have decided to work with trees with 5 or more sufficient

photos). Chosen tree categories are presented in Table 1.

3.2.4 Texture creation

In this process the raw picture from camera is transformed into a form suitable for dataset

generator program. Main purpose of this process is to create a texture, which is used in

next process. Texture is image of leaf which is placed into generator and transformed into

35

output for training. As you can see in Figures 10, 11, 12 and 13 (Table 2) this process

contains of next steps:

• Cut leaf from base image

• Convert to black and white

• Normalize color

• Invert colors

• Increase contrast value

• Resize into 64 x 64 pixels.

Whole process was done in GIMP picture editor.

Figure 10: Raw image Figure 11: Covered to black and white +
colors are normalizes

Figure 12: Inverted color and increased
contrast

Figure 13: Resized to 64x64 pixels

Table 2: Creation of final texture

36

3.2.6 Implementation of dataset generator

Dataset generator is created in javascript by using webGL for 3D graphics processing. I

choose HTML5 and javascript because of multi-platform usage and for possibility to place

this application on webpage. It is implemented base on http://learningwebgl.com/ source

codes. For more information about implementation please look into source code (in

Attachment). For running this web application you need OpenGL 2.0 compatible graphic

card and also compatible web browser. I recommend Chrome or Firefox.

3.2.7 Functionality of dataset generator

In Figure 14 you can see top part of application interface. There are two main parts. Panel

on the left side is collection of leaves where you can select leaves which will be used in

generation process. Panel on the right side is for setting variables which influence final

shape of output dataset. There are 4 main parts:

Rotation settings

In rotation settings you can choose variability level of rotations in all axles. X and Y axle

simulates different view angle and are calculated like random number between zero and

selected value. Z axle rotation is calculated like: selected value + random between 0 and 1.

This small randomness in calculation is to prevent rotational periodicity in output data. As

you can see, there is factor of randomness so when you run same setup 2 times there will

be different outputs. My recommendation is to create datasets with more than thousand

samples to cover more cases of state space (combination of randomness and many samples

should lead to almost uniform distribution of different states). Z rotation variable influence

size of output dataset (if value is lower than the size of dataset is bigger).

Size settings

Another setting area is called Size. Here user can set inner constants that represent start and

end distance of object to camera. Step setting represents the decrease in distance after

turning an object in 360 degrees (during generation process). By setting this variablel user

37

influence the size of output dataset (if there is smaller step size or difference between start

and end size is higher → more samples will be generated)

Noise settings

Another setting area is called Noise. Here user can select color range for noise pixel, level

of noise and also he can decide if noise will be applied only in background or in whole

image.

Brightness settings

The last setting area is called Brightness. In this area user can choose the variability in

brightness of the texture.

Figure 14: Screenshot of Dataset Generator application interface:
http://dbn.meshmatrix.com/

At bottom part of application is output generated. It is generated in textual (Figure 16.) and

visual (Figure 15) form. In textual form there are 1024 numbers, which represent color and

38

one number more, which represent category of sample. Visual form can be saved as PNG

image file.

Figure 15: Screenshot of bottom part of application, which shows generated output in
visual form

Figure 16: Screenshot of bottom part of application, which shows generated output in
textual form

39

3.3 Faces dataset
Another testing dataset, which is used for experiments is faces dataset [18]. This dataset

was created at Slovak Academy of Sciences. There are 2 face classes – normal (Figure 17)

and abnormal (Figure 18). It contains 2280 samples. For purpose of this project the

pictures were resized from 128x128 pixels to 64x64 pixels. Motivation for creation of this

dataset was ability to recognize potentially dangerous or suspicious people near ATMs. The

assumption was, that suspicious people wear some type of face cover.

Figure 17: Example of normal face class from Faces dataset [18]

40

Figure 18: Example of abnormal face class from Faces dataset [18]

3.4 DBN implementation
DBN used in this project is based on http://deeplearning.net/tutorial/DBN.html . It is using

fast Theano mathematical library, which is written in C. Whole program is written in

Python. RBMs used to pre-train and initialize each layer of the network, that is used for

classification (“construct each RBM such that they share the weight matrix and the hidden

bias with its corresponding sigmoid layer” [36]). For more info refer to source code (in

attachment).

3.5 Experiments on leaves dataset with DBN
In this section are presented 5 experiments with different variations of leaves dataset. The

goal of this experiments is to find out how parameters of the network as number of hidden

layers, number of neurons, number of fine-tuning epochs, number of pre-training epochs

41

http://deeplearning.net/tutorial/DBN.html

and learning rate influence the final testing error. Variations in dataset parameters are in

size (number of samples) and noise level. Each of these experiments has these common

properties:

• Training, validation and testing sub-datasets were created from main dataset by

random selection.

• Each experiment setup was run one time, expect last 5 setups in Table 6. They were

run 4 times and in table is average value of these runs.

3.5.1 Experiment 1

Description of Dataset 1

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 2000

• Valid set = 400

• Test set = 504

(In Figure 19 is example of this dataset samples.)

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=5

Size

Start=-4 Step=0.1 End=-2.8

Noise

Random color from=0 to=0 Noise Level=0 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

42

Figure 19: Example of Dataset 1 (For whole picture please see attachment)

HIDDEN LAYER
TOPOLOGY

FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 39.8 42.4

1024 0.025 0.001 500 500 22.3 19.0

1024 0.1 0.01 500 500 18.8 20.0

500-500 0.1 0.01 500 500 14.5 16.4

500-500 0.025 0.001 500 500 20.3 19.8

1024-1024 0.1 0.01 500 500 16.5 17.6

Table 3: Results of experiment 1

43

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

500-500 0.1 0.01 500 100 22.3 21.6

500-500 0.1 0.01 250 100 20.0 20.0

500-500 0.1 0.01 125 100 20.8 19.2

500-500 0.1 0.01 60 100 23.0 18.4

125-125 0.1 0.01 500 100 22.0 25.8

250-250 0.1 0.01 500 100 20.3 24.2

125-125 0.1 0.01 250 100 22.5 24.8

250-250 0.1 0.01 250 100 21.3 20.6

125-125 0.1 0.01 125 100 25.5 27.2

250-250 0.1 0.01 125 100 20.5 21.6

125-125 0.1 0.01 60 100 27.8 26.4

250-250 0.1 0.01 60 100 20.7 25.8

Table 4: Influence of number of pre-training epoch on final test error (Experiment 1)

1024 0.1 0.01 500 100 22.0 21.2

500 0.1 0.01 500 100 21.0 21.4

250 0.1 0.01 500 100 24.3 26.2

125 0.1 0.01 500 100 25.8 24.4

Table 5: Influence of the number of neurons on final error (Experiment 1)

500-500 0.25 0.01 60 500 15.3 21.8

500-500 0.1 0.01 60 500 17.5 22.0

500-500 0.05 0.01 60 500 17.0 17.8

500-500 0.025 0.01 60 500 17.8 19.4

500-500 0.01 0.01 60 500 21.8 26.2

500-500 0.005 0.01 60 500 33.3 38.6

500-500 0.5 0.01 100 100 18.8 15.0

500-500 0.25 0.01 100 100 18.8 22.2

500-500 0.1 0.01 100 100 20.5 23.6

500-500 0.05 0.01 100 100 26.8 23.8

500-500 0.025 0.01 100 100 38.8 32.2

Table 6: Influence of learning rate on final error (Experiment 1)

44

Evaluation of results for Dataset 1

Number of hidden layers

When we compare single hidden layer topologies from Table 5 (error 23.85%) to their

double hidden layer equivalents from Table 4 (error 22.7%) we can see that 2 hidden layers

have average performance 1.15 % better.

Number of neurons

When we look at Table 5 we can see that increase in the number of neuron helps decrease

classification error. The similar trend occurs in Table 4 where are compared 3 different

topologies. There is average error of 25.3% for topology 125-125, 21.9% for 250-250 and

20,8% for 500-500.

Number of fine-tuning epochs

Based on Tables 3. - 6. is obvious that more epochs results in better performance. Is

important to notice that tested number of epochs was not high, so there was not over-

fitting.

Number of pre-training epochs

Based on Table 5 there are these average test errors:

Number of epochs Average error in %

500 22.7

250 21.5

125 22.5

60 23.7

These numbers shows that number of pre-training epoch have not significant influence on

performance.

45

Influence of learning rate

Table 6 examines influence of learning rate on overall performance. The average of test

and validation error shows that the best value is between 0.1 – 0.5. But its important to

notice that this parameter is related to number of epochs.

3.5.2 Experiment 2

Description of Dataset 2

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 8000

• Valid set = 504

• Test set = 1000

(In Figure 20 is example of this dataset samples.)

Difference between Dataset 1 and Dataset 2 is in number of samples. This difference is

created by decreasing rotational step and size step in dataset generator.

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=2

Size

Start=-4 Step=0.06 End=-2.8

Noise

Random color from=0 to=0 Noise Level=0 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

46

Figure 20: Example of Dataset 2 (For whole picture please see attachment)

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 15.2 14.4

1024 0.025 0.001 500 500 7.4 7.8

1024 0.1 0.01 500 500 6.8 5.5

500-500 0.1 0.01 500 500 6.6 8.1

500-500 0.025 0.001 500 500 5.4 6.1

1024-1024 0.1 0.01 500 500 7.4 4.7

Table 7: Results of experiment 2

47

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 9.2 11.5

250-250 0.1 0.01 500 100 7.0 11.2

125-125 0.1 0.01 250 100 9.0 11.7

250-250 0.1 0.01 250 100 9.4 9.5

125-125 0.1 0.01 125 100 11.6 9.5

250-250 0.1 0.01 125 100 9.4 8.7

125-125 0.1 0.01 60 100 10.4 11.8

250-250 0.1 0.01 60 100 6.4 10.0

500-500 0.1 0.01 500 100 8.8 7.3

500-500 0.1 0.01 250 100 7.8 7.4

500-500 0.1 0.01 125 100 7.4 8.7

500-500 0.1 0.01 60 100 6.8 8.2

Table 8: Influence of number of pre-training epoch on final test error (Experiment 2)

1024 0.1 0.01 500 100 6.6 7.5

500 0.1 0.01 500 100 8.6 8.8

250 0.1 0.01 500 100 11.0 12.5

125 0.1 0.01 500 100 13.0 12.9

Table 9: Influence of the number of neurons on final error (Experiment 2)

500-500 0.25 0.01 60 500 6.2 5.2

500-500 0.1 0.01 60 500 5.8 7.2

500-500 0.05 0.01 60 500 7.6 6.2

500-500 0.025 0.01 60 500 8.2 8.1

500-500 0.01 0.01 60 500 8.4 8.9

500-500 0.005 0.01 60 500 10.6 10.9

Table 10: Influence of learning rate on final error (Experiment 2)

Evaluation of results for Dataset 2

Number of hidden layers

When we compare single hidden layer (125, 250, 500) topologies from Table 9 (error

11.1%) to their double hidden layer equivalents (125-125, 250-250, 500-500) from Table 8

(error 9,2%) we can see that doulble hidden layers have average performance 1.9 % better.

48

Number of neurons

When we look at Table 9 we can see that increasing the number of neuron helps decrease

classification error. The similar trend occurs in Table 8 where we compare 3 different

topologies. There is average error of 11.1% for topology 125-125, 9.9% for 250-250 and

7.9% for 500-500.

Number of epochs

Based on previous Tables 7.-10. is obvious that more epochs results in better performance.

Is important to notice that tested number of epochs was not high, so there was not over-

fitting. The best models have the high number of epochs (500).

Number of pre-training epochs

Based on Table 8 there are these average test errors:

Number of epochs Average error in %

500 9.2

250 9.1

125 9.2

60 8.9

These numbers show that number of pre-training epoch have not significant influence on

performance.

Influence of learning rate

There is strong trend (Table 10), which prefers higher learning rates.

49

3.5.3 Experiment 3

Description of Dataset 3

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 8000

• Valid set = 504

• Test set = 1000

(In Figure 21 is example of this dataset samples.)

Difference between Dataset 2 and Dataset 3 is in adding random noise (10% of the image

is noise).

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=2

Size

Start=-4 Step=0.06 End=-2.8

Noise

Random color from=0 to=1 Noise Level=10 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

50

Figure 21: Example of Dataset 3 (For whole picture please see attachment)

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 28.8 31.6

1024 0.025 0.001 500 500 18.2 20.0

1024 0.1 0.01 500 500 23.4 24.7

500-500 0.1 0.01 500 500 22.2 20.1

500-500 0.025 0.001 500 500 18.0 20.1

1024-1024 0.1 0.01 500 500 19.8 22.1

Table 11: Results of experiment 3

51

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 23.8 24.6

250-250 0.1 0.01 500 100 18.4 23.6

125-125 0.1 0.01 250 100 19.4 25.1

250-250 0.1 0.01 250 100 22.2 23.4

125-125 0.1 0.01 125 100 21.8 24.9

250-250 0.1 0.01 125 100 18.0 22.1

125-125 0.1 0.01 60 100 20.0 24.2

250-250 0.1 0.01 60 100 22.8 22.4

500-500 0.1 0.01 500 100 21.6 22.3

500-500 0.1 0.01 250 100 21.4 22.1

500-500 0.1 0.01 125 100 21.6 19.9

500-500 0.1 0.01 60 100 19.6 22.1

Table 12: Influence of number of pre-training epoch on final test error (Experiment 3)

1024 0.1 0.01 500 100 23.2 23.9

500 0.1 0.01 500 100 25.8 25.1

250 0.1 0.01 500 100 26.0 29.0

125 0.1 0.01 500 100 29.4 25.8

Table 13: Influence of the number of neurons on final error (Experiment 3)

500-500 0.25 0.01 60 500 15.0 22.3

500-500 0.1 0.01 60 500 21.6 19.6

500-500 0.05 0.01 60 500 19.8 22.5

500-500 0.025 0.01 60 500 19.2 21.5

500-500 0.01 0.01 60 500 23.0 22.3

500-500 0.005 0.01 60 500 22.6 23.1

Table 14: Influence of learning rate on final test error (Experiment 3)

Evaluation of results for Dataset 3

Number of hidden layers

When we compare single hidden layer topologies from Table 13 (error 26.9%) to their

double hidden layer equivalents from Table 12 (error 22.4%) we can see that double hidden

layers have average performance 4,5 % better.

52

Number of neurons

When we look at Table 13 we can see that there is a trend. Increasing the number of neuron

helps decrease classification error. The similar trend occurs in Table 12 where we compare

3 different topologies. There is average error of 23% for topology 125-125, 21.6% for 250-

250 and 21,3% for 500-500.

Number of epochs

Also in this experiment is trend. More epochs results in better performance. The model

with best performance had 500 epochs.

Number of pre-training epochs

Based on Table 5 there are these average test errors:

Number of epochs Average error in %

500 22.4

250 22.3

125 21.4

60 21.9

As well as in previous experiments these numbers show that number of pre-training epoch

have not significant influence on performance.

Influence of learning rate

There is no significant influence of learning rate (Table 14). One of possible cause may be

noise in dataset.

53

3.5.4 Experiment 4

Description of Dataset 4

All leaves (all 5 subclasses for each of 11 classes) are used for dataset generation.

• Training set = 17000

• Valid set = 2000

• Test set = 2120

Example of this dataset is in Figure 22.

Difference between Dataset 3 and Dataset 4 is in increasing number of samples in dataset.

DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=1

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=10 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

54

Figure 22: Example of Dataset 4 (For whole picture please see attachment)

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

1024 0.0025 0.00001 500 500 20.5 19.1

1024 0.025 0.001 500 500 14.1 15.6

1024 0.1 0.01 500 500 17.2 17.2

500-500 0.1 0.01 500 500 17.5 17.2

500-500 0.025 0.001 500 500 14.9 15.9

1024-1024 0.01 0.001 500 500 13.9 15.0

Table 15: Results of experiment 4

55

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

125-125 0.1 0.01 500 100 18.1 17.9

250-250 0.1 0.01 500 100 18.7 18.6

125-125 0.1 0.01 250 100 19.3 19.2

250-250 0.1 0.01 250 100 18.9 18.4

125-125 0.1 0.01 125 100 19.2 20.0

250-250 0.1 0.01 125 100 17.6 19.1

125-125 0.1 0.01 60 100 17.0 19.3

250-250 0.1 0.01 60 100 17.7 16.7

500-500 0.1 0.01 500 100 16.7 16.0

500-500 0.1 0.01 250 100 16.0 16.2

500-500 0.1 0.01 125 100 15.3 17.3

500-500 0.1 0.01 60 100 14.5 17.2

Table 16: Influence of number of pre-training epoch on final test error (Experiment 4)

1024 0.1 0.01 500 100 17.5 17.8

500 0.1 0.01 500 100 16.7 20.0

250 0.1 0.01 500 100 20.6 22.4

125 0.1 0.01 500 100 21.3 22.0

Table 17: Influence of the number of neurons on final error (Experiment 4)

500-500 0.25 0.01 60 500 15.1 14.3

500-500 0.1 0.01 60 500 15.6 15.7

500-500 0.05 0.01 60 500 15.5 16.3

500-500 0.025 0.01 60 500 15.1 17.1

500-500 0.01 0.01 60 500 15.6 16.3

500-500 0.005 0.01 60 500 14.6 15.6

Table 18: Influence of learning rate on final error (Experiment 4)

Evaluation of results for Dataset 4

Number of hidden layers

When we compare single hidden layer topologies from Table 17 (error 20.5%) to their

double hidden layer equivalents from Table 16 (error 17.7%) we can see that 2 hidden

layers have average performance 2.8 % better.

56

Number of neurons

When we look at Table 17 we can see that increasing the number of neuron helps decrease

classification error. The similar trend occurs in Table 16 where are compared 3 different

topologies. There is average error of 18.8% for topology 125-125, 18.2% for 250-250 and

16.2% for 500-500.

Number of epochs

The similar trend like in previous cases occurred. The top models are with the highest

number of epochs.

Number of pre-training epochs

Based on Table 17 there are these average test errors:

Number of epochs Average error in %

500 17.7

250 18.0

125 18.1

60 17.0

These numbers shows that number of pre-training epoch have not significant influence on

performance. (There is no trend)

Influence of learning rate

Table 18 examine influence of learning rate on overall performance. However in this case,

there is no significant trend. On of the possibility may be noise in dataset (similar to

previous experiment).

57

3.5.5 Experiment 5

Description of Dataset 5

This experiment is slightly different from previous. The difference is that first four leaves

from each class are used for training and validating. And the last one representant of each

leave is used for creation of testing sub-dataset.

• Training set = 17000

• Valid set = 2000

• Test set = 2120

A) TRAINING + VALIDATION DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=1

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=5 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

B) TESTING DATASET GENERATOR SETUP:

Rotation

x=30 y=30 z=5

Size

Start=-4 Step=0.04 End=-3

Noise

Random color from=0 to=1 Noise Level=5 Apply only for
background=false

Brightness

Random brightness from=0.7 to=1.0

58

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

1024 0.025 0.001 500 500 9,4 19,7

1024 0.1 0.01 500 500 8,8 21.0

500-500 0.1 0.01 500 500 8.0 21.0

500-500 0.025 0.001 500 500 9,1 19,6

1024-1024 0.01 0.001 500 500 7,1 19,2

Table 19: Results of experiment 5

Evaluation of results for Dataset 5

The network achieved more than 80% successfully classified cases. This experiment is

very similar to real world situations, because it used different leaves subclass for testing.

Interesting comparison is between Validation and Test error. Validation contains samples

from the same subclasses as train dataset. Test dataset contains different subclass. We can

see that using leaf subclass from non training set decreased performance from 92.9% to

80.8% (in the best case).

3.6 Investigation of how unsupervised pre-training
influence performance
In this section is presented one experiment with Dataset 1. The goal of this experiments is

comparison of DBN to Deep network with random weight initialization (without

unsupervised pre-training).

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

500-500 0.5 0.01 100 100 18.8 15.0

500-500 0.25 0.01 100 100 18.8 22.2

500-500 0.1 0.01 100 100 20.5 23.6

500-500 0.05 0.01 100 100 26.8 23.8

500-500 0.025 0.01 100 100 38.8 32.2

500-500 0.01 0.01 100 100 40.8 44.2

500-500 0.005 0.01 100 100 43.0 52.0

500-500 0.0025 0.01 100 100 56.0 55.4

Table 20: Results with unsupervised pre-training

59

TOPOLOGY FINETUNING
LEARNIG
RATE

PRETRAINING
LEARNING
RATE

PRETRAINING
EPPOCHS

FINETUNING
EPPOCHS

VALIDATION
ERROR

TEST ERROR

500-500 0.5 0 0 100 16.8 18.0

500-500 0.25 0 0 100 18.8 21.6

500-500 0.1 0 0 100 23 25.8

500-500 0.05 0 0 100 27.3 27.0

500-500 0.025 0 0 100 34.0 34.9

500-500 0.01 0 0 100 36.8 43.8

500-500 0.005 0 0 100 49.8 51.2

500-500 0.0025 0 0 100 55.5 56.4

Table 21: Results without unsupervised pre-training

3.6.1 Evaluation of results

The goal of this experiment was to measure help of unsupervised pre-training. In fact this

was comparison between DBN and MLP (multilayer deep network without unsupervised

weights initialization). As you can see in Table 20 and 21 the increase in performance is

not significant. Advantage of pre-training is higher when are used higher learning rates.

Average validation and test error for top four results from Table 20 is 21.2% and for Table

21 it is 22.3%. Increase in performance when unsupervised pre-training is used was 1.1%

(in average).

Figure 23: Example of feature detectors which are formed for hidden
neurons

60

This is visualization of weights for each hidden neuron (there is 32x32 pixel input image

therefore there is 1024 weight values for each neuron). Weights were transformed to values

between 0 and 1. As you can see that there are not significant features. This lack of

reasonable feature shapes is one of possibility why the unsupervised pretreating does not

help to increase performance so much (in Dataset 1).

3.7 Experiment on faces dataset

3.7.1 Description of experiment

Experiment was performed on faces dataset [18]. Whole dataset (2280 samples) is divided

to train (800 samples), validation (112 samples) and test (1368 samples) sub-datasets. The

goal of this experiment is found out how unsupervised pre-training influence performance.

For this purpose is used next training setup:

• fine-tuning learning rate = 0.1

• pre-training learning rate = 0.01

• pre-train epochs = 100

• fine-tuning epochs = 100

Each test was run 4 times and in Figure 24 is presented average of these runs.

61

3.7.2 Evaluation of results

Figure 24 represents comparison between random weight initialization (typically used in

MLP) and unsupervised pre-training weight initialization created by stack of RBMs. From

this visualization is obvious that pre-training helps to achieve better classification

performance. The best achieved test error for random initialization was 16.4 % and for

RBMs initialization was 9.6 %. This result is better than result presented in original paper

[18] where the best error rate for dataset with 836 train samples was 11.17%. They

achieved this results by using HTM (hierarchic temporal memory) classifier.

62

Figure 24: Performance comparison between unsupervised pre-training and random
initialization

4. DISCUSSION
In this part is described what actually above result tables means. There are presented 7

experiments, each with different setup (testing different variations and noise levels). The

most important part of table is TEST ERROR. It represents percentage of mistaken

classification in TEST dataset. The whole dataset was divided into 3 parts – for training,

validation and testing. It is because of measure correlation between error on in-sample and

out-of sample data. Experiment number 1. represents dataset with 2904 samples and

without noise. It scores test error 16.4%. In the experiment number 2. is increased number

of samples (9504) by decreasing step of rotation (it generates more sample). In Dataset 2.

is achieved best error score of 4.7%, which is good (also when we compare it to another

works [6,7]). In experiment number 3. is added noise level 10%. The rest of setup is the

same like in experiment number 2. The test error increased to 19.6%. After this experiment

is clear that noise level had significant influence on whole performance. In experiment

number 4. is increased number of samples to 21120 and noise level is 10%. The Test score

is improved to 15%. Finally is provided experiment number 5. In this experiment are used

2 datasets. One for training and validating (leaves number 2-5 from each category) and

second (leaves number 5 from each category) for testing. This experimental setup is

simulation of real world data (during testing). Noise level is decreased to 5% and size of all

two dataset is increased to 26928 samples. The final “real world” classification

performance error on TEST dataset was 19,2%. One possible cause of this error may be the

small resolution of input data and also small size of usable information in it (in some cases

leaves are wide only 5 pixels). Maybe it would be interesting to test humans on this dataset

and then compare to DBN.

When we look on the tables we can find interesting correlation between TEST

ERROR and parameters of network and dataset. First correlation is between the size of

topology and final error. In general if there is more neurons the error is lower. There is the

same correlation between number of hidden layers and final error. The most important

correlation is between size of dataset and error. For bigger datasets there is smaller error

rate.

63

Difference in performance of unsupervised pre-training in faces and leaves dataset

is significant. While in leaves experiments the pre-training did not help very much (1.1%)

in Faces datasets it helps significantly (6.8%). This may be caused by huge variability and

size of leaves dataset. It shows that advantage of using DBN is related to the parameters of

training data.

5. CONCLUSION

The goal of this work was to show usability of deep belief network in object categorization

problems. This goal was successfully achieved. There are provided sets of systematic

experiments that show us a potential of this system. In some cases this potential is higher

(faces dataset) in another cases where the variability is higher (and there are not so

significant and clear features – leaves dataset) the potential is not so significant. Overall

the network shows quite good classification skills and there is potential for real usage of

such classification method in practice (e. g. portable cell phone application).

However there are also many another methods like HTM [18] or recently presented

Multi-column Deep Neural Networks [22, 35]. Especially this recent network is very

encouraging. Based on fresh results on image classification task like CIFAR-10 or MNIST

Multi-column Deep Neural Networks achieved the best performance.

This field of research is very interesting for the application in robotics industries

(e.g. road sign recognition [35]) and there is also huge potential for cognitive science,

because these methods are inspired by biology and functionality of neural system.

64

REFERENCES
[1] Vinyals, O., Ravuri, S.V. (2011). Comparing multilayer perceptron to Deep Belief Network Tandem

features for robust ASR, Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on , vol., no., pp.4596-4599, 22-27 May 2011 doi: 10.1109/ICASSP.2011.5947378

[2] Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5):5947.

[3] Erhan, D., Courville, A., Vincent, P. (2010). Why Does Unsupervised Pre-training Help Deep Learning ?

Journal of Machine Learning Research,11(2007), 625-660. JMLR. org.

[4] Hinton, G. E. (2007). NIPS Tutorial on: Deep Belief Nets, Canadian Institute for Advanced Research,

online: http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf

[5] Hinton, G. E., Osindero, S., Teh, Y. (2006). “A fast learning algorithm for deep belief nets”, Neural

Computation, vol 18, 2006

[6] Neto, J., Meyer, G., Jones, D., Samal, A. (2006). Plant species identification using Elliptic Fourier leaf

shape analysis. Computers and Electronics in Agriculture, 50(2), 121-134. Elsevier Sci Ltd.

[7] Prasad, S., Kumar, P., Tripathi, R.C. (2011). Plant leaf species identification using Curvelet transform,

Computer and Communication Technology (ICCCT), 2011 2nd International Conference on, vol., no.,

pp.646-652, 15-17 Sept. 2011 doi: 10.1109/ICCCT.2011.6075212

[8] Erhan, D., Courville, A., Bengio, Y., Vincent, P. (2010). Why Does Unsupervised Pre-training Help Deep

Learning? In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics

(AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy.

[9] Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., Vincent, P. (2009). The difficulty of training deep

architectures and the effect of unsupervised pre-training. Proceedings of the Twelfth International Conference

on Artificial Intelligence and Statistics (AISTATS 2009) (pp. 153–160). Clearwater (Florida), USA.

[10] Ranzato, M., Poultney, C., Chopra, S., LeCun, Y. (2007). Efficient learning of sparse representations

with an energy-based model. NIPS 19 (pp. 1137–1144). MIT Press.

[11] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007). Greedy layer-wise training of deep

networks. NIPS 19 (pp. 153–160). MIT Press

[12] Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P. (2009). Exploring strategies for training deep

neural networks. The Journal of Machine Learning Research, 10, 1–40.

[13] Lee, H., Ekanadham, C., Ng, A., (2008). Sparse deep belief net model for visual area v2, in Advances in

Neural Information Processing Systems 20. MIT Press, 2008, pp. 873–880

[14] Mohamed, A., Dahl, G., Hinton, G. (2009). Deep Belief Networks for phone recognition. Deep Learning

for Speech Recognition and Related Applications NIPS Workshop.

65

[15] Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep

Networks, Advances in neural information Processing Systems 19, MIT Press, Cambridge, MA.

[16] Sutskever, I. and Hinton, G. E. (2007). Learning multilevel distributed representations for high-

dimensional sequences. AI and Statistics, 2007, Puerto Rico.

[17] Nair, V., Hinton, G. E. (2009). 3D Object Recognition with Deep Belief Nets. (Y. Bengio, D.

Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta, Eds.)Computer, 22, 1-9. Citeseer.

[18] Skoviera, R., Valentin, K., Farkaš, I., Stolc, S., Bajla, I. Detekcia anomálneho správania biologicky

inspirovanou inteligentnou sietou,Vyskumna sprava UM SAV Bratislava

[19] Hadsell, R., Erkan, A., Sermanet, P., Scoffier, M., Muller, U. (2008). Deep belief net learning in a long-

range vision system for autonomous off-road driving.2008 IEEERSJ International Conference on Intelligent

Robots and Systems, 1(1), 628-633. Ieee.

[20] Mohamed, A., Yu, D., & Deng, L. (2010). Investigation of Full-Sequence Training of Deep Belief

Networks for Speech Recognition. Architecture, (September), 2846-2849.

[21] Krizhevsky, A. (2010). Convolutional Deep Networks on CIFAR-10. Machine Learning, 1-9.

[22] Cires, D., Meier, U. (2012). Multi-column Deep Neural Networks for Image Classification. Applied

Sciences, (February), 20.

[23] Haykin, S. (2008). Neural Networks and Learning Machines. Pearson Prentice Hall New Jersey USA

936 pLinks (p. 906).

[24] Farkaš I. (2011). Konekcionizmus v náručí výpočtovej kognitívnej vedy. In Kvasnička V. et al. (eds.),

Umelá inteligencia a kognitívna veda III. 19-62.

[25] Bechtel, W., Abrahamsen, A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics, and

Evolution in Networks. Artificial Life (pp. 295 – 305). Wiley-Blackwell.

[26] O'Reilly, R.C., Munakata, Y., Frank, M.J., Hazy, T.E., and Contributors (2012). Computational

Cognitive Neuroscience. Wiki Book, 2nd Edition.

[27] Ribeiro, B., Lopes, N. (2011). LNCS 7064 – Deep Belief Networks for Financial Prediction. Processing,

766-773.

[28] Hinton, G. E., Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.

Science, 313(5786), 504-507. AAAS.

[29] Hinton, G. E. Video lecture.

URL http://carbon.videolectures.net/2009/singles/07/jul09_hinton_deeplearn/jul09_hinton_ deeplearn.pdf.

[30] Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine

Learning,2(1), 1-127. Now Publishers Inc.

66

http://carbon.videolectures.net/2009/singles/07/jul09_hinton_deeplearn/jul09_hinton
http://ccnbook.colorado.edu/
http://ccnbook.colorado.edu/

[31] Hinton, G. E. (2010). Learning to represent visual input. Philosophical Transactions of the Royal Society

of London - Series B: Biological Sciences,365(1537), 177-184. The Royal Society.

[32] Felleman, D. J., Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral

cortex. (A. T. Smith & R. J. Snowden, Eds.)Cerebral Cortex,1(1), 1-47. Oxford Univ Press.

[33] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In

D. E. Rumelhart & J. L. McClelland (Eds.),Parallel Distributed Processing Explorations in the Microstructure

of Cognition(Vol. 1, pp. 194-281). MIT Press.

[34] Hinton, G. E. (2007) Boltzmann machine. Scholarpedia, 2(5):1668.

[35] Ciresan, D. C., Meier, U., Masci, J., Schmidhuber, J. (2012). Multi-Column Deep Neural Network for

Traffic Sign Classification. Neural Networks, in press.

[36] online: http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNPseudoCode

[37] online: http://deeplearning.net/tutorial/DBN.html

67

APPENDIX

Attachments of the thesis are saved on the attached DVD.

Medium contains:

• source files

• source codes

• Master's thesis in digital form (PDF)

68

	1. Introduction
	1.1 Connectionism and neural networks
	1.2 Symbolic and sub-symbolic representation

	2. Basic properties of neural system
	2.1 Model of artificial neuron
	2.1.1 Artificial neuron types
	2.1.2 Types of activation function

	2.2 Artificial neural network (ANN)
	2.2.1 Main properties of typical ANN:
	2.2.2 Learning of ANN
	2.2.3 Multilayer perceptron

	2.3 Introduction to deep architectures
	2.4 Stochastic models
	2.4.1 Model of stochastic neuron
	2.4.2 Restricted Boltzmann Machines

	2.5 Deep Belief Network (DBN)
	2.5.1 Unsupervised pre-training
	2.5.2 Fine-tuning (supervised training)
	2.5.3 Advantages of unsupervised pre-training
	2.5.4 Application of DBN

	3 Experimental part
	3.1 Motivation and goals
	3.2 Creation of leaves dataset
	3.2.1 Leaves gathering
	3.2.2 Photo method
	3.2.3 Leaves database example
	3.2.4 Texture creation
	3.2.6 Implementation of dataset generator
	3.2.7 Functionality of dataset generator

	3.3 Faces dataset
	3.4 DBN implementation
	3.5 Experiments on leaves dataset with DBN
	3.5.1 Experiment 1
	3.5.2 Experiment 2
	3.5.3 Experiment 3
	3.5.4 Experiment 4
	3.5.5 Experiment 5

	3.6 Investigation of how unsupervised pre-training influence performance
	3.6.1 Evaluation of results

	3.7 Experiment on faces dataset
	3.7.1 Description of experiment
	3.7.2 Evaluation of results

	4. DISCUSSION
	5. CONCLUSION
	REFERENCES
	APPENDIX

