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Abstrakt

Práca sa zaoberá schopnosťou neurónových sietí riešiť Ravensove progresívne matice,
test neverbálnej inteligencie široko používaný na odhad ľudského intelektu. Za skú-
maný model sme si zvolili ResNet-18, nadväzujúc na doterajšie dostupné výsledky
uvedené v iných publikáciách. V rámci výskumu robíme experimenty s učiteľom aj bez
učiteľa na datasete RAVEN a na podporu našich zistení sme použili vizualizáciu skry-
tých reprezentácií na predposlednej vrstve skúmaneho modelu. Analyzujeme správanie
siete na rôznych typoch problému a ich kombináciách, taktiež v prípade, že niektoré
typy z trénovacej množiny úplne vylúčime. Sieť v niektorých experimentoch vykazuje
vysokú presnosť odpovedí, čo naznačuje, že môže byť schopná abstraktného myslenia.

Kľúčové slová: abstraktné usudzovanie, dataset RAVEN, ResNet
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Abstract

The thesis deals with the neural network ability to solve Raven’s Progressive Matrices,
a nonverbal intelligence test widely used for estimation of human intellect. We chose
ResNet-18 as the studied model, following up on the currently available results listed in
other publications. Within the research, we perform both supervised and unsupervised
experiments on the RAVEN dataset and support our findings with the visualization of
the hidden representations on the penultimate layer of the studied model. We analyze
the behavior of the network on various problem types and their combinations, also
in case we eliminate certain types from the training set completely. The network
demonstrates high accuracy of answers in certain experiments, which suggests that it
might be capable of abstract reasoning.

Keywords: abstract reasoning, RAVEN dataset, ResNet
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Introduction

The word "intelligence" is a frequently mentioned term concerning human mental abil-
ities. Psychologists measure human intellect with various types of IQ tests, focusing
on many aspects of reasoning. The purpose of this thesis is to attempt to measure the
intelligence of artificial intelligence, specifically artificial neural networks. We study
abstract reasoning, more precisely the ability to solve Raven’s Progressive Matrices.
With the rise of artificial intelligence, more and more people are concentrating on the
understanding of the behavior of neural networks, bringing attention to this field. We
consider the present link to human reasoning very fascinating, worthy of additional
research.

However, the thesis should be understood from the point of view of computer
science and follows up on closely related work, mostly the article by Zhuo et. al.
[Zhuo and Kankanhalli, 2020]. Rather than invent a method that would produce bet-
ter results, we focus on the already devised methods and further analyze the behavior
of the network in various scenarios concerning the variability and the size of the train-
ing set. We believe that the results of our experiments could help to better understand
the reasoning ability of neural networks. We also hope to inspire other researchers to
study this promising field, because it is expected of intelligent systems to develop new
skills and abstract reasoning is closely related to our ability to reason with information
to solve unfamiliar problems.

Chapter 1 deals with the basic terms, explains the motivation and provides the
reader with a brief description of the concept of neural networks. In addition, it sum-
marizes the current progress related to the topic and compares the results of other
authors. In chapter 2 are stated the aims of the thesis and outlined both supervised
and unsupervised training methods. The chapter also contains a formal problem defi-
nition and an illustration of the implementation of the used model. Chapter 3 includes
the descriptions of the performed experiments and points out the interesting results,
supported by the visualization of hidden representations. The conclusion of the thesis
contains the summary of the work that has been done and the propositions of possible
future advancements in the problematics.
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Chapter 1

Testing Intelligence

The concept of intelligence has been studied since the end of the 19-th century. Al-
though the first mentions of intelligence and the aspirations to define it date back to the
Ancient Greece, the deeper analysis of human intelligence has been on the rise since the
study of Sir Francis Galton. He proposed the idea that intelligence was quantifiable,
normally distributed and heritable [Galton, 1891]. However, the meaning of the term
intelligence and its concept have evolved through the years and the complete definition
of intelligence still remains unclear.

1.1 Intelligence Quotient

To be able to test intelligence, it is crucial to understand what we mean by the term.
One of the earlier attempts to characterize intelligence comes from the French psychol-
ogist Alfred Binet who conceptualized intelligence as judgment, otherwise called good
sense, practical sense, initiative, the faculty of adapting one’s self to circumstances
[Binet et al., 1916]. However, while Binet focused more on language abilities, Galton
concentrated on testing human nonverbal skills.

Even though the opinions on defining intelligence differ, psychologists had to find
common ground in order to be able to test and compare human intelligence. Evidence
is increasing that traditional intelligence tests measure specific forms of cognitive abil-
ity that are predictive of school functioning, but do not measure the many forms of
intelligence that are beyond these more specific skills, such as music, art, and interper-
sonal and intrapersonal abilities [Braaten and Norman, 2006]. Nevertheless, IQ tests
have become a very popular method to measure human intellect. Intelligence quotient
(IQ) was introduced as the scale for assessing intelligence on standardized tests. In the
past, IQ was determined as a mental age score to chronological age ratio, where the
mental age was obtained as the result of a standardized intelligence test.

3



4 CHAPTER 1. TESTING INTELLIGENCE

1.2 Standardized Tests

Once we express the the possibility of assigning scores to every person based on their in-
telligence, we need a standardized technique to acquire universally comparable results.
In 1890 American psychologist James McKeen Cattell published measures of several
psychological functions, including, but not limited to, measures of reaction time for
auditory stimuli, absolute pain threshold, and human memory span, in a paper enti-
tled Mental Tests and Measurements. Thus, he was the first to use the term mental
test. This research conducted by Cattell was affected by the work of Galton. Gal-
ton wrote a commentary to Cattell’s 1890 paper endorsing the research and indicating
that it would be useful to relate scores from the psychological measures to ratings of
intellectual eminence [Sternberg, 2000].

However, Binet held a different opinion. He believed that intelligence cannot be
measured by concentrating on elementary cognitive processes, but on complex mental
processes instead. Consequently, he collaborated with his colleague Théodore Simon
on the development of the first intelligence test, which became the precursor of IQ tests
that are still in use today. The test, today known as the Binet-Simon Scale, did not
focus on knowledge related to education, but on areas such as attention, memory, or
problem-solving skills. The main purpose of the test was to determine the likelihood
of school success. Binet soon realized that some children outperformed their peers and
were able to answer more advanced questions that older participants were generally
able to answer. Considering this remark, Binet came up with the notion of mental age.
Moreover, he suggested to measure intelligence based on the average skills of a certain
age group.

Nonetheless, Binet emphasized that the test had its limitations and that it did
not entirely capture the broad spectrum of intellectual abilities. Since then, a lot of
various intelligence tests have been proposed, focusing on diverse mental capabilities.
Considering the fact that intelligence has been defined in many ways, it is also under-
standable that there are various tests trying to reflect the abilities corresponding to
intelligence. Whereas verbal tests aim attention at the abilities associated with com-
prehension and reasoning using concepts related to or conveyed in words, measures
of nonverbal intelligence contain questions concentrating on problem-solving and the
analysis of information using visual reasoning, not demanding the understanding or the
use of words. The latter ones include tasks linked with concrete and abstract ideas,
performing visual analogies and recognizing relationships between visual concepts, and
the abilities to recognize and remember visual sequences.

The current use of intelligence testing is quite extensive. For instance, it found
application in predicting the potential of young children to detect giftedness at young
age, so they can develop their talent. Nowadays, there are also frequently used tests,
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Figure 1.1: The distribution of IQ scores with the mean of 100 and the standard
deviation of 15 [Braaten and Norman, 2006].

which are referred to as knowledge-based. These tests incorporate questions regarding
acquired knowledge and experience. Many forms of these tests are widely used for
college admissions.

For the purpose of this work and our testing, we focus on nonverbal tests and inter-
pret intelligence as the ability to solve abstract reasoning tasks, particularly Raven’s
Progressive Matrices [Raven and Court, 1938].

1.2.1 Normal Distribution of IQ

For a given test, the distribution of scores depends upon the distribution of cognitive
skills in the population. Many cognitive tests are constructed so that they yield a
normal distribution of test scores in their intended population [Hunt, 2010]. Since IQ
is a score to embrace the evaluation of every human being, the scores of the whole
population are normally distributed on its scale.

The normal (Gaussian) distribution is a distribution of a continuous random vari-
able X. The formula of its probability density function is given for all x ∈ R as

f(x) =
1√
2πσ

exp(−(x− µ)2

2σ2
) (1.1)

where µ ∈ R and σ > 0. The expected value of the random variable is E(X) = µ

and the variance is V ar(X) = σ2, which means, in the case of IQ, that the scores are
normally distributed with the mean of 100 and the standard deviation of 15.

As a result, as it is apparent from figure 1.1 and known from the properties of
normal distribution, the scores of approximately 2/3 of population range between 85
and 115. The very high and very low scores are exceptionally rare, covering the cases
of profound giftedness and, on the other side of the scale, profound mental disability.
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Figure 1.2: Two examples of RPM problems [Zhang et al., 2019].

1.2.2 Raven’s Progressive Matrices

Raven’s Progressive Matrices (RPM) are a type of test of nonverbal intelligence and
abstract reasoning with multiple choice questions. It was developed in 1936 by English
psychologist John Carlyle Raven. The test comprises several questions, usually placed
in order by escalating difficulty. The test is designed to assess the reasoning ability of
the participant.

Each problem is presented as a matrix with a missing piece. The task is to identify
the relationships among the elements in each row and, based on the observations,
choose the most suitable fulfillment among given options. An example of a test item is
shown in figure 1.2. The formal definition of the problem and more detailed description
can be found in chapter 2.

1.3 Artificial Intelligence

In the last decades, we can notice the observable increase of the mentions of Artificial
Intelligence. But how can we interpret the term? According to American applied
mathematician Richard Ernest Bellman, Artificial Intelligence (AI) can be understood
as the automation of activities that we associate with human thinking, activities such
as decision-making, problem solving and learning [Russell and Norvig, 2009]. Hence,
AI represents intelligence demonstrated by machines, presenting virtual counterpart to
human cognitive skills.

With the rise of computers and AI, the notion of describing the intelligence of AI
started to be intriguing. One of the first attempts to provide the definition of the
intelligence of machines was the Turing Test, proposed by British mathematician Alan



1.3. ARTIFICIAL INTELLIGENCE 7

Mathison Turing in 1950 in his paper Computing Machinery and Intelligence. The
objective of the test is to exhibit intelligent behavior, indistinguishable from that of a
human. The principle of the test resides in the communication between a program and
a human interrogator via online typed messages. The interrogator’s task is to deter-
mine, whether the responses come from a computer generating human-like responses
or a real person. The program successfully passes the test if the interrogator guesses
incorrectly 30% of the time. Nowadays, computer programs still have problems with
fooling sophisticated judges. However, many people have been misled when they had
no idea they might be in a conversation with a computer.

In recent years, a trend to create virtual personal assistants has emerged. These
humanlike companions are able to perform a wide variety of tasks. Evidently, the
development of Artificial Intelligence is on the rise, with wide possible applications,
ranging from the prediction of the customers’ behavior to humanoid robots.

Many tasks that AI could carry out do not require intelligence (as the ability to
solve abstract reasoning problems), similarly to human behavior. Despite this fact,
we consider it an interesting subject for research to study this ability of computers.
First of all, we need to select the right model for testing as a representative to simulate
human cognition.

1.3.1 Artificial Neural Networks

One of the possible options, that could resemble humanlike reasoning, is to use Arti-
ficial Neural Networks (ANNs). ANN is an abstracted model of the brain’s activity,
simulating brain cells called neurons. A neural network is just a collection of units
connected together; the properties of the network are determined by its topology and
the properties of the “neurons” [Russell and Norvig, 2009].

The network consists of units, i.e. nodes, which are connected by directed links and
organized into layers. The links between nodes propagate activations a, simulating
the performance of the biological brain cells. Every link between nodes i and j has
assigned a numeric weight wij, representing the strength of the connection, having
either excitatory or inhibitory effect. Every neuron in the network produces output
based on its input values and its activation function. To obtain the output of the unit,
we need to compute a weighted sum of unit’s inputs as

netj =
n∑

i=0

wijai (1.2)

where ai denotes the activation from unit i connected to j and n is the number of
connected neurons from the previous layer or, in the case of input layer, the input
dimension. Then we apply the activation function as follows
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aj = g(inputj) = g(
n∑

i=0

wijai) (1.3)

where g is the neuron activation function. Some of the typically used functions are
hyperbolic tangent, logistic sigmoid or softmax.

Once we have defined the units, we need to put them together and form a network.
Then we propagate the signal from the input through the layers to the output. NNs
can be built in various ways, basically forming either a feed-forward or a recurrent
network. The former type has connections between nodes in only one direction, so
each node collects input from the units of the preceding layer. The latter also takes
in the outputs, making them additional inputs, hence creating a dynamic system.
The response of the network depends also on the initial state, possibly depending on
previous inputs of the network. Hence, recurrent networks support short-term memory
[Russell and Norvig, 2009], which can be advantageous in solving certain tasks.

Neural networks can be trained in several ways. Supervised learning is a method,
when we train the network on input-target pairs (x1, y1), (x2, y2), ..., (xn, yn). Every yi
was generated by a function f(x) = y, which is unknown to the network. This way,
we provide the network with a feedback, giving it the correct answers for the example
inputs. The task is to find a function that sufficiently approximates f . Another
approach is referred to as unsupervised learning, where the network learns patterns in
the input without any explicit feedback (e.g. clustering).

Training the network involves a few stages. Firstly, we need to train the network
on the training set, which is usually the largest part of the dataset. It consists of the
example inputs, which are presented to the network so it can learn the features of
the problem. The next step is to evaluate the model on the validation set to tune its
parameters. The validation set serves as an instrument to estimate the performance
of the network. Finally, once we have trained the best model on the training set, we
test it on the test set to measure the accuracy of its performance. The test set is a set
of questions of the same problem type, but yet not seen by the network. This way we
test the generalization ability of the network, checking whether it is capable of dealing
with new instances of the problem and not just the ones it has already seen (which is
achieved by their memorization).

1.4 Related Work

The first attempts of solving RPM led to the design of many AI agents and algorithms,
which were based on the observation of the relationships shared between the cells in
the rows of the matrix [Joyner et al., 2015]. These approaches make use of additional
knowledge about the problem structure.
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However, the idea of solving Raven’s Progressive Matrices with neural networks
has emerged in recent years. Neural networks do not need any additional information,
performing automatic feature extraction without human intervention.

1.4.1 RAVEN Dataset

Solving RPM is not a simple task, not even for a human individual. Complex problems
demand the use of deeper networks, which can extract the higher-level features from the
input. However, deep models require large datasets, otherwise they are prone to over-
fitting the training data. This phenomenon is very undesirable, because it mitigates
the generalization ability. Therefore, to be able to train the network properly, we need
a sufficiently extensive dataset.

We decided to use RAVEN: A Dataset for Relational and Analogical Visual rEa-
soNing, which was built in the context of Raven’s Progressive Matrices and aimed at
lifting machine intelligence by associating vision with structural, relational, and ana-
logical reasoning in a hierarchical representation [Zhang et al., 2019]. The dataset is
also provided with human performance as a reference. The dataset consists of 7 sub-
types, which are depicted in figure 1.3. Each subtype contains 10 000 distinct problems
comprising 16 gray-scale images, as can be seen in figure 1.2.

The RPM matrices are generated based on a set of applicable rules. After the
sampling of the rules for the matrix, they are used to create valid rows. The problem
matrix is then obtained as the concatenation of three distinct rows sharing the same
rules. The answer set is generated by modifying the attributes of the correct choice in
a way that breaks the rules of the matrix in the last row.

The rules are selected for every attribute individually and are chosen from 4 types:
Constant, Progression, Arithmetic and Distribute Three. As can be derived from the
name of Constant, this rule ensures that all the three images in the row share the same
value of a certain attribute. Progression represents a quantitative increase or decrease
between adjacent elements in the row and Arithmetic constrains the rows in a way that
the attribute of the third item in the row is obtained by addition or subtraction of the
attributes of the first two items. Distribute Three indicates three different attribute
values distributed through the row.

The human performance was evaluated by testing human subjects consisting of
college students on a subset of samples from the dataset types. First of all, they were
presented with a simple matrix with only one non-Constant rule to become familiar
with the problem. Then, they were tested on complicated questions with complex rule
combinations. The results, also with the comparison of various models they experi-
mented with, can be found in table 1.1.
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Figure 1.3: Different subtypes of RAVEN dataset [Zhang et al., 2019].

1.4.2 Solving RAVEN with Neural Networks

There have been proposed various perspectives and approaches for solving RPM with
artificial neural networks so far.

The first attempts to experiment with the RAVEN dataset were performed right by
its creators [Zhang et al., 2019]. They decided to try several well-known models to test
their performance on the dataset. Considering the image representation of the problem,
the authors decided to use models suitable for the task. In this case, as reasonable
candidates were chosen computer vision models, specifically Long Short-Term Memory
(LSTM), Convolutional Neural Network (CNN), Residual Neural Network (ResNet)
and Wild Relation Network (WReN).

LSTM is a type of a recurrent neural network, designed to process sequential data
with long-term dependencies. It is applicable to making the prediction of the next
element in a series based on the dependencies in the input sequence. This seems to
be convenient for the RPM problem, as it is of a partially sequential character. The
authors decided to extract the image features by a CNN, then pass them into the
LSTM sequentially and predict the final answer by feeding the last hidden feature into
a multi-layer perceptron (MLP) with one hidden layer. Even though it may seem that
this model suits the nature of the RPM problem, the results show that it was far from
the best choice, yielding the average performance of only 13.07%.

In the second scenario, they set up a four-layer CNN followed by a two-layer MLP.
The CNN extracts the image characteristics and the MLP applies the softmax activa-
tion function to the output layer to classify the answer. The convolutional layers of
the CNN are alternating with batch normalization and ReLU 1 layers. The last hidden
layer of the MLP uses dropout regularization to reduce over-fitting. This structure
ended up more successful than the LSTM, the average result across the dataset types
was 36.97%.

As the next model, they decided to try WReN, proposed specifically to solve RPM-
like matrices [Barrett et al., 2018]. This model also uses a CNN for image feature
extraction, but the features are then passed to a Relation Network module that forms
representations between each context component and each candidate answer, and be-
tween the pairs of the context components themselves. It outputs scores for the can-

1activation function defined as f(x) = max(0, x)
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Model Avg Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

LSTM 13.07% 13.19% 14.13% 13.69% 12.84% 12.35% 12.15% 12.99%
WReN 14.69% 13.09% 28.62% 28.27% 7.49% 6.34% 8.38% 10.56%
CNN 36.97% 33.58% 30.30% 33.53% 39.43% 41.26% 43.20% 37.54%
ResNet-18+MLP 53.43% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
Human 84.41% 95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%

Table 1.1: Testing accuracy of the neural network models and human performance on
the RAVEN dataset [Zhang et al., 2019].

didate choices and uses the softmax function at the output layer to predict the final
answer. This model was well-designed for Procedurally Generated Matrices (PGM),
which are similar to RAVEN, where it achieved the accuracy of 62.60%. However,
PGM’s average number of rules is 1.37, compared to RAVEN with 6.29 rules on av-
erage. PGM’s gigantic size and limited diversity might disguise model fitting as a
misleading reasoning ability [Zhang et al., 2019]. This caused the drop of the average
accuracy on the RAVEN dataset to just 14.69%.

The most promising approach turned out to be the use of ResNet, which proved
very effective in image feature extraction. The authors decided to replace the CNN
foundation in the second network with ResNet-18 without pre-training. More infor-
mation about the ResNet-18 model can be found in chapter 2. The average result was
53.43% with superior performance across all the subtypes. However, the gap between
the human performance and the artificial models is still quite significant.

The RAVEN dataset is split into three subsets in 6:2:2 ratio for training, validation
and testing, respectively. The models were trained with cross-entropy loss and Adam
optimizer [Kingma and Ba, 2014], the problem being treated as a classification task.
The complete results can be found in table 1.1.

The next attempt to study abstract reasoning was built on the belief that the
aforementioned methods, which make use of deep neural networks, ignore some of the
reasoning’s fundamental characteristics. According the theory of the authors, one of
the causes for the challenging nature of abstract reasoning is the presence of distract-
ing features, which should not be taken into consideration while solving the problem.
These models lack the ability to disentangle abstract reasoning and can’t distinguish
distracting features and reasoning features [Zheng et al., 2019]. Therefore, they present
a different model, which is more fitted for abstract reasoning problems. Logic Embed-
ding Network (LEN) is a neural network with a reasoning relational module. At first,
the input images (8 context images from the problem matrix and 8 candidate images)
are preprocessed by a shallow CNN and an MLP to extract the image features. The
reasoning module then computes the scores for the consecutive row-wise and column-
wise combinations of the context with the candidates. The answer is selected as the
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Model Avg Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

LEN 72.9% 80.2% 57.5% 62.1% 73.5% 81.2% 84.4% 71.5%
ResNet-18 77.18% 72.75% 57.00% 62.65% 91.00% 89.60% 88.40% 78.85%
ResNet-50 86.26% 89.45% 66.60% 67.95% 97.85% 98.15% 96.60% 87.20%

Table 1.2: Testing accuracy of Logic Embedding Network (LEN) [Zheng et al., 2019]
and ResNet models in supervised manner [Zhuo and Kankanhalli, 2020] on the RAVEN
dataset.

highest value across the outputs of softmax activation function applied to the predicted
scores.

As can be seen in table 1.2, this novel model with the reasoning module outper-
formed the best prior model by 19.5% on average. A remarkable observation is that
the performance increase between the models on the Center dataset subtype is notably
higher than the average, close to 30%. This might signify a closer similarity between
this approach and human reasoning, considering that this dataset subtype shows to be
the most elementary for human subjects, with the 95.45% accuracy of the answers.

Despite the opinion of the authors that the inferior performance of the deep net-
works was caused by not being well fitted for the problem, there have been major
improvements in approaches without any reasoning modules. The most significant
advancement, which inspired us to experiment with the provided solution more, was
based on residual networks (ResNets). Different from the previous works that focus
on designing an effective neural network, Zhuo et. al. mainly analyze how to reduce
over-fitting in RPM, which is an important commonly occurring problem in supervised
learning. Moreover, they wanted to reflect the human behavior and came up with an
alternative based on unsupervised learning. They were interested whether NNs can
solve RPM problems without any labeled data, thus they proposed a novel method
called Multi-label Classification with Pseudo Target (MCPT). This approach is based
on the observation that the third row in the problem matrix has to share the same
rules with the first two rows.

The supervised method follows up on the initial work by Zhang et al. and further
refines their foremost technique, which makes use of ResNet-18. Their results show that
ImageNet pre-training [Paszke et al., 2019] and the use of deeper models is beneficial to
solving RPM. Even though the type of images used in ImageNet pre-training is notably
different from the RPM images, it can apparently help reduce over-fitting and speed
up model convergence. Furthermore, they applied dropout on the penultimate layer
and froze the parameters of all batch normalization layers in the model during training
in all experiments. The models were trained using Adam optimizer and mini-batch of
32 samples, learning rate set to 0.0002 at the beginning and reduced every 10 epochs
to its half. The input images were normalized to a range [0,1] and resized to 224x224,
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Model Avg Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Random 12.50% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50% 12.50%
W/o MCPT 5.18% 7.60% 7.00% 7.00% 2.45% 3.20% 3.20% 5.30%
W/ MCPT 28.50% 35.90% 25.95% 27.15% 29.30% 27.40% 33.10% 20.70%

Table 1.3: Testing accuracy of ResNet-18 in unsupervised manner
[Zhuo and Kankanhalli, 2020] on the RAVEN dataset.

as the standard input shape of ResNet.
Table 1.2 shows the results of the supervised experiments performed on the RAVEN

dataset. The model with ResNet-50 backbone outperforms LEN by 13.36% on average,
which seems to refute the theory that ResNet-based models do not exhibit the ability
to distinguish between distracting and reasoning features. ResNet-50 surpasses the
results of LEN on every problem configuration and even ResNet-18 performs better
than LEN on every configuration except for Center and 2x2Grid. But despite that,
both of the ResNet models achieve the best results on the Left-Right and Up-Down
subsets, whereas for human subjects was Center the least problematic. Furthermore,
the 2x2Grid and Out-InGrid are comparably complicated for humans, but the latter
appears to be much more straightforward for the network. These differences might
indicate that the reasoning ability on the human level works in a slightly different way.

The unsupervised technique, called Multi-label Classification with Pseudo Target,
is based on the fact that the three rows of the problem matrix have to satisfy the
same rules. The authors were inspired to explore the unsupervised solving techniques
by the human approach, dealing with RPM without any supervision or labeled data.
They decided to use the ResNet-18 model with ImageNet pre-training and the same
implementation setup as in the supervised experiments. For the demonstration of the
effectiveness of the method, they also provided the results of the model without a
pseudo target and the accuracy of random guess. As the results show, unsupervised
approach without MCPT seems to be counterproductive, with the average accuracy
even below random guess. Given 8 candidate choices, the probability to select the right
answer is 12.50%, which is 7.32% higher than the average correctness of the approach
without MCPT. However, the approach with MCPT seems to be promising, more
than doubling the accuracy of random guess. Another interesting observation is that
the model trained with the MCPT approach performs the best on the Center subset,
similarly to human reasoning.

The unsupervised learning is a fascinating area, because it does not require labels
for training which makes it usable in vast areas where labelled data are not available, or
only in small numbers. More detailed explanation of the MCPT approach is obtainable
in chapter 2.
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Chapter 2

Methodology and Implementation

In this chapter we state the aims and objectives of our work. The chapter also explains
the methods used in the thesis and describes the implementation in detail.

2.1 Aims and Objectives

This thesis concerns the question, whether machines are capable of abstract reasoning,
comparably to humans. In order to address this inquiry, we set the goals and specify
the steps that need to be taken to achieve the desired outcome.

Our aim is to investigate the ability of neural networks to solve Raven’s Progressive
Matrices, a non-verbal IQ test widely used for testing human intelligence. We would
also like to further analyze the reasoning ability of the chosen model by the visualization
of its hidden representations. To achieve this, we implement a chosen neural network
and train it for solving RPM. We test the model’s generalization ability given various
sizes of the training set and the types of problems it consists of.

We decided to follow up on the work [Zhuo and Kankanhalli, 2020] and use ResNet-
18 as the studied model. Their results show superior performance of the models based
on residual networks (see table 1.2). We use the publicly available implementation of
ResNet-18 from the PyTorch library to make an unbiased comparison to the previous
work. We implement the training according to the information provided in the article
[Zhuo and Kankanhalli, 2020] and perform the experiments on the RAVEN dataset
[Zhang et al., 2019].

2.2 Problem Definition

Let X be a problem matrix with k elements and Y the answer set with l potential can-
didates. To solve an RPM problem instance means to select the most fitting candidate
yz to complete the matrix X, where z is the index of the candidate yz and z ∈ {1, ..., l}.

15
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In the supervised approach, we are trying to learn a projection function f over
(X, Y ) and Z, given we have n training samples {(xi, yi, zi) | 1 ≤ i ≤ n;xi ∈ X, yi ∈
Y, zi ∈ Z}. The method can be formulated as

Z = f(φ(X ∪ Y ), w) (2.1)

where ∪ symbolizes the concatenation that stacks the images of the problem matrix
with the answer set images, φ denotes the image features over (X ∪ Y ) and w is
the hyperparameter the network is supposed to learn. This way, the RPM problem
is considered as a multi-class classification task. The network is trained using cross-
entropy loss, which is calculated for every problem as

loss(out, z) = − log(
exp(outz)∑
j exp(outj)

) (2.2)

where z is the target, i.e. the index of the correct answer, and out the output of the
network. As the final answer is selected the choice with the highest output probability.
In the RAVEN dataset, we deal with matrices consisting of 8 images and the task is
to select the 9-th element from 8 candidate choices to complete the matrix.

The aim of unsupervised approach is to find the correct answers for (X, Y ) with-
out giving the network the answers to the problem instances during the training.
The rows of the correctly completed matrix, i.e. (xi,1, xi,2, xi,3), (xi,4, xi,5, xi,6) and
(xi,7, xi,8, yi,j); j ∈ {1, ..., 8}, have to share the same rules.

2.3 ResNet-18

ResNet-18 is a deep residual network having 17 convolutional layers and a fully-
connected layer. Residual networks use skip connections, which makes them capable of
jumping over some layers. The addition of the skip connections helps the model with
the vanishing gradient problem and over-fitting, in case we use more than the suitable
number of layers. The authors provide comprehensive empirical evidence showing that
these residual networks are easier to optimize, and can gain accuracy from considerably
increased depth [He et al., 2016].

The PyTorch implementation of the standard ResNet-18 model can be seen in figure
2.1.

2.4 Supervised Learning

In this implementation, the images in the problem matrix X and in the corresponding
answer set Y are stacked together as the input for the neural network. Therefore,
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Figure 2.1: PyTorch implementation of standard ResNet-18.
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we need to replace the first convolutional layer of the ResNet-18 model to expect 16-
dimensional input. The output dimension of the fully-connected layer is set to 8, to
coincide with the number of potential candidates.

2.5 Multi-label Classification with Pseudo Target

The MCPT approach uses a pseudo target in a form of two-hot vector, which does not
contain the information about the correct answer. However, formally, it converts unsu-
pervised learning to supervised. The vector is designed based on the observation that
the rows are generated by applying the same rules. Therefore, the authors construct
10 rows as can be seen in figure 2.2. The first two are taken directly from the problem
matrix and the rest 8 are produced as (xi,7, xi,8, yi,j); for all j ∈ {1, ..., 8}. The first 2
values of the target vector are set to 1 and the other 8 to 0. This way, we force the
outputs for the rows with the candidate choices to get close to zero. The expectation is
that the row with the correct answer should keep producing higher output value than
the rows with the incorrect ones, which should reflect the similarities of the correctly
completed row and the two original rows from the matrix.

This unsupervised method can be represented by the formula

Z̃ = g(φ(X ∨ Y ), w) (2.3)

where Z̃ represents the pseudo target, which is the same for every RPM instance, φ
denotes the image features, g is the projection function, (X ∨ Y ) are the rows, i.e.
r1 = (xi,1, xi,2, xi,3), r2 = (xi,4, xi,5, xi,6), rj = (xi,7, xi,8, yi,j−2); for all j ∈ {3, ..., 10}.
The rows constructed this way are then passed to the network to acquire their scores.
The input layer of the standard ResNet-18 model is 3-dimensional, which is suitable for
our input, although it is originally meant to take in RGB images. The images in the
RAVEN dataset are grayscale, therefore they have only 1 color dimension, which means
that we can fit in the whole row as the input in one step. The complete scores for each
RPM problem are obtained in 10 consecutive steps. The output layer is replaced by
a fully-connected layer with one neuron that predicts the score of the input row. The
scores are then concatenated together and normalized by applying a sigmoid function
to get scores in range [0,1]. The model is trained using Binary Cross Entropy as the
loss function, which can be described as

loss(out, z̃) = −
n∑

i=1

[z̃i log outi + (1− z̃i) log(1− outi)] (2.4)

where z̃ is the pseudo target vector, z̃i ∈ {0, 1}, and out is the concatenated output of
the network. During testing, the first two values of the prediction are removed and the
candidate filled in the row with the highest score is considered the final answer.
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Figure 2.2: Schema of the MCPT approach [Zhuo and Kankanhalli, 2020].

2.6 Implementation Details

The differences in the model and training in the supervised and unsupervised approach
are described in sections 2.4 and 2.5, respectively. This section presents the common
features of the implementations.

From the wide variety of open source machine learning libraries, we decided to use
PyTorch with the Python interface. ResNet-18 is one of the models that are imple-
mented in the library, so we used the model pre-trained on the ImageNet dataset in all
our experiments and made changes according to the article [Zhuo and Kankanhalli, 2020].
We added a dropout with value 0.5 before the last layer to reduce over-fitting, which is
a significant problem in deep networks. Moreover, we froze all the batch normalization
layers in the model. For the training of the network, we used Adam optimizer with
the initial learning rate of 0.0002, which was reduced to its half every 10 epochs. The
model was trained for 30 epochs, but it was validated after each epoch and as the final
state for evaluation was selected the one with the highest validation accuracy. Then we
performed the testing on the testing parts of the dataset subsets. We used 6 folds for
training, 2 for validation and 2 for testing. The input images were normalized to the
range [0,1] and resized using bicubic interpolation to 224x224, which is the standard
input size for ResNet-18 in PyTorch. To speed up the training of the model, we ran
the computations on the GPU using CUDA technology developed by NVIDIA. The
CUDA Toolkit provides a comprehensive development environment for C and C++
developers building GPU-accelerated applications [Cook, 2012], which was utilized by
the developers of PyTorch to accelerate the performance of the library.

We used UMAP for the visualization of the hidden representations on the penul-
timate (average pooling) layer to look closer at the decisions of the network. UMAP
is a general purpose manifold learning and nonlinear dimension reduction algorithm
[McInnes et al., 2018], that is very popular for the visualizations in machine learning.

For more detailed description of the attached source codes see Appendix A.
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Chapter 3

Experiments

This chapter describes the experiments that were performed on the RAVEN dataset,
lists and interprets the obtained results.

3.1 Supervised Learning Experiments

3.1.1 Joint Training

First of all, we decided to replicate the basic experiment, which is demonstrated in
[Zhuo and Kankanhalli, 2020]. The authors report their results on ResNet-18 without
pre-training, but we use the model with ImageNet pre-training in our experiments.
Otherwise, the experimental setup is identical to the one in their work. As table 3.1
shows, the average accuracy of the models is very similar, which suggests that the
pre-training does not play an important role in the final model generalization ability
in this case. The results of this experiment are used as the baseline for the comparison
of the latter experiments mentioned in the thesis.

Model Avg Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

w/o pre-train 77.18% 72.75% 57.00% 62.65% 91.00% 89.60% 88.40% 78.85%
w/ pre-train (ours) 77.06% 78.30% 56.10% 59.65% 92.50% 91.15% 86.25% 75.50%

Table 3.1: Testing accuracy of supervised ResNet-18 without pre-training
[Zhuo and Kankanhalli, 2020] on the RAVEN dataset compared to our experiment with
a pre-trained model.

The results show that the pre-training causes the network to perform slightly better
on the subsets with less complicated image structure. The ImageNet dataset consists
of real-world images, which are very different from the ones in the RAVEN dataset.
However, according to the article, the pre-training helps significantly with the training
of the deeper ResNet models. Here it seems to help with the categories Center, where
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Figure 3.1: Comparison of the testing accuracy of the model trained on all subsets and
trained separately for each category.

it led to quite notable increase in accuracy, Left-Right and Up-Down, where it caused
just a minor improvement. The subsets 2x2Grid and Out-InCenter show only small
decrease in the testing accuracy and the results of 3x3Grid and Out-InGrid fell by
approximately 3%.

In the next experiment, we decided to study the outcomes of training the network
on the subsets separately. Each subset consists of 6000 RPM problems dedicated for
training, which is considerably less than the whole dataset combined. Our hypothesis
was that the model would perform worse compared to the training on the whole set.

3.1.2 Separate Training

Figure 3.1 indicates that the experiment fulfilled the expectations. All the problem
categories exhibit significant decrease in accuracy. The main problem with shrinking
the dataset size seems to be over-fitting, because the model is too large for small
datasets. However, the figure shows that even though the dataset size changed equally
(from 42 000 for the whole dataset to 6000 for a single category), the testing accuracies
did not decline by the same rate. When we train the model on the whole dataset, most
of the categories perform well, which goes along with the average accuracy of 77.06%.
Some of the subsets manifest worse results, which is intensified even more when trained
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separately.
Left-Right is the most successful subset, with 92.50% accuracy, provided we train

the model on all the subsets combined together. Its accuracy drops to 68.45% when
trained separately. That represents decline by a quarter of the initial accuracy. A very
similar result was obtained on Up-Down, where the training on the whole dataset ended
with the accuracy of 91.15%. The decrease was a bit stronger, resulting in 58.45%. We
consider this very interesting, given the difference between Left-Right and Up-Down
was originally just 1.35% and one task is just a transposition of the other.

On the other hand, 2x2Grid performs much worse already in the first experiment.
The accuracy starts on 56.10%, which is less than the accuracies of 3 of the other
subsets (Left-Right, Up-Down, Out-InCenter) trained separately. Moreover, if we train
2x2Grid separately, the precision of the answers drops to 31.85%, which is the lowest
of the results.

Another interesting point is that the ratio of the result obtained after the training
on a single subset to the one after the training on the whole dataset varies with each
category. The smallest decrease is observable on the Left-Right subset, where the result
of the separate training presents 74.00% of the original result (decrease of 26.00%). Up-
Down shows an absolute decrease of 32.70%, which is 35.87% relatively to the result of
the training on the subsets combined. Also Out-InGrid and Out-InCenter demonstrate
comparable fall of accuracy, of 31.52% and 32.41%, respectively. However, the results
of the other categories diminished more significantly, Center by 40.04%, 2x2Grid by
43.23% and 3x3Grid by 46.19% relatively to the prior results.

3.1.3 Combinations of 2 Categories

Since there are obvious differences between the subset performances, we decided to
study the influence of the training on more subsets at once. We expected that it would
help the model to improve its generalization ability.

To begin, we tried several combinations with the Center category. When trained
separately, Center results in the accuracy of 46.95%. We tried the combinations with
2x2Grid, Out-InGrid and Out-InCenter. As can be seen in figure 3.2, the correctness
of the answers on Center increased in every scenario, although by a bit different rate.
The better the category scores separately, the more it helps to lift the accuracy of
Center. However, the result of the other category in each experiment shows the opposite
behavior, so the better the category scores separately, the less its accuracy is raised
when trained together with Center. That means that the biggest increase is observable
on 2x2Grid, where it increased by 8.9%, while the smallest is on Out-InCenter, where
the accuracy rose from 58.3% to 63.8%, which makes the growth of 5.5%.

In the next experiment, we tried combinations with 2x2Grid. This is the subset
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Figure 3.2: Results of the model trained on a combination of 2 subsets, where one of
them is Center.

Figure 3.3: Results of the model trained on a combination of 2 subsets, where one of
them is 2x2Grid.
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that performs the worst when trained separately. When trained with Center (figure
3.2), the accuracy rises to 40.75%. We tried to combine it with visually similar types
- 3x3Grid and Out-InGrid. However, 2x2Grid did not perform better, compared to
trained with Center, in any of these experiments. Also Out-InGrid does not demon-
strate a greater increase in accuracy, showing the improvement of only 5.3%. The
results are summarized in figure 3.3.

The next experiments deal with combinations of 3x3Grid with Left-Right and Up-
Down, as shown in figure 3.4. Left-Right and Up-Down are the types producing the
best results when trained separately. They both seem to have a positive effect on the
accuracy of 3x3Grid, lifting it to 45.65% and 47.55%, respectively. On the other hand,
the accuracies of both the other subsets decreased, 3x3Grid having an inhibitory effect
in the training of these sets.

Figure 3.4: Results of the model trained on a combination of 2 subsets, where one of
them is 3x3Grid.

The last combinations of two subsets consist of categories that are similar to each
other. As was mentioned above, Left-Right and Up-Down are a transposition of each
other with similar testing accuracies after the separate training. Figure 3.5 implies
that the comparable starting point resulted in increase in both of the accuracies. Out-
InCenter and Out-InGrid both comprise of an outer shape with an inner structure. The
separate training ended up with the results of 58.3% for Out-InCenter and 51.7% for
Out-InGrid. The second graph of figure 3.5 illustrates that they also enhance results of
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each other when trained together and the joint training reduces the difference between
their accuracies.

Figure 3.5: Results of the model trained on a combination of 2 visually similar subsets.

3.1.4 Combinations of 3 Categories

The results of the previous experiments suggest that the size of the training set plays
a significant role in the model generalization ability. However, the outcome obviously
depends also on which of the categories are joined together. Therefore, we decided to
look into this further and perform experiments with triplets of categories.

First of all, we tried to combine three subsets that do not have much in common
and then compare it to a triplet consisting of somehow connected subsets. The first
group contains Center, 3x3Grid and Out-InGrid. Figure 3.6 illustrates the contrast
between the separate training and the joint training of these three problem categories.

The second triplet consists of Center, 2x2Grid and Out-InGrid. These categories
have a visually detectable connection. Out-InGrid comprises of an outer shape, which
is similar to Center, and an inner structure of 2x2Grid. Moreover, the results should be
comparable, because 2x2Grid and 3x3Grid produce very similar results when trained
separately. As figure 3.6 shows, there is a difference to some extent between the re-
sults of the experiment with 2x2Grid, compared to the one with 3x3Grid (figure 3.6).
3x3Grid manifests a bigger increase in accuracy than 2x2Grid, but 2x2Grid enhances



3.1. SUPERVISED LEARNING EXPERIMENTS 27

Figure 3.6: Results of the model trained on 3 subsets. Darker colors represent the
accuracy of the combined training and lighter the results obtained after separate train-
ing.
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the results of Center and Out-InGrid more.
The next experiment deals with subsets Center, Left-Right and Up-Down. The

combination of Left-Right and Up-Down was very successful, therefore we were inter-
ested, what effect might have the addition of another category into training. It is a
little complicated to decide which category has the most similar structure, so we chose
Center as it has the most elementary structure. Figure 3.6 displays surprising results
of the experiment. Not only did not the addition of Center help to increase the testing
accuracy of Left-Right and Up-Down, it led to a significant decrease, compared to the
joint training of these 2 categories.

As the last experiment with a triplet, we chose the 3 subsets producing the best
results when trained separately, which are Left-Right, Up-Down and Out-InCenter.
We assumed that they have a potential to improve each other’s performance. This
assumption was confirmed, supported by the results in figure 3.6. Each category ex-
hibits a significant improvement, scoring over 80%. The average increase is 24.5%,
which advances the accuracies almost to the level of the training of all the problem
types together. In that scenario, Left-Right scores 92.5%, which is only 3.75% more,
Up-Down 91.15%, which is a 4% difference and Out-InCenter 86.25%, which is 3.45%
over the result of this combination.

3.1.5 Excluding Categories

After observing the differences between the separate training and the training of com-
binations, there arose a question, how would excluding certain categories from the
whole training set affect the results. We decided to study 2 groups of types with visual
connections - Left-Right with Up-Down, and 2x2Grid with 3x3Grid and Out-InGrid.

In the first set of experiments, we began with excluding only Left-Right. As can be
seen in figure 3.7, the result of every category decreased a little. The most significant
decline is observable on the Left-Right category, as expected. The average decrease
among the trained categories is 2.38%, while the untrained subset got worse by 22.35%.

Then we excluded only Up-Down and compared the results. Figure 3.8 portays the
comparison to the training of the whole training set. The results are similar to the
first experiment, the average decrease is 2.25%, provided we take into consideration the
trained subsets. The performance of Up-Down declined by 15.45%, which is notably
less than the decrease of untrained Left-Right.

Lastly, we exclude both of the subsets, training on the remaining 5 categories.
From figure 3.9 is observable that both of the excluded categories perform even worse
than when excluded individually. Compared to the previous two experiments, all the
problem types produce worse results. The average decrease of the trained subsets is
6.85% and among all the subsets 12.22%.
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Figure 3.7: Results of the model trained on the whole training set, excluding Left-Right.

Figure 3.8: Results of the model trained on the whole training set, excluding Up-Down.

The second group was formed around the subset 2x2Grid, because it produces
the worst score. At first, we excluded only the one and observed the changes in the
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Figure 3.9: Results of the model trained on the whole training set, excluding Left-Right
and Up-Down.

scores. Figure 3.10 shows the results of training without 2x2Grid. As expected, all the
categories display a decrease in accuracy. However, it is interesting that the excluded
dataset did not drop very much, only by 10.6%, similarly to other categories.

When we exclude 2x2Grid and also 3x3Grid, all the categories, except for 3x3Grid,
manifest a smaller decrease in testing accuracy, as shown in figure 3.11. When exclud-
ing only 2x2Grid, the average decrease is 9.07%, when excluding both 2x2Grid and
3x3Grid, the decrease changes to 7.08%. This is remarkable, given we reduce the size
of the training set.

We further analyze the outcomes by excluding 2x2Grid andOut-InGrid. Figure 3.12
implies a similar behavior as when we exclude 2x2Grid with 3x3Grid. This training
set also results in a smaller decrease of accuracy of every problem type, except for
Out-InGrid, compared to excluding only 2x2Grid. The average decrease dropped to
7.35%, which is similar to case of excluding 2x2Grid and 3x3Grid.

The final experiment deals with the consequences of excluding the whole group
(2x2Grid, 3x3Grid and Out-InGrid), the results are summarized in figure 3.13. The
experiment copies the trend of the previous ones, resulting in an even smaller decrease
of 6.43%. All the included subsets show a better performance, compared to excluding
less subsets, while the accuracy of the excluded ones slightly varies.



3.1. SUPERVISED LEARNING EXPERIMENTS 31

Figure 3.10: Results of the model trained on the whole training set, excluding 2x2Grid.

Figure 3.11: Results of the model trained on the whole training set, excluding 2x2Grid
and 3x3Grid.
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Figure 3.12: Results of the model trained on the whole training set, excluding 2x2Grid
and Out-InGrid.

Figure 3.13: Results of the model trained on the whole training set, excluding 2x2Grid,
3x3Grid and Out-InGrid.
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3.2 Unsupervised Learning Experiments

The unsupervised approach from the article is based on an interesting principle, so we
also tried to perform a few experiments inspired by the MCPT approach. Firstly, we
tried to replicate the experiment and compare the outcomes. As shown in table 3.2,
the experiment ended up unsurprisingly, producing results very similar to the ones in
the article.

Model Avg Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Zhuo et. al. 28.50% 35.90% 25.95% 27.15% 29.30% 27.40% 33.10% 20.70%
Ours 27.79% 36.00% 23.95% 28.50% 27.20% 24.95% 32.15% 21.75%

Table 3.2: Testing accuracy of ResNet-18 in unsupervised manner
[Zhuo and Kankanhalli, 2020] on the RAVEN dataset compared to our results.

Figure 3.14: Results of the model trained on the whole training set in an unsupervised
manner in various scenarios.

The next experiments preserve the nature of the MCPT approach. The average
accuracies are depicted in figure 3.14 and compared to the basic MCPT approach.
The first two experiments are based on the modification of the pseudo target vector.
The target in MCPT is a vector of 2 ones and 8 zeros. In our first experiment, we
keep the first 2 values and the 8 are chosen randomly from the uniform distribution
in range [0,0.5]. The underlying hypothesis was that, rather than to force the outputs
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to predict zero during training, the corresponding output neurons would be provided
with arbitrary information, statistically balanced. In this aapoach, there could still be
incentive to build internal representations that could help the correct output canidate to
produce the highest output value drawing on shared similarities with the first two rows
of inputs. This experiment did not end up better than the original MCPT approach,
with the testing accuracy of 24.8%. In the second experiment, one of the 8 zeros is
replaced with one, chosen randomly. This way, we do not tell the network the correct
answer, but we let it know that there exists one. However, this did not help to improve
the accuracy either, resulting in 24.06% accuracy. The last unsupervised experiment
uses the original pseudo target, but the initial learning rate for the output layer is
set to half the learning rate of other layers, being 0.0001. As the figure shows, the
modification did not make a difference, compared to the MCPT. Unfortunately, we
did not come up with a technique that would improve the results in an unsupervised
manner.

3.3 Visualization and Interpretation of the Results

To further analyze the behavior of the network, we looked into it and collected the ac-
tivations of the penultimate layer. To reduce the high dimensionality for visualization,
we used UMAP and plotted it in 2D. Figure 3.15 displays the hidden representations
of the model trained on the whole RAVEN dataset. The answers seem to form clus-
ters based on the winner neuron. We noticed that the clusters of Left-Right are much
more separated than the clusters of the worse performing subsets, e.g. 2x2Grid. To ex-
plain this phenomenon, we measured the confidence of the network while answering the
questions. This proved to be the answer, as captured in figure 3.16. The subsets with
higher accuracy demonstrate higher confidence, which results in more distant clusters
of answers.

It is difficult to interpret the results, more accurate interpretation would need to
study and somehow precisely measure the similarities of the problem categories. We
based the selections of the subsets in our experiments on their visual similarities. More-
over, we decided to always train the model either on the whole subset or on none of its
items, never training just a certain portion. It is known that reducing the number of
the training samples decreases the accuracy of neural network models and we focused
on the dynamics of the model given various types of questions. However, some of the
results look very interesting, suggesting that the network profits from the knowledge
acquired from the other problem types.

Concerning the training on the combinations of 3 subsets, it is apparent that the
smallest improvement was notable on the combination of 3 random ones, i.e. those that
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Figure 3.15: Visualization of the hidden representations on the penultimate layer of
the model trained on the whole training set in a supervised manner. The different
colors illustrate the order of the answer chosen by the network (1 to 8), i.e. the most
activated output neuron.

are visually dissimilar. On the contrary, the highest advance showed the experiment
with the subsets with visually observable connection - Center, 2x2Grid and Out-InGrid.
Although, we consider interesting that this combination resulted in significantly higher
accuracy of Center and not Out-InGrid as we expected (compared to the random
combination of Center, 3x3Grid and Out-InGrid). This behavior remains unclear and
would need further research.

Another interesting observation is that when we excluded the 2x2Grid, the accuracy
of the other subsets dropped more than when we excluded both 2x2Grid and 3x3Grid.
The similar situation arose when we excluded 2x2Grid and Out-InGrid. Furthermore,
excluding all three of these subsets seemed to be the best option, suggesting these
problem types are perceived in a similar manner by the network.

The second studied group of excluded subsets also produces intriguing results.
When we trained all the subsets with the exception of Left-Right, the decrease of
its accuracy was less significant than when we excluded both Left-Right and Up-Down.
The same is notable when eliminating only Up-Down from the training, its accuracy is
higher than when omitting both of the subsets. We assume there is a certain connection
between these two problem types from the network’s point of view.

The last observation we would like to point out is that the performance of Up-Down
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Figure 3.16: Histograms of the confidence of the model trained on the whole training
set in supervised manner. The dark blue marks the incorrect answers and light blue
the correct ones.

in the scenario of training the network on all the categories, except for the aforemen-
tioned one, is superior to its performance when trained only on the one, indicating
that the network extracts knowledge from the other problem types. The correctness of
the answers in the case without Up-Down represents 75.7% of the answered questions
from this problem type, which could be considered a decent outcome even for a trained
network. To emphasize the conditions of the experiment once again, our model did
not see any sample from this problem type and still got right three quarters of the
questions, which is a fascinating result.



Summary

Neural networks are often considered and used as "black boxes" by the unversed com-
munity. We chose the opposite approach and looked inside into the network to try to
explain its decision-making process. We successfully tested the generalization ability
of the network, resulting in various interesting observations. Some of our experiments
ask for further investigation to clarify the behavior of the network.

Most importantly, the chosen model is very effective in image feature extraction,
which makes a strong foundation for it to cope with more difficult visual problems,
such as solving RPM. We consider it remarkable that the unsupervised MCPT ap-
proach achieves better results than certain well-known models or models dedicated to
solve RPM-like matrices trained in supervised manner (LSTM, WReN). Although we
did not succeed in improving the MCPT method, we realize the significance of unsu-
pervised approaches and therefore encourage other researchers to attempt to refine the
technique.

The experiments performed within the thesis point to the potential of neural net-
works in the field of abstract reasoning. The training on the whole RAVEN dataset
produces superior results, suggesting that the networks profits from learning on several
problem categories. However, the selection of the training subsets proved to be very
significant as certain combinations produce better results than others, even though the
size of the training set is the same. The worse results obtained during the separate
training might be caused by the significant reduction of the size of the training set,
cutting it to 1/7. ResNet-18 is a deep model, requiring extensive datasets, and 6000
training samples may not be sufficient to properly train the network. Nevertheless, Left-
Right shows a decent performance, answering correctly 68.45% of the questions. Hence,
Left-Right trained separately outperforms 2x2Grid and 3x3Grid trained together with
the rest of the problem categories. The combinations of 2 similar subsets (Left-Right
and Up-Down, Out-InCenter and Out-InGrid) also achieved good results, suggesting a
connection between the combined types. The most successful triplet turned out to be
the one consisting of the subsets with the highest accuracy demonstrated in the sep-
arate training. Also excluding certain problem types from the training set produced
interesting results (e.g. excluding 2x2Grid, 3x3Grid and Out-InGrid produced better
results than excluding only 2x2Grid), worthy of additional research.
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To conclude, the average testing accuracy of the supervised approach does not
reach the level of humans, but some of the categories achieve even better results. To
continue in our research, we propose to design a metrics to quantify the extent of
similarity among the problem types based on their features and not only on our visual
perception. It could be also interesting to quantify the similarities among the options
in the answer set and study the wrong answers of the network. We tried to do this
by visually checking the incorrectly answered questions and the corresponding answer
sets and noticed that the answers chosen by the network were very similar to the
correct ones, likely fooling also human subjects. Hence, the results of the performed
experiments suggest that the tested model is showing signs of abstract reasoning.
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Appendix A

Contents of the Electronic Attachment

The electronic attachment contains the source codes used for the experiments and the
results. The file network.py defines the model, util.py defines the training functions
and main.py loads the data and runs the program. The files are divided into supervised
and unsupervised part, the source codes for the models slightly differ.
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