
Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University

Pavol Van£o

Processing of Tree-Structured Data

with Recursive Self-Organizing Maps

Dissertation Thesis

Supervisor: doc. Ing. Igor Farka², PhD.

9.2.1 INFORMATICS

Bratislava, 2010

Dedicated to my family and all my friends for believing in me.

Hereby I declare that I wrote this thesis myself with the help of no more
than the referenced sources.

Vyhlasujem, ºe predkladaná práca je mojím originálnym dielom, ktorý
som vypracoval samostatne, s pouºitím zdrojov uvedených v zozname liter-
atúry.

Signed:

Abstract

VAN�O, PAVOL: Processing of Tree-Structured Data with Recursive Self-
Organizing Maps. [Dissertation thesis]. Comenius University in Bratislava.
Faculty of Mathematics, Physics and Informatics; Department of Applied In-
formatics. Thesis advisor: doc. Ing. Igor Farka², PhD. Thesis defense com-
mittee: 9.2.1. Informatics. Committee chairman: prof. RNDr. Branislav
Rovan, PhD. Quali�cation degree: Philosophiæ doctor in Informatics. Bra-
tislava, 2010. 107 p.

The thesis deals with selected models of recursive self-organizing maps
(SOMSD, MSOM and RecSOM) that have recently been extended for pro-
cessing complex data types, namely tree structures. Regarding MSOM we
argue that despite the commutativity operation in context computation it
can distinguish between the branches of trees with permuted children, and
support our theoretical claim with computer simulation. We experimentally
compare the recursive SOMs using three data sets of increasing complexity.
For comparison we introduce and apply six quantitative measures focusing
on di�erent aspects of the trained maps. Next, the practical usage of these
recursive maps is experimentally shown on data sets encoded in XML format.
Visualization and clusterization using these models is used for data mining.
Batch learning for SOMs is presented with its advantages and disadvantages.
It is shown experimentally when batch learning, in its current form, cannot
be used, and a modi�ed learning algorithm is proposed. Batch learning for
recursive and recurrent SOMs is introduced that enables distributed compu-
tation. Finally, methods for data extraction constructed from the trained
maps are introduced. When the complete data cannot be completely re-
trieved, the data reconstruction methods are proposed, either in a form of a
lookup table or based on a feedforward neural network.

Abstrakt

VAN�O, PAVOL: Spracovanie stromových ²truktúr pomocou rekurzívnych
samoorganizujúcich sa máp. [Dizerta£ná práca]. Univerzita Komenského v
Bratislave. Fakulta matematiky, fyziky a informatiky; Katedra aplikovanej
informatiky. �kolite©: doc. Ing. Igor Farka², PhD. Komisia pre obhajoby:
9.2.1 Informatika. Predseda: prof. RNDr. Branislav Rovan, PhD. Stupe¬
odbornej kvali�kácie: Philosophiæ doctor v odbore Informatika. Bratislava,
2010. 107 s.

Práca sa zaoberá vybranými modelmi rekurzívnych samoorganizujúcich
sa máp (SOMSD, MSOM a RecSOM), ktoré boli v ostatných rokoch navrhnu-
té na spracovanie zloºitých dátových typov, konkrétne stromových ²truktúr.
V prípade modelu MSOM argumentujeme, ºe aj napriek komutatívnosti op-
erácie vo výpo£te kontextovej reprezentácie, MSOM dokáºe rozlí²i´ medzi
vetvami stromov s permutovanými synmi, £o potvrdzujeme aj výpo£tovou
simuláciou. Vybrané modely rekurzívnych SOM experimentálne porovná-
vame na troch dátových mnoºinách rôznej zloºitosti. Za ú£elom porovnania
de�nujeme a aplikujeme ²es´ kvantitatívnych mier, ktoré sa zameriavajú na
rôzne vlastnosti natrénovaných máp. Praktické pouºitie týchto rekurzívnych
máp ilustrujeme na dátových mnoºinách zakódovaných v XML formáte.
Vizualizácia a klasterizácia pomocou týchto modelov slúºi na objavovanie
znalostí v dátach. V prípade klasických SOM prezentujeme dávkové u£enie
s jeho výhodami a nevýhodami, poukazujeme na obmedzenia jeho pouºitia a
navrhujeme úpravu algoritmu. V prípade rekurzívnych a rekurentných SOM
tieº navrhujeme algoritmus dávkového u£enia, ktoré umoº¬uje distribuované
spracovanie dát. V závere navrhujeme metódy objavovania znalostí z na-
trénovanej mapy. Ak nie je moºné získa´ úplné dáta, uvedené sú metódy
rekon²trukcie dát, a to bu¤ pomocou tabu©ky alebo pomocou doprednej
neurónovej siete.

Foreword

In this thesis we deal with existing recursive models of self-organizing maps,
designed for processing of structured data, namely trees. We also extend one
recurrent model for more complex structures. These recursive models, intro-
duced quite recently in the literature, can provide a connectionist alternative
(to symbolic models) for processing structured data, and their computational
properties have yet to be appreciated.

We compare these models on three di�erent data sets to point to the
strengths and weaknesses of the presented models. We show how these mod-
els can be used in real-life application using XML format. We focus on batch
learning of the classic self-organizing map and show, using an example, when
batch learning should not be used. We propose two new types of batch
learning for recursive models. We also propose how to use recursive models
as memory by data extraction. We demonstrate how to reconstruct data
from the recursive models when only incomplete information is available.

I started to work with self-organizing maps during my studies at the
university. As for my diploma thesis I chose to work with recurrent models,
simple recurrent networks. I decided to work on recurrent self-organizing
maps with my supervisor. After the introduction into recurrent networks I
moved onto more complex recursive self-organizing maps.

I would like to thank Igor Farka², my supervisor, for all his help and for
patiently answering all my questions. I would also like to thank people who
helped me with teaching as it was a great challenge. I am grateful for my
family and for my closest friends who provided me with their full support
every time I needed it.

Contents

1 Introduction 18

1.1 Structures . 18
1.2 Processing of structured data 19
1.3 Arti�cial neural networks for vectorial data 20
1.4 Self-organizing maps . 22

2 Arti�cial neural networks for sequential data 27

2.1 Supervised recurrent neural networks 28
2.1.1 Simple recurrent networks 28
2.1.2 Echo state networks 29

2.2 Recurrent self-organizing maps 30
2.3 Temporal Kohonen map . 30
2.4 Recurrent SOM . 31
2.5 Merge SOM . 31
2.6 Recursive SOM . 34
2.7 Gradient learning approximation 36
2.8 RAAM . 37

3 Self-organizing maps for tree data 39

3.1 SOM for structured data . 39
3.2 MSOM . 42

3.2.1 Distinguishing branches of a tree 43
3.3 RecSOM . 46
3.4 GSOMSD . 47

4 Model comparison 48

4.1 Performance measures . 48
4.2 Experiments . 52

4.2.1 Binary syntactic trees 54
4.2.2 Ternary linguistic propositions 59
4.2.3 5-ary graphical data 64

7

5 Processing structured data from XML 70

5.1 XML format . 70
5.2 Experiments . 71
5.3 Large XML File . 73
5.4 Summary . 75

6 Batch learning 76

6.1 Batch SOM . 77
6.2 Localist encoding and batch SOM 79

6.2.1 Measures . 80
6.2.2 Results . 80

6.3 Batch recursive self-organizing maps 86
6.3.1 Input wise batch learning 87
6.3.2 Epoch wise batch learning 89

6.4 Summary . 91

7 Data extraction and reconstruction 93

7.1 Lookup table . 93
7.2 Feedforward network as a decoder 95
7.3 Data reconstruction . 95
7.4 Summary . 97

8 Conclusion 99

List of Tables

3.1 All inputs and their corresponding winners and winner posi-
tions for one particular trained map. 46

4.1 The quantitative measures used for evaluating the models. . . 49
4.2 Binary trees used for training and the list of non-trivial vertices

comprised by the data set. 54
4.3 The order of training inputs (organized in columns) in pro-

cessing the tree ((dn)(p(dn))). The inputs (left context, label,
right context) are mapped to output representations R (or R'). 55

4.4 Mean TQD and STQD measures for the models trained on the
binary trees data set. 59

4.5 Mean WD and MED measures for the models trained on the
binary trees data set. 59

4.6 Mean QE and LWC measures for the models trained on the
binary trees data set (LWCs for the larger maps is not shown
since they remained unchanged). 59

4.7 Examples of simpler generated sentences and their translations. 60
4.8 Mean TQD and STQD measures for all models trained on the

ternary trees data set. 63
4.9 Mean WD and MED measures for all models trained on the

ternary trees data set. 64
4.10 Mean QE and LWC measures for the models trained on the

ternary trees data set (LWCs for the larger maps are not
shown, since they remained unchanged). 64

4.11 Mean TQD and STQD measures for all models trained on the
5-ary graphical data set. 69

4.12 Mean WD and MED measures for all models trained on the
5-ary graphical data set. 69

4.13 Mean QE and LWC measures for the models trained on the
5-ary graphical data set (LWCs for the larger maps are not
shown, since they remained unchanged). 69

9

List of Tables List of Tables List of Tables

6.1 WDmap measure (in %) for all tested map sizes for both learn-
ing algorithms. 85

6.2 WD measure (in %) for all tested map sizes for both learning
algorithms. 85

7.1 The sample lookup table for SOMSD and map size of 10×10. . 94

10

List of Figures

1.1 Model of neuron. Dendrites, bazal dendrites are inputs, axon
is output of the nucleus. Axon ends with terminals (�gure
taken from (Návrat et al., 2002)). 21

1.2 Architecture of the self-organizing map (SOM). The input vec-
tor x is connected with every neuron (i) in the map through
input vector wi. The winner for the current output (i∗) is
shown as well as neighborhood of the winner. Color intensity
shows the weights update's strength for the current input. . . 23

2.1 Architecture of Elman network (SRN). The second input (ci)
is a time delayed activation of the hidden layer called context. 28

2.2 Architecture of Merge SOM (MSOM). Context layer consists
of merged data from the winner (q) in the previous time step.
Context weights connect context with every neuron in the map. 32

2.3 MSOM with input `a' and without the last winner (�rst input
in the sequence). 33

2.4 MSOM with input `b' and the merged context of the last winner. 33
2.5 MSOM with input `c' and the merged context of the last winner. 33
2.6 Recursive SOM model (RecSOM). The context layer of Rec-

SOM consists of the activation of the whole map (y) in the
previous time step. 35

2.7 Binary RAAM. Inputs are compressed into the hidden layer
and then decompressed into the output layer. As auto-associator,
the inputs are the desired outputs. 37

3.1 Model SOMSD for tree structures. The model adds contexts
that consists of the winner coordinates in the previous time
step (r). 40

3.2 Basic tree structure . 41
3.3 Computation of tree structure with SOMSD model 41

11

List of Figures List of Figures List of Figures

3.4 MSOM modi�cation for binary tree data. Left context repre-
sent left child, right context represents right child. 42

4.1 Example of two trees (left half) and their overlaps related to
TRF and STRF measures respectively (right half). 49

4.2 Mean WD as a function of systematically varied parameters
α (vertical axis) and β (horizontal axis) for the three models
trained on all three data sets. Whereas MSOM and RecSOM
reveal systematic patterns in performance change (speci�c for
each data set), SOMSD displays least evident order, with ir-
regularly spaced small (α, β) islands with the highest WD. . . 53

4.3 (a) Output activities of SOMSD and (b) the corresponding
dendrogram for all vertices from the binary trees data set. . . 55

4.4 Converged (a) input, (b) left context and (c) right context
weights of the SOMSD model trained on the binary trees data
set. Topographic organization is evident in all cases. 56

4.5 (a) Output activities of MSOM and (b) the corresponding den-
drogram for all vertices from the binary trees data set. 57

4.6 Converged (a) input, (b) left context and (c) right context
weights of the MSOM model trained on the binary trees data
set. Topographic organization is evident in all cases. 57

4.7 (a) Output activities of RecSOM and (b) the corresponding
dendrogram for all vertices from the binary trees data set. . . 58

4.8 Converged (a) input, (b) left context and (c) right context
weights of the RecSOM model trained on the binary trees
data set. Topographic organization is evident in all cases.
The context weights are displayed as 2D mesh plots. 58

4.9 (a) Output activities of SOMSD and (b) the corresponding
dendrogram for the 25 randomly selected vertices from the
ternary trees data set. Longer tree labels in the activity map
are positioned below the corresponding image. 60

4.10 Dendrogram of the map activity for the 40 randomly selected
non-trivial ternary trees. SOMSD di�erentiates trees based on
the length and common RF. 61

4.11 (a) Output activities of MSOM and (b) the corresponding den-
drogram for the 25 randomly selected vertices from the ternary
trees data set. Longer tree labels in the activity map are po-
sitioned below the corresponding image. 62

4.12 Dendrogram of the MSOM activity for the 40 randomly se-
lected non-trivial trees. The map di�erentiates trees based on
the length and the most recent input. 63

12

List of Figures List of Figures List of Figures

4.13 (a) Output activities of RecSOM and (b) the corresponding
dendrogram for the �rst 25 vertices from the ternary trees
data set. Longer tree labels in the activity map are positioned
below the corresponding image. 64

4.14 Dendrogram of the map activations for the 40 randomly se-
lected non-trivial trees. RecSOM di�erentiates trees based on
length and common receptive �eld. 65

4.15 Example of a 5-ary tree used in the graphical data set. 65
4.16 Dendrogram of SOMSD for the 40 randomly selected non-

trivial 5-ary trees. 66
4.17 Dendrogram of MSOM for the 40 randomly selected non-trivial

5-ary trees. 67
4.18 Dendrogram of RecSOM for the 40 randomly selected non-

trivial 5-ary trees. 68

5.1 Tree representation of the DTD for the �rst data set. It is a
complete ternary tree structure of depth two. 71

5.2 Activities evoked by di�erent inputs in trained SOMSD map.
The top row shows map activity as a response to the complete
trees and the next two rows show activities of elements in XML. 72

5.3 Di�erences in activities depending on input on a trained SOMSD
map. Activities of two di�erent inputs with the same root
(left), two similar inputs with the di�erent root (right). Visu-
alization reveals the di�erence that can be hidden in the data
set. 73

5.4 Dendrogram of inputs in the trained map. Two separate clus-
ters can be seen: The cluster of trees (left) and the cluster of
elements/leaves (right). The merging distance is a little less
than 3.5. 74

5.5 Dendrogram of tree inputs in the trained map. Only trees were
selected and scaled in. Again two clusters can be seen: the
cluster of articles (left) and the cluster of authors (the simplest
trees) (right). The left cluster of articles can be further zoomed
in and analyzed. 75

6.1 Final state of the game Tic Tac Toe. The �rst player (symbol
X) won this game as he got three his symbols in one diagonal. 79

13

List of Figures List of Figures List of Figures

6.2 The �rst three components of weight vectors of the trained
map 10×10 over 400 epochs using online learning. For ev-
ery neuron its �rst (left), second (middle) and third (right)
components of weight vector are shown. Darker squares mean
value is closer to 1, lighter squares mean value is closer to 0. . 81

6.3 The �rst three components of weight vectors of the trained
map 30×30 over 400 epochs using online learning. For ev-
ery neuron its �rst (left), second (middle) and third (right)
components of weight vector are shown. Darker squares mean
value is closer to 1, lighter squares mean value is closer to 0. . 81

6.4 Graphical representation of the winners using online learning
for the map size 30×30. Symbol + means won game, symbol
− lost game, symbol ± means that the winner represents both
won and lost games. 82

6.5 The �rst three components of weight vectors of the trained
map 10×10 over 500 epochs using batch learning. For every
neuron his �rst (second, third) component of weight vector is
shown. 83

6.6 The �rst three components of weight vectors of the trained
map 30×30 over 500 epochs using batch learning. For every
neuron his �rst (second, third) component of weight vector is
shown. Components are clearly di�erentiated into regions. . . 84

6.7 Graphical representation of the winners (BMUs) using batch
learning for the map size 30×30. Symbol + means won game,
symbol − lost game, symbol ± means that the winner repre-
sents both won and lost games. 84

6.8 Scheme of input wise batch learning of SOM. Learning consists
of two parts: the �rst part (top row) is the presentation of
input (all vertices) with saving the state of the map and the
second part is the weight change according to the vertex and
the corresponding saved state. 89

7.1 Feedforward network as a decoder over SOMSD model. In
this example the feedforward network has two layers. The
requested output is the whole structured input after the root
has been presented to the trained map. 96

14

List of Algorithms

1.1 Pseudocode of the SOM learning algorithm. Learning ends
when de�ned number of epochs is achieved. 24

3.1 Pseudocode of the GSOMSD training algorithm. This code
provides general framework for all presented models and was
used in implementation of the models. 47

6.1 Pseudocode of the input wise batch learning algorithm for re-
cursive SOM models. The learning algorithm is a merge of
batch SOM learning algorithm and BPTT algorithm for sim-
ple recurrent networks. 90

6.2 Pseudocode of the epoch wise batch learning algorithm for
recursive SOM models. The learning algorithm is updated
input wise batch learning algorithm expanded on the whole
data set. 91

15

De�nitions

Symbol conventions

• N � map size (also the number of neurons in the map)

• X � input data set

• m � input data set size (m = |X|)

• x � input vector (x ∈ X)

• n � input vector length (n = ‖x‖)

• wi � input weight vector of the i-th neuron (i ∈ N)

• ci � context weight vector of the i-th neuron (i ∈ N)

• ‖a,b‖2 � squared Euclidean distance between two vectors

• d(x−wi) � distance between weight vector of the i-th neuron (i ∈ N)
and the input vector, usually the squared Euclidean distance

• i∗ � winner (best matching unit) for the current input, i∗ ∈ N

• dist(i, j) � Euclidean distance between positions of neurons i and j in
the grid of the SOM model

• y � map output activation vector

• h(i∗, j) � neighborhood function, provides proximity to the winning
neuron, usually computed as the Gaussian function

• k � arity of tree

• M � structured input size, in case of unstructured data M = 1, in case
of sequences it is the length of the sequence, in case of complete binary
trees of maximal depth d M = 2d − 1

16

List of Algorithms List of Algorithms List of Algorithms

• Mmax � maximum size of the structure in the data set, for the sequences
it is the length of the longest sequence, Mmax = max(Mx|x ∈ X)

• τ � time constant for Temporal Kohonen map model, 0 < τ < 1

• Vi(t) � activation of the unit i at time step t for the Temporal Kohonen
map model

Naming conventions

• Epoch � the presentation of the whole data set

• SOM � Self-Organizing Map

• RecSOM � Recursive SOM

• MSOM � Merge SOM

• SOMSD � SOM for Structured Data

• TKM � Temporal Kohonen Map

• RSOM � Recurrent SOM

17

Chapter 1

Introduction

The world around us abounds with structures. The examples range from
time series, DNA sequences, chemical structures, logical formulas, graphical
objects, database entries to complex web pages containing text, pictures and
links. The ability to process structured data should hence be a required
feature of any information system.

In the thesis, we focus on arti�cial neural networks, speci�cally self-
organizing maps that were originally designed for processing vectorial data
and only recently were extended to processing sequences and tree structures.
The need to compare and analyze these recurrent and recursive models arises
from basic research itself (better understanding of their functionality) as well
as their practical usage as data processors.

1.1 Structures

Data can be organized in di�erent types of structures. The most general
structure type is a graph.

De�nition 1.1.1 A graph is a pair G = (V,E) of sets such that E ⊆ [V]2.
The elements of V are vertices (or nodes) of the graph G. The elements of
E are edges of the graph G.

In simple words graph is a structure that has no restrictions on edges, i.e.
any vertex can be connected to any vertex through an edge. Restrictions on
the edges create di�erent types of structures: trees, forests, palms, sequences,
complete graphs, edgeless graphs, bipolar graphs, Hamiltonian graphs, etc.
By labeling four types of graphs can be created: unlabeled, vertex-labeled,
edge-labeled and labeled1.

1labeled graph has both vertices and edges labeled

18

Chapter 1. Introduction

Words in sentence or time series are examples of sequences, the simplest
data structure, consisting of connected vertices. In our case every vertex has
a predecessor and a successor, i.e. it has one edge coming in the vertex and
one coming out2.

Some examples:

Sequence of numbers: 1 1 2 3 5 8 13 21 34 55 . . .
Sequence of letters: a a b b b a a a a c c c c c c . . .
Sequence of words: how much wood would a woodchuck chuck . . .

De�nition 1.1.2 A sequence is a connected directed acyclic graph where at
most one edge is ending in any vertex and at most one edge is starting in
any vertex.

Sequences can be �nite or in�nite. We will be working with �nite se-
quences as these can be processed in a �nite time.

The more complicated structure we are working with is a tree.

De�nition 1.1.3 A tree is a connected acyclic graph. Vertices of degree 1
are called leaves, other vertices are called inner vertices. A root is a special
vertex of a tree. If a tree has a root vertex de�ned it is called a rooted tree.

In other words, a rooted tree has a root, inner vertices and leaves.
Among real-life applications processing structured data are: logo recog-

nition, e.g. trying to di�erentiate company logos and other types of pictures
based on structure and its properties (color, shape, etc.), language sentence
processing (also with grammar structure), chemical structure visualization
and categorization, etc. More information about sequences and trees can be
found in Diestel (2005).

1.2 Processing of structured data

In order to process structured data in arti�cial intelligence we can use di�er-
ent approaches:

• Symbolic approach � manipulates the structured data as vertices in
de�ned structure. Structured data is saved in the knowledge base and
is processed with rules. The rules are created externally with prior
knowledge. Data can be processed without any preprocessing.

2with the exception of the �rst vertex (no predecessor) and the last vertex (no successor)

19

Chapter 1. Introduction

• Subsymbolic approach (connectionist) � is inspired by biological prin-
ciples using parallel distributed processing. Saving and processing of
data is distributed among units (arti�cial neurons) and its distribution
has to be analyzed. Learning (changing internal parameters) is done
with or without external supervision.

We will concentrate on the latter approach. Among the subsymbolic
approaches � neural networks, fuzzy systems, evolutionary computation, etc.
� we will focus on the neural networks.

Neural networks constitute a particularly successful approach that allows
learning an unknown regularity from a given set of training examples. In
many domains (such as time series prediction, bioinformatics or image pro-
cessing) the data is non-standard, presented in the form of sequences, trees
or graphs. Although the data items can be numeric or symbolic depending
on the data set. Neural networks have been applied to both types of data
(Hammer, 2003). Processing the non-standard data with neural networks
has followed two major directions (Hammer and Jain, 2004). One way is to
use models exploiting a similarity measure adapted to non-standard data.
Alternatively, non-standard data can be processed recursively with a suit-
able architecture of a neural network, trained in supervised or unsupervised
manner.

Neural networks can be trained with providing required output (learning
with teacher, supervised learning), with providing good or bad response (re-
inforcement learning), not providing any information about required output
(learning without teacher, unsupervised learning).

Self-organization is a term used for some models using learning without
teacher. Input processing is based on the characteristics of the data set.
There is no need for neither external in�uence nor external help.

Unsupervised learning is a more di�cult alternative applicable in cases
where no explicit teaching signal is available. Hence, the network must learn
to extract useful information from the data without feedback, being driven
only by statistical properties of data. Unsupervised networks have been
typically used in data mining and visualization. The most frequently used
model in this category is the self-organizing map (SOM; Kohonen (1990))
that has been applied in numerous tasks ranging from web-mining to robotics
(Kaski et al., 1998).

1.3 Arti�cial neural networks for vectorial data

In 1943 McCulloch and Pitts presented a computer simulated neuron. It was
a simpli�ed model based on brain cells. Minsky and Papert (1969) mathe-

20

Chapter 1. Introduction

matically proved that one layer perceptrons can solve only linearly separable
problems. Rumelhart et al. (1986) created the �rst continuous neuron with
a learning called error back propagation. After that many types of neural
networks were created and tested for various purposes, e.g. recognition, clas-
si�cation, approximation, extraction of attributes and data mining. Training
of neural networks has usually high time complexity and therefore only rel-
atively small numbers of arti�cial neurons are used in simulations.

Neuron is an important biological cell in our brain. The complexity of
the brain results from the interconnection of vast numbers of the neuron cells
and the rate at which they are �ring (�ihák, 2004). The neuron consists of
three parts: dendrites and bazal dendrites, nucleus (soma), axon.

Dendrites are inputs to the neuron and axon is output from the neuron.
Dendrites are mostly short and they are responsible for reception of the signal
through synapses and transportation of this signal to the soma of the cell.
The nucleus processes all signals from all dendrites and also from the surface
of the cell and then it sends a signal through the axon if signal is strong
enough. Axon is usually very long string with many terminals at the end.
These terminals are connected to dendrites of other neurons via synapses
(Fig. 1.1).

Figure 1.1: Model of neuron. Dendrites, bazal dendrites are inputs, axon is
output of the nucleus. Axon ends with terminals (�gure taken from (Návrat
et al., 2002)).

The behavior of the neuron cell begins and ends on a connection between
two neurons called synapse. The end of axon from the �rst neuron is ended
with the presynaptic terminal that is separated from the postsynaptic mem-
brane by a synaptic cleft. The postsynaptic membrane is located mostly
on the dendrites but it can be also located on the body cell. The electric
signal is converted into a chemical signal in the presynaptic terminal (uses
anions and cations) which is transmitted through the synaptic cleft to the
postsynaptic terminal (Be¬u²ková, 2000). There it is converted again into
an electric signal. Depending on type of synapse it can inhibit or excite the
signal that means increase or decrease electric potential. This signal is then

21

Chapter 1. Introduction

transported to the soma. When the summed signals from every synapse are
greater than neuron threshold, neuron �res. That means it generates a signal
which is sent through axon to all other neurons with which it is connected.

The arti�cial neuron uses analogy from biological neural cell to simulate
its work. It is a simpli�ed model. Synapses are represented by multiplication
of incoming signal with weight of the synapse, the soma is represented by
a mathematical function which input is sum of all incoming signals. If this
value is greater than de�ned threshold neuron creates output:

y = f(wTx− θ), (1.1)

where x is the input signal to the neuron, w is the weight vector of the neuron
and parameter θ is the threshold of the neuron.

There are other possibilities to de�ne the output of the neuron, one of
which is the Euclidean distance in RBF model (Eq. 1.2).

y = exp(−‖x−w‖2 /σ2). (1.2)

Usually axons and dendrites (inputs and outputs) in arti�cial neuron are
ideal transporters of signal. There are many types of neurons depending on
complexity (simplicity) and used function: discrete neurons, sigmoid neurons,
spiking neurons, BCM neurons (Návrat et al., 2002; Jedli£ka, 2002).

The simplest arti�cial neurons are discrete neurons which use bipolar
binary activation function (Rosenblatt, 1958).

Sigmoid neurons use continuous activation function � sigmoid function
(Eq. 1.3).

f(net) =
1

1 + e−net
(1.3)

More models were created depending on problem which they were pro-
posed to solve: recurrent networks for time-series prediction, principal com-
ponent analysis networks for linear auto association, Hop�eld network for
memory representation (Kvasni£ka et al., 1997; �íma and Neruda, 1997).

1.4 Self-organizing maps

Processing and visualization of multidimensional data using subsymbolic
paradigm is a known task that can be solved using various techniques. In
situation where input data have no required output learning without teacher
can be chosen. Among clustering models Self-organizing map model has an
important place.

22

Chapter 1. Introduction

Self-organizing map (SOM) was introduced by Kohonen (1982). The idea
of the SOM originates from the topographic maps detected in human brain.
These maps are projection maps of a surface of a human body just as a
human body appears. Close points found on human body are represented
by close neuron clusters in the brain. These maps are not uniform, i.e. the
more sensible surface of body is (more neurons are present on that particular
place) the larger the neuron cluster for this region is.

In its standard form, SOM has been formulated for vectorial data, i.e. for
inputs belonging to a vector space of a �nite and �xed dimension. SOM
typically provides a topographic (nonlinear) mapping from high dimensional
input space to a discrete grid of units, exploiting principles of competition
and cooperation among the units.

SOM architecture consists of two parts: input and neural map. Input
size is based on encoding of input. The neural map is usually one or two
dimensional. Neurons in the map are placed on de�ned positions in a lattice.
These positions are then used as excitatory while the strength of the excita-
tion is depending on the position of the best matching unit. All inputs are
interconnected with each neuron in the map (Fig. 1.2).

Figure 1.2: Architecture of the self-organizing map (SOM). The input vector
x is connected with every neuron (i) in the map through input vector wi.
The winner for the current output (i∗) is shown as well as neighborhood
of the winner. Color intensity shows the weights update's strength for the
current input.

Let N be the number of neurons in the map, let n be the input vector
size. Let weights of a neuron on i-th position (i-th neuron) be denoted wi.
The �rst part of the algorithm (Alg. 1.1, line 3) is computed using distance
calculation between input vector and weight vectors of all neurons in the
map. Squared Euclidean distance is mostly used (Eq. 1.4).

23

Chapter 1. Introduction

Algorithm 1.1 Pseudocode of the SOM learning algorithm. Learning ends
when de�ned number of epochs is achieved.
1: for all epochs do
2: for all inputs do
3: Compute distances between input vector and weights of all neurons

in the map;
4: [competition] Compute best matching neuron (winner);
5: [cooperation] Adapt the weights of all neurons;
6: Adapt parameters;
7: end for

8: end for

d(x,wi) = ‖x−wi‖2 =
n∑

j=1

(xj − wij)
2 (1.4)

The neuron with the smallest distance between its weight vector and the
input vector becomes the best matching unit (winner) for the particular input
(Eq. 1.5).

i∗ = arg mini∈Nd(x,wi) (1.5)

In order to have similar inputs mapped onto close neurons in map not
only the winner but also neighborhood neurons have to be updated. This
action will pull the weights of these neurons closer together providing more
similar weight vectors and therefore similar inputs are mapped onto close
neurons within the map.

Let dist(i∗, j) denote the distance in the grid between the best matching
unit (i∗) and another neuron (j). This distance is computed as Euclidean dis-
tance (Eq. 1.6) between positions of the neurons in grid (denoted as pos(i∗)
and pos(j)).

dist(i∗, j) = ‖pos(i∗)− pos(j)‖ (1.6)

Function h(i, j) provides proximity to the winning neuron and is called
neighborhood function. It can be computed as the Gaussian function3 based
on distance of neurons in the grid (Eq. 1.7). Parameter σ in�uences the size
of the neighborhood and can decrease through time to achieve more stable
results.

3The most used types of the neighborhood functions are bubble and gaussian

24

Chapter 1. Introduction

h(i∗, j) = exp(−dist(i
∗, j)2

2σ2(t)
) (1.7)

The next step is to change the weights of the neurons in the map. The
change of weight (Eq. 1.8) is computed using the neighborhood function
(Eq. 1.7) and the distance between the input vector and the weight vector
(Eq. 1.4).

∆wj = η(t)h(i∗, j)(t)‖x−wj‖2 (1.8)

Parameter η denotes the learning speed and can also decrease in time to
allow better �ne-tuning of the weights.

The space complexity of the SOM algorithm is based on the map size (N)
and the input weight vector size (n) as the space occupied by SOM is in its
weights. To save (and restore) SOM its weights and parameters need to be
saved. There are only a few parameters (number of rows, columns, learning
speed, neighborhood size, etc.) whose count is a constant. Eq. 1.9 shows the
space complexity of SOM.

S(SOM) = O(Nn+ c) = O(Nn) (1.9)

The time complexity is computed from the learning algorithm and the
learning steps. Some steps are constant in time and are not in�uenced by
the data set size. Let p denote number of epochs and m denote data set size.
The �rst step, setting input, costs the size of the input vector. The second
step, computing di�erences between input and weight vectors, costs com-
puting squared Euclidean distance for every neuron in the map. The time
complexity of squared Euclidean distance (Eq. 1.4) is O(n2) and is computed
for every neuron in the map. The step after computing is �nding winner
which means �nding lowest value of the previously computed distance. The
next step, adapting weights (Eq. 1.8), costs computing in constant time (η,
h(i∗, j)) (map dimensionality is a constant of two), squared Euclidean dis-
tance and is computed for every neuron in the map (O(cn2)). The last step,
adapting parameters, is a constant. Together the resulting time complexity
is summarized as the time complexity of the input:

T (SOMinput) = O(n+Nn2 +N +Ncn2 + c) = O(Nn2) (1.10)

The time complexity of one epoch is m-times higher as the input time
complexity. The whole learning algorithm's time complexity is p-times higher
than that of one epoch:

T (SOM) = O(pT (SOMepoch)) = O(pmT (SOMinput)) = O(pmNn2) (1.11)

25

Chapter 1. Introduction

From the equation follows that the time complexity increases linearly with
increasing number of epochs, data set size and the map size and polynomially
with increasing the input vector size.

Model SOM is used in feature mapping, vector quantization, dimension
reduction, topographic mapping and data mining.

26

Chapter 2

Arti�cial neural networks for

sequential data

Supervised recurrent neural networks have become an established approach
for processing sequential data, mainly based on the next-item prediction
paradigm, e.g. in sentence processing, or time-series prediction (Gori et al.,
1997). These models have naturally been generalized to processing more
complex data structures such as trees or directed acyclic graphs (Frasconi
et al., 1998; Sperduti and Starita, 1997) 1. The training method for recur-
sive networks is a straightforward generalization of standard backpropagation
through time (Sperduti and Starita, 1997). Moreover, important theoretical
investigations from the �eld of feedforward and recurrent neural networks
have been transferred to recursive networks (Frasconi et al., 2001; Hammer,
2000). It is also possible to use the standard backpropagation when deal-
ing with n-ary trees, as shown e.g. in case of the recursive auto-associative
memory (Pollack, 1990) and its numerous variations.

There are some unsupervised neural network models that can be used
for structure processing as well. Simple models without recurrency can not
be used as they have no means to capture the structure of the input. Only
the content is learned without connection to the structure. Therefore we are
working with recurrent models: recurrent self-organizing maps (SOM) and
auto-association models (i.e. RAAM). There are multiple di�erences between
these models:

• some can decode as well as encode information

• some retain input data closeness
1We will refer to recurrent models with respect to processing sequences, and to recursive

model with respect to processing trees.

27

Chapter 2. Arti�cial neural networks for sequential data

• recurrent binding saves di�erent amount of information

• di�erent learning algorithms are used

In this chapter we will review the existing models that are used on the
basic type of structured data � sequences. In the next chapter we will present
enhancements to the existing models to enable processing of more complex
structured data types � trees. We will �rstly brie�y mention supervised
models. Then we will focus in more detail on the unsupervised models.

2.1 Supervised recurrent neural networks

Supervised recurrent neural networks are well established approach and are
used frequently for the tasks such as to predict or to generate the next-item.
The presented models are simple recurrent networks and echo state networks.

2.1.1 Simple recurrent networks

For the structured data to be processed the simplest approach is to add
memory, place where information about the previous inputs can be stored.
In the case of a simple recurrent networks (SRN) (Elman, 1990) this role is
taken by an additional layer (Fig. 2.1).

c c cp

1 p2

Figure 2.1: Architecture of Elman network (SRN). The second input (ci) is
a time delayed activation of the hidden layer called context.

To create SRN from multi-layered feedforward network the context layer
is needed. The context layer size is the same as the size of the layer it copies
from (hidden layer or output layer). The context layer is updated by copying
the neuron activation (1 to 1) from the chosen layer. In case of Elman network
(Elman, 1990) the context layer copies values from the hidden layer. There

28

Chapter 2. Arti�cial neural networks for sequential data

are multiple SRN models with di�erent types of the context layers and also
with more than one context layer (Sin£ák and Andrejková, 1996a,b).

Learning algorithms used for SRNs are gradient learning algorithms that
use error correction. These can be di�erentiated into two types: online and
batch learning algorithms. The former type concentrates on updating weights
after every presentation of the vector from the input from the data set. In
this case the weights are updated as often as the information about the size of
the change is known. Therefore the change is usually small and continuous.
Among the online learning algorithms used for simple recurrent networks are
standard back-propagation (BP), back-propagation through time (BPTT)
online (Werbos, 1990) and real time recurrent learning (RTRL) (Williams
and Zipser, 1989).

The quicker batch learning algorithms use the idea of the accumulation
of the changes throughout the presentations of the data set. That means
weights are constant during the presentation of the input and are updated
only after the whole input was presented. This is faster as the weight update
costs a measurable amount of time (it depends on the input size). The batch
learning algorithms, i.e. epoch-wise back-propagation through time, can be
used if the online learning is not required.

Both learning algorithm types belong to the learning with teacher. To
learn the information in this type of learning the desired output is needed.
The di�erence between the desired and the real output drives the change of
weights in every learning algorithm of this type.

2.1.2 Echo state networks

Another approach is to create reservoir with a typically much higher number
of neurons which provide rich dynamics. The connections to the hidden layer
are untrained and its activation is afterwards mapped to desired outputs.
This model was proposed by (Jaeger, 2001) and it is called echo state network
(ESN). Main di�erences, compared to SRN, are: inputs can be connected
directly with the output layer and only output weights are updated during
training. For proper functionality of ESN must reservoir ful�ll echo state
property. It can be achieved in following way: recurrent weights between
neurons in the reservoir have to be initialized in such a way that spectral
radius of a weight matrix is less than one.

Echo state networks simplify training procedure of SRN. Only one layer
of weights is updated what allows usage of linear regression algorithm instead
of complex gradient training methods.

Using ESN model has its advantages and disadvantages. Easier and faster
learning compared to the SRN model led to the successful applications of the

29

Chapter 2. Arti�cial neural networks for sequential data

ESN models in various �elds of signal processing (Jaeger, 2001; Lukosevicius
and Jaeger, 2009).

As it turns out, Markovian property of the reservoir (resulting from its
spectral radius) is su�cient for various applications. At the same time,
�er¬anský and Ti¬o (2007) showed by simulations that performance of ESN
is equal to that of variable length Markov models (VLMM). However the
SRN model, when properly trained can exceed both ESN and VLMM in the
next-item prediction task in case of symbolic sequences.

2.2 Recurrent self-organizing maps

From the models using learning without teacher, self-organizing maps can
also be extended into processing sequences. The class of such models is
called recurrent SOM. Recurrent SOM models use time delayed binding to
remember previous inputs. They di�er in how the time delayed binding is
added. The simplest model uses neurons as leaky integrators and the most
complex uses copy of the activations of the whole map from the previous
time step.

2.3 Temporal Kohonen map

The �rst (very simple) way of adding recurrency to an existing SOM model
is to use leaky integrators, i.e. recurrent binding is used by every neuron but
using it only for itself (self loop). This type of recurrent self-organizing neural
network uses temporal Kohonen map (TKM). In the TKM model (Chappel
and Taylor, 1993) activation of neuron is computed di�erently than SOM
model (Eq. 2.1).

Vi(t) = τVi(t− 1)− 1

2
‖x−wi‖2 (2.1)

In the equation 0 < τ < 1 is a time constant, Vi(t) is the activation of
the unit i at time step t while wi is the weight vector of the unit i and x is
the input pattern. In this case the unit with the maximum activity is the
winner.

The architecture of the TKM model is the same as the SOM model (no
neurons or layers are added). This model is e�cient (no extra computation)
but lacks expresivity of the more complex recurrent models. Some problems
of this model were shown (Koskela et al., 1998a), it appears that it may be
possible to properly train a TKM only for a relatively simple input spaces.

30

Chapter 2. Arti�cial neural networks for sequential data

As a consequence Recurrent SOM model was proposed as a modi�cation of
TKM model.

Compared with SOM the space and the time complexity remains the same
for this model.

2.4 Recurrent SOM

Very similar model to the TKM is the Recurrent SOM (RSOM). RSOM
(Koskela et al., 1998b) uses neurons as leaky integrators as well (the same
type of recurrent binding as in TKM). The di�erence is in the type of infor-
mation that �ows through the recurrent connection. The architecture of the
TKM model is the same as of the SOM model.

In this model �nal distance is computed by merging the distance between
input and weight vectors and also the previous distance (recurrent binding)
(Eq. 2.2). The winner is computed di�erently as the resulting distance is a
vector (Eq. 2.3)

d
′

i(t) = α(x−wi) + βd
′

i(t− 1). (2.2)

i∗ = arg mini∈N

∥∥∥d′i(t)∥∥∥ (2.3)

Parameter α is used to in�uence strength of the recurrent binding, param-
eter β is usually set to 1 − α. The recurrent binding transfers information
about how well neuron performed in the previous time step. This causes
map to prefer neurons that are winning more often. Large α corresponds to
short memory while small values of α (large values of β) correspond to long
memory and slow decay of activation.

Also in RSOM model the space complexity remains the same as for SOM
model. The time complexity is the same as well.

2.5 Merge SOM

Merge SOM (MSOM) was developed by Strickert and Hammer (2004). This
model is based on classic SOM using context vector for information about
the previous winner. MSOM algorithm can also be used in models without
the grid (for example neural gas). MSOM uses context and input weights of
the previous winner. Both vectors are then merged together. Visualization
of Merge SOM's architecture can be seen on Fig. 2.2.

Context vector is of the same length as the input vector. It consists of
merged data from the winner � its context weights and its input weights.

31

Chapter 2. Arti�cial neural networks for sequential data

q q q

merge

Figure 2.2: Architecture of Merge SOM (MSOM). Context layer consists of
merged data from the winner (q) in the previous time step. Context weights
connect context with every neuron in the map.

In the �rst phase (competition) winner is calculated using both input and
context:

di = α‖x−wi‖2 + β‖q− ci‖2, (2.4)

where q is the so-called context descriptor.
Final distance is dependent on both input and context weights. Param-

eters α and β (usually β = 1− α) are used to balance the context in�uence
on winner's calculation.

The second phase (cooperation) consists of updating both input weights
and context weights. The input weights are updated just as in SOM model
(1.8). The context weights are updated similarly (Eq. 2.5).

∆cj = η(t)h(i∗, j)(t)‖q− cj‖2 (2.5)

The context has to be updated as well. As mentioned earlier the context
is computed by merging previous winner's context and the input weights. To
balance the in�uence of both weights parameter γ is used (Eq. 2.6).

q = γwi∗ + (1− γ)ci∗ , (2.6)

Both input and context weights in the equation are taken from the current
winner. That means that only the information about the winner is merged
into the new context. By merging the weight vectors this model loses also
part of the information about the winner.

For example we can take sample sequence `abc' and train the MSOM
model. First input will consist of encoded symbol `a' and empty context

32

Chapter 2. Arti�cial neural networks for sequential data

(Fig. 2.3). Let winner for this input be in position [1, 3].

Figure 2.3: MSOM with input `a' and without the last winner (�rst input in
the sequence).

The next input will consist of encoded `b' as input and merged context
of neuron [1, 3] which was a winner for the input `a' (Fig 2.4).

q q qa a a

Figure 2.4: MSOM with input `b' and the merged context of the last winner.

The winner of this input can be for example at position [2, 2] so the last
input will look like this: encoded `c' and merged context of neuron [2, 2] (Fig
2.5). The new winner can be located at position [5, 3].

q q qb b b

Figure 2.5: MSOM with input `c' and the merged context of the last winner.

This means that neuron at position [5, 3] encodes the sequence `abc'.
Also the neuron at position [1, 3] encodes the sequence `a' and the neuron
at position [2, 2] encodes the sequence `ab'. That does not necessarily mean
that these neurons encode only these sequences.

This model uses only data (not position) to update context. Information
from non-winning neurons is lost in MSOM.

33

Chapter 2. Arti�cial neural networks for sequential data

The space complexity is higher than for SOM as the context weights
need to saved for every neuron. But it is asymptotically the same as for
SOM model:

S(MSOM) = O(Nn+Nn+ c) = O(Nn) (2.7)

The time complexity of MSOM is also higher. The di�erence is in present-
ing input (context needs to be presented as well), in computing di�erences
between weights and inputs (context weights are added to the equation) and
in adapting weights (context weights are adapted as well). The �nding win-
ner and adapting parameters steps have the same time complexity as SOM.
One new step is update of the context (Eq. 2.6) which costs time n. Also the
time complexity is asymptotically the same compared with SOM, therefore:

T (MSOMinput) = O(2n+ 2Nn2 +N + 2n2 + c+ n) = O(Nn2) (2.8)

The time complexity of the epoch and therefore of the whole learning has
to take the size of the structure into account:

T (MSOM) = O(pT (MSOMepoch)) = O(pmMmaxT (MSOMinput))

T (MSOM) = O(pmMmaxNn
2) (2.9)

where Mmax is the maximum value of M (structured input size), in case of
sequences it is the longest sequence's length.

2.6 Recursive SOM

The most complex model presented is recursive SOM (RecSOM) (Voegtlin,
2002a). This recurrent model's context is based on copying activities of the
whole map (Fig. 2.6).

Learning in RecSOM starts as with classic SOM. Input is presented and
the winner is computed from distance between inputs and weights. Context
inputs are added to the winner computation as well:

di = α‖x−wi‖2 + β‖y − ci‖2, (2.10)

where vector y represents previous activations of the map. In order to get
stable representations Voegtlin proposed function (Eq. 2.11) that limits the
values to the interval (0, 1).

yi = exp(−di) (2.11)

34

Chapter 2. Arti�cial neural networks for sequential data

y y y

y (t) = exp(−d (t))
i i

Figure 2.6: Recursive SOM model (RecSOM). The context layer of RecSOM
consists of the activation of the whole map (y) in the previous time step.

After winner computing all weights (both input and context) are updated.
The input weights use SOM update algorithm (Eq. 1.8) and the context
weights are updated according to the rule:

∆cj = η(t)h(i∗, j)(t)‖y − cj‖2 (2.12)

The complexity of the RecSOM model lies in the computation of the
distance and in the update of all weights in the map. This depends on the
size of the context weight vector which, in the case of RecSOM, is of size N .

RecSOM's space complexity is signi�cantly higher than for SOM. Every
neuron in the map has recurrent connection with all the activations that
adds up to the space complexity of the model. Usually the size of the map
is bigger than input vector size and therefore the resulting space complexity
follows:

S(RecSOM) = O(Nn+NN + c) =n≤N O(N2) (2.13)

For the time complexity similar thought applies. The �rst, the second
and the fourth step needs to be updated. The new step, context update, is
computed using Eq. 2.11 for every neuron in the map:

T (RecSOMinput) = O((n+N) + (Nn2 +NN2) +N + (n2 +N2) + c+N)

T (RecSOMinput) =n≤N O(N3) (2.14)

The last two models were compared (Farka² and Van£o, 2007a) on four
di�erent data sets with various di�culty. The results showed the topography

35

Chapter 2. Arti�cial neural networks for sequential data

of the trained maps based on sequence su�xes. The state space organization
had usually Markovian dynamics which follows from existence of �xed-point
attractors in the state space with asymptotic dynamics. RecSOM was able to
generate non-Markovian dynamics which means, in theory, unlimited mem-
ory depth. However, when non-Markovian dynamics is not required MSOM
model is a more e�ective replacement for RecSOM as its time and space
complexity is lower.

Neubauer (2005) proved that RecSOMs with a slightly modi�ed (i.e. nor-
malized) context can simulate �nite state automata. RecSOMs with a simpli-
�ed context (i.e. only the maximum values remain, the exponential function
is substituted by a semilinear function) can simulate pushdown automata.

Even though the weight settings required for the simulations cannot be
learned by standard training and simulations with the original context func-
tion could not be constructed for the general case, the results obtained may
serve as theoretical arguments in favor of recurrent (and also recursive) SOM
architectures and their potential.

2.7 Gradient learning approximation

One of the simplest and most intuitive learning paradigms in self-organizing
maps is Hebbian learning. However learning process can be explicitly formu-
lated in terms of a cost function which must be optimized and thus create
alternatives to Hebbian learning. Most unsupervised Hebbian learning algo-
rithms for simple vectors can be interpreted as a stochastic gradient descent
on an appropriate cost function. However, the learning for structured data
cannot be interpreted as an exact gradient descent method.

Therefore, Hebbian learning can be seen as an e�cient approximation of
the precise stochastic gradient descent. Error functions of RTRL learning
can be de�ned and also gradient descent on the error functions of another
standard algorithm, backpropagation through time or structure, can be for-
mulated.

Hammer et al. (2004a) formulated the cost functions for the general frame-
work and derived two ways to precisely compute the gradients. Hebbian
learning is much less costly than the precise approaches as it disregards the
contribution of substructures. Also, supervised training mechanisms can be
recovered within the general framework. Choosing the appropriate cost func-
tion leads to standard training algorithms for supervised recurrent networks
like BPTT and RTRL.

36

Chapter 2. Arti�cial neural networks for sequential data

2.8 RAAM

Recursive Auto-Associative Memory (RAAM) (Pollack, 1990) model is a
model learned using self-supervision. The learning of this model is based
on auto-association, i.e. the input is the same as required output of the
model. This model, with di�erent modi�cations, has been the most used
model since 1990.

RAAM consists of two logical parts: encoding and decoding. These parts
are connected and are trained together using auto-association. It consists of
three physical parts: input, hidden and output layers. The input and the
output layers have the same length (twice the input vector size for binary
RAAM) and the hidden layer is smaller to compress inputs, it has the length
of the input vector (Fig. 2.7).

Figure 2.7: Binary RAAM. Inputs are compressed into the hidden layer and
then decompressed into the output layer. As auto-associator, the inputs are
the desired outputs.

The training of the model for sequences proceeds in a reverse topological
order, i.e. the last parts of the sequence are presented �rst. The last two parts
are presented, outputs are computed and the weights are changed using the
standard backpropagation algorithm using the presented parts of the input
as the desired output. The next part of the input is presented on the left side
of the input vector while on the right side of the input copy of hidden layer's
previous activation is presented. Again, the auto-association is used to get
the desired output. The whole sequence is presented from the last part to
the �rst. After the �rst part has been presented the hidden layer's activation
encodes the whole sequence.

After the training, RAAM can also decode the activation of the hidden
layer back to its original structure. The decoding is based on decision when
the output is already terminal part of the input or the compressed activation

37

Chapter 2. Arti�cial neural networks for sequential data

of some substructure.
This model was created to process tree structures. For binary trees the

same model is used. Again, input is presented in reversed topological order,
from leaves to the root, left child is presented on the left, right child on
the right side of the input vector. In case of trees with arity k, this model
has k inputs and therefore k outputs. The training is similar to the binary
trees case. Inputs (tree vertices or already compressed representations) are
presented and trained using auto-association.

38

Chapter 3

Self-organizing maps for tree data

Tree data is more complicated as the structure is not linear as in the case
of sequences. The problem is that for every vertex in the tree its succes-
sors (or children) have to be already processed by the map. This need is
based on context values that have to be known before the processing of the
vertex. Therefore processing of the tree is bottom-up procedure and ends
with processing of the tree root. Good practice can be to process the lowest
depth �rst and work up to the root. In the implementation also right to left
processing was used. Combining these techniques a procedure was created
that processes tree from rightmost element of the bottom, moving left and
then processing higher levels until the root is reached. The ordering in which
vertices are presented is called topological ordering. All algorithms presented
can be also used in processing of oriented acyclic graphs but in this case the
bottom-up procedure needs to be rede�ned so that parent vertices are pro-
cessed only if all child vertices have been processed already. SOM models
processing tree data are called recursive SOM models.

3.1 SOM for structured data

SOM for structured data (SOMSD) (Hagenbuchner et al., 2003) is a model
that was created to work on trees. It can be used to work on sequences as
well but its primary role is to work on trees and acyclic graphs. SOMSD
uses the information about the winner's position in the previous time step as
the context vector. That means the context vector size is two in case of two
dimensional map. For trees with fan-out k, k contexts are needed to encode
the previous state of the map. When working with binary trees the positions
of left and right subtree winners are used as contexts (Fig 3.1). r denotes a
vector consisting of two values: winner's position x and y in the grid.

39

Chapter 3. Self-organizing maps for tree data

coordinates

Figure 3.1: Model SOMSD for tree structures. The model adds contexts that
consists of the winner coordinates in the previous time step (r).

For SOMSD, the distance of unit i from a tree with fan-out k while reading
a vertex v is computed as

di(v) = α‖v −wi‖2 + β(‖rch(1) − c
(1)
i ‖2 + . . .+ ‖rch(k) − c

(k)
i ‖2) (3.1)

where ch(j) denotes the winner index for jth child, rch(j) are winner coor-
dinates in the lattice and c

(j)
i is ith context vector of jth child. Hence, the

context vector (for each child) is only two-dimensional (we assume 2D maps)
and has integer components. In Eq. 3.1 (and also in subsequent equations),
parameters α > 0 and β > 0 respectively in�uence the e�ect of the current
input and all contexts on the neuron's pro�le.

New context is computed as the x and y position of the winner and saved
for parent computation.

As mentioned earlier training follows the tree structure. The �rst inputs
presented is the most bottom layer � the leaves. Following are upper levels
of the tree until the root of the tree is reached. In the example simple binary
tree over 3 symbols (Fig. 3.2) is used as input.

The �rst input is the rightmost leaf `r'. As leaves have no subtrees the
position of winners for both left and right winners is [-1, -1]. The winner of
this input can be at position [6, 2]. The next input is the second leaf `q' with
the same position of previous winners. This time winner neuron can be at
position [3, 1]. The last input is `p' with the both left and right subtrees.
For this input the winner can be at position [7, 0]. As we know the winner
positions, we can use them as a part of the input (Fig. 3.3).

40

Chapter 3. Self-organizing maps for tree data

Figure 3.2: Basic tree structure

"r" -1 -1 -1 -1 "q" -1 -1 -1 -1 "p" 3 1 6 2

Figure 3.3: Computation of tree structure with SOMSD model

To compute space and time complexity the arity of the tree is needed (k).
SOMSD requires k context layers and one input layer, i.e. every neuron in
the map needs (n+ 2k) weights. Therefore the space complexity is:

S(SOMSD) = O((n+ 2k)N + c) = O(N(n+ k)) (3.2)

The time complexity is divided in steps as before: the �nding winner
and adapting parameters steps have the same time complexity as SOM. Pre-
senting input (with contexts) costs O(n+2k). The computation of di�erence
between the weights and the input with contexts costs (Eq. 3.1) O(N(n2+k)).
More weights need to be updated as well, the cost is O(N(n2 + k22)). And
the new context needs to be computed O(c). The sum of all steps:

T (SOMSDtree−input) = O((n+ 2k) +N(n2 + k) +N +N(n2 + 4k) + c+ c)

T (SOMSDtree−input) = O(N(n2 + k)) (3.3)

The time complexity of the epoch and the whole learning use the same
thought as in Eq. 2.9:

T (SOMSDtree) = O(pmMmaxN(n2 + k)) (3.4)

Hagenbuchner et al. (2005a) proposed extension to SOMSD model called
contextual SOMSD (CSOMSD). This extension enables the model to achieve
contextual processing of information, i.e. the model is trained using infor-
mation not only about successors but also about predecessors. One single
CSOMSD can replace layers of self organizing maps. Some experiments were
conducted to compare existing SOMSD model with CSOMSD (Hagenbuch-
ner et al., 2005b).

41

Chapter 3. Self-organizing maps for tree data

3.2 MSOM

In case of tree structures is the situation more di�cult than in SOMSD
model. Merge SOM can be modi�ed to accommodate tree data (Fig. 3.4).

merge

q q q q q q

Figure 3.4: MSOM modi�cation for binary tree data. Left context represent
left child, right context represents right child.

Similar to the Eq. 2.4 the unit's distance is computed as:

di(v) = α‖v −wi‖2 + β(‖qch(1) − c
(1)
i ‖2 + . . .+ ‖qch(k) − c

(k)
i ‖2) (3.5)

where qch(j) is the so-called context descriptor of jth child computed as

qch(j) = (1− γ)wch(j) + γ(
1

k
c

(1)
ch(j) + . . .+

1

k
c

(k)
ch(j)) (3.6)

Again, the dimensionality of the context vector equals input dimension n.
The space complexity adds k context weights instead of one (Eq. 3.7) to

the result:
S(MSOM) = O(Nn+ kNn+ c) = O(kNn) (3.7)

The number of contexts in�uence the time complexity of the model as
well. The original equation (Eq. 2.8) has to be changed to accommodate for
k contexts. The �rst step consists of presenting k contexts of size n and one
input and costs O((k + 1)n), the di�erence is computed for all contexts and
input as well, it costs O((k+1)Nn2). Finding winner costs the same amount
as in SOM. Then all weights need to be updated which costs O((k+ 1)Nn2),
adapting parameters is a constant and updating contexts costs O(kn). The
resulting time complexity is:

T (MSOMtree−input) = O((k + 1)n+ (k + 1)Nn2 +N + (k + 1)Nn2 + c+ kn)

T (MSOMtree−input) = O(kNn2) (3.8)

42

Chapter 3. Self-organizing maps for tree data

The time complexity of the epoch use the thought mentioned in SOMSD
model (Eq. 2.9 and Eq. 3.4)

T (MSOMtree) = O(pmMmaxkNn
2) (3.9)

There is one problem with this modi�cation � the sensitivity to data
orientation. As a consequence, only certain tree structures could be faithfully
represented in this model. Hammer et al. (2004b) argued that MSOM does
not distinguish between the branches of a tree, because the operation of unit
distance calculation �is commutative with respect to the children. Two trees
resulting from each other by a permutation of the vertex labels at equal
height have the same winner and the same internal representation� (p. 7).
The proposed alternative solutions to compensate for the problem were:

1. The �rst alternative relies on the encoding of tree structures in pre�x
notation in which the single letters are stored as consecutive digits
of a real number. A speci�ed digit denotes an empty vertex. For
example, if vertices are labeled 1,2,3 and empty vertex is labeled 9,
the sequence 12993299199 represents the tree 1(2,3(2,1)). This yields a
unique representation. The problem here lies in the depth of tree that
has to be known before processing to set the length of the input vector.

2. Trees can be represented as real values of which consecutive digits cor-
respond to the single entries. In such a setting, merging of context
would correspond to a concatenation of the single representations, i.e.
a label l(v) and representation strings s1 and s2 for the two subtrees
would result in the pre�x representation l(v)s1s2 of the entire tree.
Concatenation is not commutative operation and therefore it can be
used in case of oriented data. This approach is not very e�cient in
practice (numbers are easier processed than strings).

However, we show that MSOM can in fact distinguish between branches
of a tree and therefore the alternative solutions are not necessary.

3.2.1 Distinguishing branches of a tree

Here we show that although commutativity introduces some loss of infor-
mation, it does not prevent MSOM from being able to distinguish two trees
with permuted branches. (How much information is actually lost has to be
further analyzed). We illustrate the argument using a simplest pair of two
binary trees T1: (a(b c)) and T2: (a(c b)) that are relevant for the above
commutativity condition. These trees are identical regarding the structure

43

Chapter 3. Self-organizing maps for tree data

but di�erent regarding the content. Let RT1
ch1(a) and R

T1
ch2(a) be the computed

context representations of the two children (labeled b and c respectively)
for T1, and let RT2

ch2(a) and R
T2
ch1(a) be the context representations of the two

children (c and b) for T2. Since they are leaves, it holds that

RT1
ch1(a) = RT2

ch2(a) and RT1
ch2(a) = RT2

ch1(a) . (3.10)

Let the winner for the �rst tree be w1 = arg mini{dT1
i } where

dT1
w1 = αd(ww1,

′a′) + β(d(c
(1)
w1, R

T1
ch1(a)) + d(c

(2)
w1, R

T1
ch2(a)))

and for the second tree w2 = arg mini{dT2
i } where

dT2
w2 = αd(ww2,

′a′) + β(d(c
(1)
w2, R

T2
ch1(a)) + d(c

(2)
w2, R

T2
ch2(a)))

with d denoting the similarity measure (e.g. a Euclidean metric). We show
by contradiction that in general

d(c
(1)
w1, R

T1
ch1(a)) + d(c

(2)
w1, R

T1
ch2(a)) 6= d(c

(1)
w2, R

T2
ch1(a)) + d(c

(2)
w2, R

T2
ch2(a)) (3.11)

in which case the extended MSOM is able to di�erentiate between T1 and
T2. Let us assume that equality in Eq. 3.11 holds. Using Eq. 3.10 we get

d(c(1)
w , RT1

ch1(a))− d(c(2)
w , RT1

ch1(a)) = d(c(1)
w , RT1

ch2(a))− d(c(2)
w , RT1

ch2(a))

This equality holds if and only if vectors RT1
ch1(a) and R

T1
ch2(a) lie on the same

(n-1)-dimensional manifold (where n is the context vector size). However,
the space of solutions is n-dimensional so only a fraction of them satis�es the
above equation. 1 Therefore, there exist only a few cases when commutativity
holds and when the two children would be indistinguishable. Hence, this
provides extension (cf. Theorem 3 in Hammer et al. (2004b)) of MSOM to
the processing of trees.

To verify the validity of our argument, we performed simple simulations
in which MSOM was observed to distinguish all binary trees (of depth one)
with permuted children using three symbols.

This argument holds even if (for some reason) R is computed as Rch(j) =
wch(j), i.e. only using winner's input weights, but not context weights. This
does not change our argument, because Eqs. 3.10 and 3.11 remain unchanged
as does the conclusion.

1The similar situation also arises in a standard SOM when two di�erent inputs yield
the equal distance from the same unit if they lie on the surface of the (n-1)-dimensional
hypersphere, centered around that unit's weight vector.

44

Chapter 3. Self-organizing maps for tree data

At the same time, although MSOM can di�erentiate between permuted
branches of a tree, some loss of information occurs due to two reasons. First,
only the information about the winner is saved (as in SOMSD, albeit with
a di�erent content), and second, due to the commutativity of operation (the
last term in Eq. 2.6). Therefore, MSOM in principle cannot learn all types
of structured data. On the other hand, this information loss means faster
computation that in most cases is more important than saving every detail
in the context.

To verify the validity of our argument, we performed simple simulations
in which MSOM was observed to distinguish all the binary trees (of depth
one) with permuted children using three symbols.

Simulation

For the simulation we chose data set of all binary trees of depth one (root
and two child vertices) over three symbols. The symbols can be visualized as
`a', `b' and `c'. There are six trees in the data set, two of each symbol as a
root. For this very small data set we chose 10×10 map trained 2000 epochs.

The (α, β) parameter space was searched systematically (interval 0�1 with
a step 0.1) to con�rm the results. The context descriptor parameter was set
to its default value γ = 0.5. The neighborhood size was set to σ:3→0.5
over 1200 epochs and then remained constant. The learning rate was set
µ:0.3→0.15 over 1200 epochs, and further decreased linearly down to 0.1.

Symbols were encoded into input vector of size one. Both context vectors
had the same size. The value of the input vector was set to 0.1 for `a', 0.5
for `b' and 0.9 for `c'.

In all experiments the results were the same, all six trees (and also all
three leaves) were separated from each other. So there were nine active
neurons (out of one hundred) in the map. The di�erence between results is
in the distance between the active neurons corresponding to similar trees. If
β was higher than α the distances were more pronounced as the parameter
β strengthens the weight of the contexts.

Tab. 3.1 shows example of one particular trained map (map size 10×10,
α = 0.2, β = 1.0).

The position of the winners shows that MSOM is sensitive to data orien-
tation and di�erentiates between child subtrees.

45

Chapter 3. Self-organizing maps for tree data

input winner winner position

a 9 [0,9]
b 59 [5,9]
c 99 [9,9]

(a(bc)) 2 [0,2]
(a(cb)) 20 [2,0]
(b(ac)) 0 [0,0]
(b(ca)) 40 [4,0]
(c(ab)) 90 [9,0]
(c(ba)) 70 [7,0]

Table 3.1: All inputs and their corresponding winners and winner positions
for one particular trained map.

3.3 RecSOM

The same way as previous models this model can also be extended to process
trees with arity k by adding k contexts. Equations are updated to work with
k contexts and parameters α and β control the contexts' and the input's
in�uence of the distance.

In case of trees unit's distance in RecSOM is computed as

di(v) = α‖v −wi‖2 + β(‖ych(1) − c
(1)
i ‖2 + . . .+ ‖ych(k) − c

(k)
i ‖2) (3.12)

where the components of the context vector y = [y1, y2, ..., yN] are computed
using Eq. 2.11.

The dimensionality N of the context vector (for each child) makes this
architecture computationally the most expensive regarding both the space
and the time complexity.

For the space complexity the computation, the input weights are the same
as for the sequence RecSOM (O(Nn)). The context weights are in this case
multiplied k times for each context (O(kN2)):

S(RecSOM) = O(Nn+ kN2 + c) = O(kN2) (3.13)

Adding k contexts changes four of six steps in the learning of one input.
In the �rst changed step input and all contexts are presented. In the second
step the distance between input weight and input as well as context weights
and contexts is computed. The third step is updating all weights and the
fourth step is computing new context.

T (RecSOMtree−input) = O((n+kN)+(Nn2+kN3)+N+N(n2+kN2)+c+N)

46

Chapter 3. Self-organizing maps for tree data

T (RecSOMtree−input) = O(Nn2 + kN3) (3.14)

This model has the highest time complexity so the overall time complexity
of this model is:

T (RecSOM) = O(pmMmaxN(n2 + kN2)) (3.15)

where p denotes number of epochs and m denotes the data set size. Still, in
this most complex model the time complexity is polynomial and not expo-
nential.

3.4 GSOMSD

Hammer et al. (2004a) introduced unifying framework for these models.
GSOMSD, Generalized SOM for Structured Data, uses parameters to cover
all models. Only the basic unifying structure of the algorithm is de�ned.

Algorithm 3.1 Pseudocode of the GSOMSD training algorithm. This code
provides general framework for all presented models and was used in imple-
mentation of the models.
1: initialize the weights at random
2: repeat

3: choose some training pattern T
4: for all subtrees t in T in inverse topological order do
5: compute di for all neurons
6: compute the neuron i∗ with greatest similarity
7: adapt the weights of all neurons simultaneously
8: end for

9: until end of training

All presented models can be described using this uni�ed model. Ham-
mer et al. (2004a) also presents how to initialize GSOMSD to get presented
models.

This framework was used in real implementation of all models and all
presented experiments were done using this implementation. This can be
viewed as a proof of concept for GSOMSD.

47

Chapter 4

Model comparison

All presented models have di�erent types of feedback and their di�erences
are not clear from the feedback type. Exact comparison is needed to provide
basic understanding how these models perform in experiments. This can be
used to decide which model is appropriate for the task required. The types
of tasks for the models cover data and structure visualization, memory and
clustering.

We focus on the three most complex SOM models (SOMSD, MSOM and
RecSOM) and their ability to di�erentiate among the trees. SOMSD uses
reference to the winner position in the grid, MSOM refers to the winner
content, and RecSOM refers to the whole map activation. 1 Earlier models,
such as TKM or RSOM are not included, due to the strict locality of their
feedback, which leads to inferior performance of these models. We assess
and compare the performance of the three models using six quantitative
measures. For testing we use the tree data sets of increasing complexity:
binary syntactic trees, ternary linguistic propositions, and 5-ary graphical
data of house structures.

4.1 Performance measures

When dealing with recursive SOMs, we bear in mind that the traditional
use of these models is for data clustering (be it points, sequences, or trees)
and visualization (low-dimensional projection). For clustering, the number

1MSOM and RecSOM are not explicitly designed for optimum representation of a �xed
lattice structure, so in principle they can be also used in the Neural Gas (NG) model
(Martinetz and Schulten, 1991), which is not possible for SOMSD. The dynamic topology
of NG would allow more �exibility and would hence lead to better representations if map
visualization was not one of the goals.

48

Chapter 4. Model comparison

b c

a a

db

a

b

x

x x

Figure 4.1: Example of two trees (left half) and their overlaps related to
TRF and STRF measures respectively (right half).

of map units has to be smaller than the number of inputs in the data set.
The inverse property to clustering is the di�erentiation among inputs, i.e. as-
signing unique output representations to di�erent inputs. However, we think
that a reverse ratio (i.e. more units than inputs) also makes sense (as will be
the case of syntactic binary trees), at least for visualization purposes (e.g. in
the semantic map (Ritter and Kohonen, 1989)). In addition, in this case
we can think of a recursive SOM as performing data transformation (and
visualization) from a symbolic space of trees to a vector space (e.g. on a reg-
ular lattice). As a consequence, we should employ measures that consider all
these aspects. The measures used in our experiments are listed in Table 4.1
and are explained below.

Table 4.1: The quantitative measures used for evaluating the models.
Acronym Name Purpose

TQD Tree Quantizer Depth content and structural memory

STQD Structure-only sensitive TQD structural memory

WD Winner Di�erentiation fraction of unique winners

MED Minimum Euclidean Distance between map output activations

QE Quantization Error statistics of labels distribution

LWC Locality-Winner Correlation spatio-temporal information

First, we introduce two pairs of related numerical measures. The �rst
measure is inspired by the quantizer depth introduced for symbolic sequences
for measuring the amount of memory captured by the map (Voegtlin, 2002b).
It is de�ned as the average size of the unit's receptive �eld, i.e. the common
su�x of all sequences for which that neuron becomes the winner. 2 In case
of trees, we propose an analogue named Tree Quantizer Depth (TQD), com-
puted as the average size of the Tree Receptive Field (TRF), i.e. the common
�su�x� (subtree) of all vertices for which that neuron is the winner. The size

2Temporal extensions of SOM that build localist representations of symbolic sequences
are essentially context quantizers: the higher the memory depth, the better accuracy in
sequence reconstruction.

49

Chapter 4. Model comparison

of TRF is calculated as the number of tree vertices it contains. Hence,

TQD =
N∑

i=1

pisi (4.1)

where pi is the probability of unit i becoming a winner and si is the (integer)
size of its TRF. For instance, a unit i winning for just two trees (a(bc)) and
(a(bd)) will have si = 2. Weighted averaging is required since some subtrees
in the data may be more frequent than the others which should a�ect the
calculation of the model's memory depth. Figure 4.1 illustrates the two trees
and their ovelap related to TRF (the second tree from the right).

Unlike sequences, which have linear structure, trees provide room for
distinguishing between the content in structure (captured by TQD) and the
bare structure. This leads to the second measure, the Structure-only sensitive
TQD (STQD), which is less strict, since it is based on structure-only sensitive
TRFs (STRFs). STRF considers only the structure of a tree by distinguishing
between the leaves and the inner vertices, not between the vertices with
di�erent labels (i.e. their content). The measure is de�ned as

STQD =
N∑

i=1

pis
′
i (4.2)

where s′i denotes STRF of ith neuron (i.e. the number of common elements
in the subtree while only looking for label/subtree di�erences) and pi is the
same as above. For instance, a unit i winning for just two trees (a(bc)) and
(a(bd)) has s′i = 3. Figure 4.1 illustrates the two trees and their overlap
related to STRF (rightmost tree).

We introduce the next pair of measures to assess the discrimination ca-
pacity of the models to unambiguously represent di�erent trees. This implies
the ability to uniquely represent all vertices (subtrees) contained in all trees
(Hammer et al., 2004b). One view of looking at the representation of a vertex
implies that a map reserves a separate winner for it: The winner di�erentia-
tion (WD) refers to the level of winners and is computed as the ratio of the
number of di�erent winners for the entire data set and the size of the data
set. Let T be the set of all trees and V (T) the set of vertices of a tree T . If
V = {v ∈ V (T),∀T ∈ T } denotes the set of all vertices in the data set, then

WD =
|{j | ∃t : j = i∗(t)}|

NV
(4.3)

where NV denotes the number of all inputs in the data set. WD<1 indicates
that not all vertices could be uniquely represented by the map. It is true that

50

Chapter 4. Model comparison

WD depends on the relative number of units with respect to inputs (vertices).
Anyway, it holds in general (i.e. regardless of the data set) that the higher
WD, the higher proportion of inputs can be represented by distinct winners.

An alternative view at input discrimination is based on a distributed rep-
resentation of vertices: The corresponding more �detailed� measure (MED)
looks at the di�erences between map output activation vectors. The normal-
ized minimum Euclidean distance is computed as

MED = min
k 6=l
{‖y(Tk)− y(Tl)‖/N}, (4.4)

where y(Tm) is the map output activation vector (whose components are
obtained using Eq. 2.11) corresponding to the processing of the root of the
tree Tm. If not by WD, the two trees (vertices) have a better chance to be
distinguished by MED.

To embrace other aspects of model behavior, we also include quantitative
measures de�ned earlier (Steil et al., 2006). Quantization error (QE) cap-
tures information about how well the (input) weight vectors retain statistical
information about the labels distribution. 3 We de�ne QE formally as 4

QE =
1

NV

∑
T∈T

∑
v∈V (T)

‖v −wi∗‖2 (4.5)

Hence, QE computes distances in the input space focusing on spatial in-
formation and ignoring any structural information contained in the trees.
Locality-Winner Correlation (LWC) coe�cient was introduced to measure
how the spatiotemporal information is encoded into the maps. LWC is de-
�ned as a correlation coe�cient between �locality� of the trees (being a prop-
erty of the data set) and the number of distinct winners for the trees, i.e.

LWC = CorrCoef{L(T), |win(T)|} (4.6)

Locality of a tree T is de�ned as: L(T) =
∑

v∈V (T)

∑
u∈↓v ‖v − u‖ where

↓ v = {u|∃path(v, u)} denotes a list of all child vertices u of vertex v. The
number of (distinct) winners for T is de�ned as

win(T) =

{
i∗|∃v ∈ V (T) : i∗ = arg min

i
{di(v)}

}
3This measure was mainly inspired for the data sets with all labeled vertices, such as

our 5-ary graphical data set. For completeness we also report QE for our binary and
ternary data sets.

4Unlike (Steil et al., 2006) we normalize QE with respect to the number of vertices in
the data set to make the results comparable across data sets.

51

Chapter 4. Model comparison

Six measures de�ned above are used in forthcoming experiments. In all
cases, the higher the measure value, the better the performance, except for
QE where the opposite is true.

4.2 Experiments

We set the map parameters experimentally according to the model and the
task di�culty. We started with basic maps of 10×10 units in case of binary
data, and 15×15 units for both ternary propositions and the 5-ary graphical
data. In an e�ort to get a maximum of each model with respect to the above
measures, we systematically searched the (α, β) parameter space. Each model
can trade-o� the e�ect of inputs and contexts on map formation by these
parameters, which were searched experimentally in the interval 0�1 with a
step 0.1 for the initial map size with N = 100 units. In RecSOM, α was
also varied up to 4 (with a step 0.4). 5 In all models, we could observe that
varying these two parameters traded-o� the e�ect on leaves (increasing α)
and non-leaves (increasing β). More speci�cally, changing α (while keeping
β constant) did not a�ect output representations of leaves but led to the
overall decrease of activations for trees. Increasing β (with constant α) led
to gradual vanishing of output representations of leaves, and to the focusing
of activations for trees (and also vanishing in combination with higher α). We
looked for the models that had the best discrimination capacity as manifested
by the largest number of unique winners in representing di�erent vertices.

Despite the above mentioned commonalities, the models were observed to
di�er in their sensitivity to (α, β) setting, which depended on the data set.
As shown in Figure 4.2, SOMSD reveals a rather irregular dependance (for
all three data sets) of WD on (α, β) parameter values. On the other hand,
in MSOM the �optimal� area roughly occupies a V-shape and di�ers in its
α/β ratio for the three data sets. RecSOM shows a somewhat di�erent de-
pendance which again is quite systematic. Based on these graphs we selected
optimal α and β for subsequent experiments. Figure 4.2 also demonstrates
that it makes sense to search for optimal α and β independently, since these
were found �o�-diagonally�, at least in case of RecSOM and SOMSD (for
MSOM the optimal values lie close to the diagonal α + β = 1).

Regarding (α, β) it could be argued that it would be more meaningful to
change these parameters dynamically, rather than preset them to constant
values. In particular, one could start with β = 0 to �rst force learning the
leaf labels (not being disturbed by noisy contextual information), and later

5We were motivated by the experience with RecSOM in case of sequences where α > 1
led to better representations (Ti¬o et al., 2006).

52

Chapter 4. Model comparison

0.6 0.6 0.6

0.6 0.
60.
6

0.
6

0.6

0.65 0.65

0.65

0.650.65 0.65

0.7
0.7

0.7

0.
7

0.
7

0.7

0.75
0.75

0.
8

0.8

bi
na

ry

SOMSD

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

0.35

0.
4

0.4

0.40.45

0.45

0.5 0.
5

0.55

0.6

0.
6

0.65

MSOM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 0.450.50.55

0.
6

0.6

0.
65

0.7

0.
750.8

0.8
0.85

0.85

0.85 0.9

0.9

RecSOM

0.2 0.4 0.6 0.8

1

2

3

4

0.20.
2

0.22
0.22

0.22 0.22

0.
22

0.24

0.24 0.24
0.26

te
rn

ar
y

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

0.02
0.04

0.06

0.06

0.08
0.

08

0.
08

0.1

0.1
0.

1

0.12

0.12

0.120.14
0.140.16

0.1
6

0.18

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

0.1

0.1

0.
1

0.1

0.11

0.110.11
0.12

0.12

0.12
0.13

0.13

0.14

0.14 0.14

0.15

0.15
0.16

0.160.
16

0.2 0.4 0.6 0.8

1

2

3

4

0.016

0.
01

6

0.018
0.018

0.
01

80.018

0.02

0.02

0.
02

2

5−
ar

y

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

0.020.025

0.
03

0.03

0.
03

5

0.
04

0.
04

5
0.

05

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

0.020.0250.
03

0.035
0.04

0.045

0.2 0.4 0.6 0.8

1

2

3

4

Figure 4.2: Mean WD as a function of systematically varied parameters α
(vertical axis) and β (horizontal axis) for the three models trained on all
three data sets. Whereas MSOM and RecSOM reveal systematic patterns
in performance change (speci�c for each data set), SOMSD displays least
evident order, with irregularly spaced small (α, β) islands with the highest
WD.

increase β (while decreasing α) to also develop the model sensitivity to the
structural information. 6 Although this argument is logical, the downside of it
is that it prevents clear separation of leaves from trees in the map, because, as
con�rmed by our simulations, the winners for di�erent leaves evenly spread
over the map and then the winners for trees can only squeeze in between
them (global reorganization does not take place). Hence, we preferred to
simultaneously learn the labels and the structure by setting both α and β to

6Actually, this kind of strategy (entropy-controlled adaptation) with β = 1 − α was
used in MSOM for processing the sequential data (Strickert and Hammer, 2005).

53

Chapter 4. Model comparison

positive values, and to �nd the optimal values experimentally.
Once the optimal (α, β) parameters were found, 10 runs of the same model

with random weight initialization from the interval [0, 1] were conducted and
the mean values of measures were computed. In the case of the binary data
set 100 runs were conducted.

We also tested larger maps with 225 (for binary data) and 400 (for ternary
and 5-ary data) using the optimal parameters found for the initial map size.
In MSOM, the context descriptor parameter was set to its default value
γ = 0.5 in all experiments.

4.2.1 Binary syntactic trees

This data set was composed of 7 syntactic trees with labeled leaves and
unlabeled inner vertices (vertices), having maximum tree depth 5 (the left
half of Table 4.2). The trees were generated by a simple grammar orig-
inally developed for testing the representational capacity of the Recursive
Auto-Associative Memory (Pollack, 1990). For the RAAM, being a two-
layer perceptron trained as an auto-associator, the ability to represent a tree
involves its successful encoding (at the hidden layer), and the subsequent
unambiguous decoding (at the output layer). In case of our unsupervised
feedback maps, on the contrary, there is only the encoding part. The ability
of the map to represent a tree implies its ability to also uniquely represent all
vertices (subtrees) contained in the training set (the right half of Table 4.2).

Table 4.2: Binary trees used for training and the list of non-trivial vertices
comprised by the data set.

Training set Vertices contained in it
(d(a(a(an)))) ((dn)v) (an) (p(dn))
((dn)(p(dn))) ((dn)(v(d(an)))) (a(an)) (d(an))
(v(dn)) ((d(an))(v(p(dn)))) (a(a(an))) (v(d(an)))
(p(d(an))) (dn) (v(p(dn)))

Similarly to RAAM, processing a tree in a feedback map proceeds bottom-
up from the leaves, for which context activations are set to zero vectors, up
to the root. When processing the inner vertices, the inputs are set to zeros.
Intermediate results (activations) are stored in a bu�er to be retrieved later.
The weights are updated in each discrete step. The example is shown in
Table 4.3.

The data set was presented during 2000 training epochs. During the �rst
1200 epochs, the neighborhood width was set to linearly decrease, σ:3→0.5

54

Chapter 4. Model comparison

Table 4.3: The order of training inputs (organized in columns) in processing
the tree ((dn)(p(dn))). The inputs (left context, label, right context) are
mapped to output representations R (or R').

Input Output Input Output
0 n 0 → R[n] 0 d 0 → R'[d]
0 d 0 → R[d] R[p] 0 R[(dn)] → R[p(dn)]

R[d] 0 R[n] → R[(dn)] R'[d] 0 R'[n] → R'[(dn)]
0 p 0 → R[p] R'[(dn)] 0 R[(p(dn))] → R[tree]
0 n 0 → R'[n]

(ordering phase), and then kept constant over the next 800 epochs (�ne-
tuning phase). For the larger maps the initial neighborhood width was pro-
portionally increased and the pro�le was kept the same. The leaves were
assigned (symbolic) one-hot codes yielding the input space with dimension-
ality M = 5. For the best models of all sizes, we present the six quantitative
measures (as de�ned in Section 4.1) in Tables 4.4�4.5 7 and also the (typical)
graphical information about unit weights and output activations. Standard
deviations around the means were negligible in most cases, except for MED,
QE and LWC measures in case of SOMSD.

(dn)
(an)

(v(p(dn)))
v

((dn)v)

(p(d(an)))
(a(a(an)))

(v(d(an)))
p

a

(d(a(a(an))))
(a(an))

((dn)(v(d(an))))
n

d

(v(dn))
(d(an))

(p(dn))
((dn)(p(dn)))

((d(an))(v(p(dn))))

0.5 1 1.5 2 2.5

(an)
(dn)

((dn)v)
(d(a(a(an))))

(d(an))
(a(an))
(v(dn))

((dn)(p(dn)))
((d(an))(v(p(dn))))

(p(d(an)))
(a(a(an)))
(v(d(an)))
(v(p(dn)))

((dn)(v(d(an))))
(p(dn))

d
p
n
a
v

Linkage distance

Figure 4.3: (a) Output activities of SOMSD and (b) the corresponding den-
drogram for all vertices from the binary trees data set.

7In cases where standard deviations around the mean are not shown, they were negli-
gible.

55

Chapter 4. Model comparison

Figure 4.4: Converged (a) input, (b) left context and (c) right context weights
of the SOMSD model trained on the binary trees data set. Topographic
organization is evident in all cases.

SOMSD. The best results for SOMSD were obtained using α = 0.5 and
β = 0.9. The average fraction of unique winners was almost 0.93 (Table 4.5).
The errors were caused by very similar trees (such as (a(an)) and (v(dn)))
that share the winners. The SOMSD output activity in Figure 4.3a clearly
shows the topographic organization. The winners for leaf vertices, located
in the right middle part of the map, are clearly separated from winners
for trees, occupying the complementary map regions. In addition, simpler
trees, located in the upper left area, are separated from the more complex
trees in the bottom right area of the map. It can also be observed that
activation pro�les for trees are more focused than those for leaves. The
corresponding dendrogram of the map activity (Figure 4.3b) shows how the
map di�erentiates between the trees. Leaves are clearly di�erentiated from
non-trivial trees. 8

The weight pro�les (Figure 4.4) illustrate topographic ordering of all sets
of weights. Their organization accounts for a clear division of map units
in their specialization of representing either leaves (right middle area) or
trees (the complementary parts of the map). Increasing the map size was
observed to lead to an improvement (Tables 4.4 and 4.5): all 20 trees could
be more-or-less reliably di�erentiated in the map.

MSOM. We chose α = 0.2, β = 1.0. As seen in Figure 4.5a, winners
for leaves (trivial trees) are again well separated from units representing
trees. There are only WD = 0.80 of di�erent winners, and each neuron
becomes activated for several inputs. Hence, the MSOM activation is much
more widespread than in the case of SOMSD (and RecSOM). Even though

8All dendrograms were created by the average linkage clustering method (applied to
outputs y), and the resulting hierarchical trees were optimized by a leaf ordering method
that maximizes the sum of similarities of adjacent elements in the ordering (Bar-Joseph
et al., 2001).

56

Chapter 4. Model comparison

((d(an))(v(p(dn))))
((dn)(v(d(an))))

((dn)(p(dn)))
(dn)

(d(a(a(an))))

p
d

((dn)v)
(d(an))

(an)

n
v

a
(a(an))

(a(a(an)))

(v(p(dn)))
(v(d(an)))

(v(dn))
(p(d(an)))

(p(dn))

0.5 1 1.5 2 2.5 3

(d(a(a(an))))
(d(an))

(dn)
(an)

(a(an))
(a(a(an)))
(p(d(an)))

(p(dn))
(v(dn))

(v(d(an)))
(v(p(dn)))

((dn)v)
((dn)(p(dn)))

((dn)(v(d(an))))
((d(an))(v(p(dn))))

p
n
v
a
d

Linkage distance

Figure 4.5: (a) Output activities of MSOM and (b) the corresponding den-
drogram for all vertices from the binary trees data set.

Figure 4.6: Converged (a) input, (b) left context and (c) right context weights
of the MSOM model trained on the binary trees data set. Topographic
organization is evident in all cases.

the dendrogram shows that MSOM di�erentiates between leaves and non-
trivial trees, the trees are di�erentiated di�erently from SOMSD model. The
weight pro�les (Figure 4.6) show topographic order and splitting of the map
in representing leaves and inner vertices. The di�erences between the left
and the right contexts are due to asymmetry of the trees in the data set.
Increasing the map size to 225 units led to an improvement of all measures
(except MED that remained unchanged). The problem for all MSOMs (for
every map size) was to di�erentiate between two trees: (v(d(an))) and (v(dn)).

RecSOM. Best results were achieved with α = 1.6 and β = 0.9. This
parameter combination di�ers from the other two models due to the opposite

57

Chapter 4. Model comparison

a
n

d
p

((d(an))(v(p(dn))))

((dn)v)
v

(v(dn))
(p(d(an)))

(v(d(an)))

(an)
(p(dn))

(a(an))
(a(a(an)))

(v(p(dn)))

(dn)
(d(a(a(an))))

(d(an))
((dn)(v(d(an))))

((dn)(p(dn)))

0 0.5 1 1.5 2 2.5

d
v
p
a

(a(a(an)))
(a(an))

((d(an))(v(p(dn))))
((dn)(v(d(an))))

((dn)(p(dn)))
(v(p(dn)))

(v(dn))
(v(d(an)))
(p(d(an)))

((dn)v)
(d(a(a(an))))

(p(dn))
(an)
(dn)

(d(an))
n

Linkage distance

Figure 4.7: (a) Output activities of RecSOM and (b) the corresponding den-
drogram for all vertices from the binary trees data set.

Figure 4.8: Converged (a) input, (b) left context and (c) right context weights
of the RecSOM model trained on the binary trees data set. Topographic
organization is evident in all cases. The context weights are displayed as 2D
mesh plots.

α/β ratio. The likely reason is that higher value of α in RecSOM is needed
to counterbalance the e�ect of high-dimensional context activations. Never-
theless, the output activations of leaf vertices remained very weak even after
training. The whole map activity (Figure 4.7a) is more focused than in the
case of MSOM and SOMSD but there are more di�erent winners, 95% on
average for the initial map size. The dendrogram of RecSOM (Figure 4.7b)
is di�erent from the previous models, the di�erentiation is not hierarchical
and some leaves are mingled with trees. The reason lies in highly focused
output activations. The weight pro�les in Figure 4.8 show that units focus-

58

Chapter 4. Model comparison

Table 4.4: Mean TQD and STQD measures for the models trained on the
binary trees data set.

10×10 15×15
SOMSD 2.82 2.92 2.93 2.93
MSOM 2.61 2.66 2.86 2.86
RecSOM 2.83 2.86 2.93 2.93

Table 4.5: Mean WD and MED measures for the models trained on the
binary trees data set.

10×10 15×15
SOMSD 0.93 0.003±0.002 1.00 0.0005
MSOM 0.80 0.002 0.95 0.002
RecSOM 0.95 0.0008 1.00 0.004

ing on leaves are again well separated from units focusing on trees. As with
SOMSD, increasing the map size to 225 units led to maximum WD = 1.0
and to an increase of MED as well.

As seen in Table 4.6, QE also decreased in all larger maps, and MSOM
showed the lowest QE. In terms of LWC, all models are equal, and the corre-
lation between the winners and the locality of the trees was very high. LWC
turned out to be insensitive to the map size.

4.2.2 Ternary linguistic propositions

The second set consists of ternary trees of linguistic propositions that were
also tested in the case of linear RAAM model (Farka² and Pokorný, 2007).
This data set originated from English sentences that were generated using
a speci�ed probabilistic context-free grammar with semantic constraints and
then rewritten into ternary propositions. The translation process resulted in
307 various (non-trivial) trees with maximum depth 7. Table 4.7 lists a few

Table 4.6: Mean QE and LWC measures for the models trained on the binary
trees data set (LWCs for the larger maps is not shown since they remained
unchanged).

10×10 15×15
SOMSD 0.011±0.029 0.938±0.08 0.00055±0.00009
MSOM 0.00059 0.937 0.00031
RecSOM 0.0034 0.937 0.0041

59

Chapter 4. Model comparison

examples of used sentences and their translations to propositions. 9 Some
trees have empty inner vertices (NULL labels). The �fty words (i.e. leaves) in
the lexicon implied M = 50 since the leaves were assigned localist (one-hot)
encoding. We used the map with 15×15 units, and trained it for 20 epochs.
The neighborhood size was set to σ:5→0.5 over 12 epochs and then remained
constant. For the larger map, σ was proportionally increased. The learning
rate was set µ:0.3→0.15 over 12 epochs, and further decreased linearly down
to 0.1.

Table 4.7: Examples of simpler generated sentences and their translations.
Sentence Proposition
Steve walks (walks Steve NULL)
women see boys (see women boys)
dogs who_pl see girl bark (bark (are dogs (see dogs girl)) NULL)
boy feeds cat who John sees (feeds boy (is cat (sees John cat)))

(feeds, boy, (is, cat, (sees, John, cat)))

feeds
boy

(is, cat, (sees, John, cat))

is

cat
(sees, John, cat)

sees
John

(walks, (is, Kate, (hears, John, Kate)), dog)

walks

(is, Kate, (hears, John, Kate))

dog
Kate

(hears, John, Kate)

hears

(hates, (is, John, (sees, boy, John)), Mary)

hates

(is, John, (sees, boy, John))

Mary

(sees, boy, John) (walks, Steve, −)

Steve

(bark, (are, dogs, (see, dogs, girl)), −)

bark

0 0.5 1 1.5 2 2.5 3

is
dog
boy
cat

walks
John

hears
Kate
bark

feeds
hates
Mary
Steve
sees

(sees John cat)
(hears John Kate)

(sees boy John)
(hates (is John (sees boy John)) Mary)
(walks (is Kate (hears John Kate)) dog)

(bark (are dogs (see dogs girl)) −)
(feeds boy (is cat (sees John cat)))

(is cat (sees John cat))
(is Kate (hears John Kate))

(is John (sees boy John))
(walks Steve −)

Linkage distance

Figure 4.9: (a) Output activities of SOMSD and (b) the corresponding den-
drogram for the 25 randomly selected vertices from the ternary trees data set.
Longer tree labels in the activity map are positioned below the corresponding
image.

SOMSD. We chose α = 0.5 and β = 0.4. SOMSD clearly di�erentiates
between leaves and non-trivial trees (Figure 4.9) but also clustering by tree

9In translation, the word who was replaced by the heads is and are depending on the
number used in the phrase.

60

Chapter 4. Model comparison

0 0.2 0.4 0.6

(is boy (hears boy dog))
(is boy (likes girl boy))

(is cat (sees Kate cat))
(sings (is girl (sees girl cats)) −)

(run (are girls (hear girls dog)) −)
(eat (are boys (see boys bread)) −)
(sing (are boys (like boys boys)) −)
(talk (are girls (see dogs girls)) −)

(walks (is dog (barks dog −)) −)
(walk (are cats (see cats (is boy (walks boy −)))) −)

(feed (are girls (see dogs girls)) cat)
(is man (hears man (is cat (chases cat dogs))))

(chase cats dogs)
(hear dogs cats)
(hear girls dog)
(hears boy dog)

(is dog (hears dog (is John (eats John −))))
(see dogs (is John (hates John cat)))

(are men (sing men −))
(sees Mary girl)
(eats John fish)

(see boys bread)
(sees girl cats)

(hate boys girls)
(is Steve (sings Steve −))

(walks (is John (sings John −)) (are dogs (chase dogs cat)))
(chases cat cats)

(see dogs cats)
(see dogs bread)

(see dogs girl)
(bites dog −)

(see dogs (are dogs (swim dogs −)))
(chases cat (are girls (like boys girls)))

(walk (are men (walk men −)) (are dogs (see dogs cats)))
(swims girl −)
(walk men −)

(swim women −)
(bark dogs −)

(are cats (hear cats girls))
(are boys (like boys boys))

Linkage distance

Figure 4.10: Dendrogram of the map activity for the 40 randomly selected
non-trivial ternary trees. SOMSD di�erentiates trees based on the length
and common RF.

complexity is visible. The winners for leaves are located in the lower right
corner with little di�erences between their representations. In the case of
leaves the activity of the map is less focused than in the case of more complex
trees. The more complex a tree, the more focused activity is devoted to it in
the map. SOMSD learned to di�erentiate non-trivial trees based on depth
(Figure 4.10) and the topmost part of given trees, as stated in (Hammer
et al., 2004b). For instance, a unit that happened to be the winner two input
trees, (see dogs (is dog (bites dog NULL))) and (see cats (is boy (walks boy
NULL))) has RF of the form (see � (is � �)) and SRF of the form (see dogs
(is dog (bites dog �))). The length of RF re�ects this feature in the other
models as well, and is even more evident in case of polgen data set.

The number of winners in SOMSD was oscillating between 71 and 66 (in
30% of cases, there were 66 winners) and interestingly, the runs with fewer
winners (corresponding to WD = 0.195) yielded better results in terms of
TQD and STQD. Increasing the map size did not lead to MED > 0 which
means that SOMSD cannot distinguish between some inputs even at the level
of the map activity.

MSOM. The best results were achieved for α = 0.4 and β = 0.6. Pa-
rameter β needed to be slightly larger than in SOMSD, because the context
weights have higher dimension. It can be seen that MSOM activity (Fig-

61

Chapter 4. Model comparison

ure 4.11a) is quite di�erent from that of SOMSD. The whole map is acti-
vated for every input although most of the neurons show only low activity.
Leaves are located in the lower right part of the map and non-trivial trees are
scattered throughout the rest of the map. The dendrogram of the activations
(Figure 4.11b) shows clear di�erentiation between trees and leaves. The trees
with di�erent depths are further di�erentiated.

(feeds, boy, (is, cat, (sees, John, cat)))

feeds
boy

(is, cat, (sees, John, cat))

is

cat
(sees, John, cat)

sees
John

(walks, (is, Kate, (hears, John, Kate)), dog)

walks

(is, Kate, (hears, John, Kate))

dog
Kate

(hears, John, Kate)

hears

(hates, (is, John, (sees, boy, John)), Mary)

hates

(is, John, (sees, boy, John))

Mary

(sees, boy, John) (walks, Steve, −)

Steve

(bark, (are, dogs, (see, dogs, girl)), −)

bark

0 0.5 1 1.5

(bark (are dogs (see dogs girl)) −)
is

dog
sees
boy

John
hates
feeds
bark
Kate

Steve
walks
hears

cat
Mary

(walks Steve −)
(walks (is Kate (hears John Kate)) dog)
(hates (is John (sees boy John)) Mary)

(feeds boy (is cat (sees John cat)))
(is cat (sees John cat))

(is Kate (hears John Kate))
(is John (sees boy John))

(hears John Kate)
(sees John cat)
(sees boy John)

Linkage distance

Figure 4.11: (a) Output activities of MSOM and (b) the corresponding den-
drogram for the 25 randomly selected vertices from the ternary trees data set.
Longer tree labels in the activity map are positioned below the corresponding
image.

The dendrogram (Figure 4.12) with the same subset of 40 non-trivial trees
(as in case of SOMSD) reveals that MSOM di�erentiates trees with respect
to both input and depth. Regarding input, the �rst (topmost) word (being a
verb) is the clustering parameter. The best result for MSOM was 53 distinct
winners but the same problem as for SOMSD arises. Multiple runs with the
same parameters led to two di�erent results (53 and 24 winners). Increasing
the map size led to decrease of WD (from 0.083 to 0.05), and only small
changes in TQD and STQD. Based on these observations, we can claim that
the performance of MSOM was the worst among all models for the ternary
trees data set (also in terms of QE, as seen in Table 4.10).

RecSOM. The best results for RecSOM were achieved for α = 2.4 and
β = 0.4. Although the map activations (Figure 4.13a) looks similar to the
previous models, the organization of output space is very di�erent. Leaves
are not located in one part of the map but are scattered across the map.
The dendrogram (Figure 4.13b) uncovers the di�erence in organization. The

62

Chapter 4. Model comparison

0 0.5 1 1.5

(walk (are men (walk men −)) (are dogs (see dogs cats)))
(walk (are cats (see cats (is boy (walks boy −)))) −)

(eat (are boys (see boys bread)) −)
(run (are girls (hear girls dog)) −)

(sing (are boys (like boys boys)) −)
(talk (are girls (see dogs girls)) −)

(sings (is girl (sees girl cats)) −)
(walks (is John (sings John −)) (are dogs (chase dogs cat)))

(walks (is dog (barks dog −)) −)
(is cat (sees Kate cat))
(is boy (likes girl boy))

(is boy (hears boy dog))
(is man (hears man (is cat (chases cat dogs))))

(is Steve (sings Steve −))
(is dog (hears dog (is John (eats John −))))

(bites dog −)
(feed (are girls (see dogs girls)) cat)

(walk men −)
(swims girl −)

(swim women −)
(bark dogs −)

(chases cat (are girls (like boys girls)))
(are men (sing men −))

(are boys (like boys boys))
(are cats (hear cats girls))

(see dogs (is John (hates John cat)))
(see dogs (are dogs (swim dogs −)))

(see dogs cats)
(see dogs girl)

(see dogs bread)
(see boys bread)

(chase cats dogs)
(chases cat cats)
(hear dogs cats)
(eats John fish)
(hear girls dog)

(hate boys girls)
(hears boy dog)
(sees girl cats)

(sees Mary girl)

Linkage distance

Figure 4.12: Dendrogram of the MSOM activity for the 40 randomly selected
non-trivial trees. The map di�erentiates trees based on the length and the
most recent input.

Table 4.8: Mean TQD and STQD measures for all models trained on the
ternary trees data set.

15×15 20×20
SOMSD 1.10 2.65 1.14 2.90
MSOM 0.76 1.63 0.54 1.67
RecSOM 1.17 1.69 1.40 2.26

leaves usually have di�erent activations than the rest of inputs. As in previous
models, both the most recent inputs and the structure are important for the
map activation.

The structure and RFs emphasis on resulting map activations of the 40
trees are shown in Figure 4.14. Both the structure and RFs are clearly
visible. RecSOM typically had 57 winners (corresponding to WD = 0.16)
and showed only minor di�erences between runs. In addition, RecSOM was
the only model that achieved MED > 0, i.e. was able to di�erentiate every
single vertex in terms of output map activation.

Regarding LWC (Table 4.10), the correlation between the winners and the
trees is very low (and similar for all models) which might be due to higher
depth of the ternary trees (and hence their higher potential variability).

63

Chapter 4. Model comparison

(feeds, boy, (is, cat, (sees, John, cat)))

feeds
boy

(is, cat, (sees, John, cat))

is

cat

(sees, John, cat)

sees
John

(walks, (is, Kate, (hears, John, Kate)), dog)

walks

(is, Kate, (hears, John, Kate))

dog
Kate

(hears, John, Kate)

hears

(hates, (is, John, (sees, boy, John)), Mary)

hates

(is, John, (sees, boy, John))

Mary

(sees, boy, John) (walks, Steve, −)

Steve

(bark, (are, dogs, (see, dogs, girl)), −)

bark

0 0.5 1 1.5

dog
sees

Steve
John

walks
Kate

feeds
(is Kate (hears John Kate))

(is John (sees boy John))
(is cat (sees John cat))

hates
bark

(walks (is Kate (hears John Kate)) dog)
(feeds boy (is cat (sees John cat)))

(sees boy John)
(sees John cat)

(hears John Kate)
(hates (is John (sees boy John)) Mary)

(walks Steve −)
(bark (are dogs (see dogs girl)) −)

Mary
hears

cat
boy

is

Linkage distance

Figure 4.13: (a) Output activities of RecSOM and (b) the corresponding
dendrogram for the �rst 25 vertices from the ternary trees data set. Longer
tree labels in the activity map are positioned below the corresponding image.

Table 4.9: Mean WD and MED measures for all models trained on the
ternary trees data set.

15×15 20×20
SOMSD 0.195 0.0 0.241 0.0
MSOM 0.083 0.0 0.050 0.0
RecSOM 0.160 ∼10−6 0.171 ∼10−6

4.2.3 5-ary graphical data

The third data set was created by Policemen Generator (polgen) (Hagenbuch-
ner et al., 2003) using the house production rules. Contrary to the previous
cases, this graphical data set contains 5-ary trees with labels on every vertex.

Table 4.10: Mean QE and LWC measures for the models trained on the
ternary trees data set (LWCs for the larger maps are not shown, since they
remained unchanged).

15×15 20×20
SOMSD 0.22±0.027 0.18±0.035 0.100±0.019
MSOM 0.30±0.1 0.15 0.480
RecSOM 0.022 0.19 0.046

64

Chapter 4. Model comparison

0 0.2 0.4

(sing (are boys (like boys boys)) −)
(talk (are girls (see dogs girls)) −)

(walk (are men (walk men −)) (are dogs (see dogs cats)))
(walk (are cats (see cats (is boy (walks boy −)))) −)

(run (are girls (hear girls dog)) −)
(sings (is girl (sees girl cats)) −)

(eat (are boys (see boys bread)) −)
(walks (is dog (barks dog −)) −)

(walks (is John (sings John −)) (are dogs (chase dogs cat)))
(walk men −)
(swims girl −)

(swim women −)
(feed (are girls (see dogs girls)) cat)

(eats John fish)
(chases cat (are girls (like boys girls)))

(chases cat cats)
(bites dog −)

(are boys (like boys boys))
(bark dogs −)

(see dogs (are dogs (swim dogs −)))
(see dogs bread)

(see dogs (is John (hates John cat)))
(see dogs girl)

(hear dogs cats)
(see dogs cats)

(see boys bread)
(hate boys girls)

(chase cats dogs)
(hear girls dog)
(hears boy dog)
(sees girl cats)

(sees Mary girl)
(are men (sing men −))

(is boy (hears boy dog))
(is boy (likes girl boy))

(is dog (hears dog (is John (eats John −))))
(is cat (sees Kate cat))

(is man (hears man (is cat (chases cat dogs))))
(is Steve (sings Steve −))

(are cats (hear cats girls))

Linkage distance

Figure 4.14: Dendrogram of the map activations for the 40 randomly selected
non-trivial trees. RecSOM di�erentiates trees based on length and common
receptive �eld.

For example:

(label1 (label2 (label7 9 9 9 9) label3 label4 label5 label6))

encodes the tree in Figure 4.15, where label1 is the root vertex with �ve
children label2 through label6, and label2 has only one child, label7. 10.

label1

label2 label3 label4 label5 label6

label7

Figure 4.15: Example of a 5-ary tree used in the graphical data set.

Policemen Generator software package generates pictures based on the
speci�ed grammar. Basic shapes are used in the process of creating pictures.
Pictures are further processed into graphs using included software. We gen-
erated 1000 pictures of houses using this grammar and converted them into
trees. This data set contains 990 leaves 11 and 1493 non-trivial trees.

10Symbols '9' were inserted as padding to show that label7 is the leftmost child of label2
and the other children are empty

11Input vectors were generated using patgen (pattern generator provided in polgen soft-
ware).

65

Chapter 4. Model comparison

Five contexts are needed for training. The input vector size is set accord-
ing to the generated input vectors to two. The map size for the 5-ary tree
data is 15×15 and training is set to last 20 epochs. We set σ:5→0.5 for or-
dering phase and then kept it constant. The learning rate was set to linearly
decrease µ:0.3→0.15 (ordering) and then further down to 0.1 (�ne-tuning).

0 1 2 3 4

(743 (490, −, −, −, −))
(873 (313, −, −, −, −))
(814 (365, −, −, −, −))
(656 (354, −, −, −, −))
(618 (270, −, −, −, −))
(751 (389, −, −, −, −))
(846 (269, −, −, −, −))
(832 (77, −, −, −, −))

(694 (473, −, −, −, −))
(865 (616, −, −, −, −))
(864 (357, −, −, −, −))
(832 (607, −, −, −, −))
(646 (615, −, −, −, −))
(526 (544, −, −, −, −))
(912 (440, −, −, −, −))

(831 (865 (616, −, −, −, −), 858, 198, 913, −))
(782 (751 (376, −, −, −, −), 641, 990, 787, −))

(533 (520 (444, −, −, −, −), 631, 954, 63, −))
(385 (618 (320, −, −, −, −), 540, 605, 898, −))
(307 (604 (557, −, −, −, −), 525, 556, 142, −))
(994 (864 (514, −, −, −, −), 858, 315, 856, −))

(951 (960 (59, −, −, −, −), 843, 711, 417, −))
(980 (832 (398, −, −, −, −), 839, 718, 913, 248))
(509 (520 (378, −, −, −, −), 633, 768, 142, 948))
(509 (520 (416, −, −, −, −), 631, 804, 261, 954))
(307 (635 (471, −, −, −, −), 582, 700, 125, 939))

(482 (656, 677, 851, 507, 934))
(917 (656, 579, −, −, −))

(850 (915 (219, −, −, −, −), 362, 856, 248, −))
(480 (578, 623, 742, 931, 24))

(795 (714, 746, 180, 975, 757))
(723 (865 (90, −, −, −, −), 803, 452, 39, 601))

(145 (893 (264, −, −, −, −), 833, 588, 220, 523))
(972 (915 (412, −, −, −, −), 839, 718, 248, 834))

(905 (814 (48, −, −, −, −), 815, 283, 21, 982))
(917 (871 (387, −, −, −, −), 767, 455, 34, 982))
(571 (734 (316, −, −, −, −), 735, 136, 55, 290))
(509 (604 (473, −, −, −, −), 612, 809, 942, 81))

(519 (559 (252, −, −, −, −), 614, 700, 882, 100))
(699 (770 (381, −, −, −, −), 642, 993, 985, 448))

Linkage distance

Figure 4.16: Dendrogram of SOMSD for the 40 randomly selected non-trivial
5-ary trees.

SOMSD. We set α = 0.9 and β = 0.1 as optimal parameter values. The
reason for α > β lies in the large amount of leaves in the data set (almost
40%). The percentage of vertices SOMSD is able to successfully represent is
rather low (polgen data is very large). More than half of the neurons do not
become winners for any input. Figure 4.16 shows the di�erentiation between
the trees more clearly. Leaves were removed from the dendrogram for better
comparison between the tree structures. The dendrogram is divided into two
parts � the �rst part consists of the trees containing only one child and the
second part consists of more complex trees. The more complex trees are
di�erentiated less between each other, but some di�erences can be seen. The
trees with similar structure and similar root value are closer to one another.
Apparently, the structure is more important than the root values, but root
values also play a role when the structure is the same. Even though TQD =
0.0072 is very low, STQD = 3.17 is higher than in the cases of binary and
ternary trees. The reason is the large amount of leaves in this data set which
a�ects TQD but not STQD. For the larger map (20×20) the results are a

66

Chapter 4. Model comparison

little better, and WD is very low even for the smaller map, and is roughly
doubled for the larger map. MED = 0 for both map sizes, because there are
di�erent input patterns with the same activations of the map.

0 0.5 1 1.5 2 2.5 3

(618 (270, −, −, −, −))
(526 (544, −, −, −, −))
(694 (473, −, −, −, −))
(646 (615, −, −, −, −))
(656 (354, −, −, −, −))
(743 (490, −, −, −, −))
(751 (389, −, −, −, −))
(814 (365, −, −, −, −))
(873 (313, −, −, −, −))
(865 (616, −, −, −, −))
(864 (357, −, −, −, −))
(832 (607, −, −, −, −))
(832 (77, −, −, −, −))

(846 (269, −, −, −, −))
(912 (440, −, −, −, −))

(917 (656, 579, −, −, −))
(782 (751 (376, −, −, −, −), 641, 990, 787, −))

(533 (520 (444, −, −, −, −), 631, 954, 63, −))
(385 (618 (320, −, −, −, −), 540, 605, 898, −))
(307 (604 (557, −, −, −, −), 525, 556, 142, −))

(482 (656, 677, 851, 507, 934))
(307 (635 (471, −, −, −, −), 582, 700, 125, 939))
(509 (520 (416, −, −, −, −), 631, 804, 261, 954))
(509 (520 (378, −, −, −, −), 633, 768, 142, 948))

(509 (604 (473, −, −, −, −), 612, 809, 942, 81))
(519 (559 (252, −, −, −, −), 614, 700, 882, 100))

(480 (578, 623, 742, 931, 24))
(699 (770 (381, −, −, −, −), 642, 993, 985, 448))

(571 (734 (316, −, −, −, −), 735, 136, 55, 290))
(795 (714, 746, 180, 975, 757))

(917 (871 (387, −, −, −, −), 767, 455, 34, 982))
(723 (865 (90, −, −, −, −), 803, 452, 39, 601))
(905 (814 (48, −, −, −, −), 815, 283, 21, 982))

(972 (915 (412, −, −, −, −), 839, 718, 248, 834))
(145 (893 (264, −, −, −, −), 833, 588, 220, 523))
(980 (832 (398, −, −, −, −), 839, 718, 913, 248))

(951 (960 (59, −, −, −, −), 843, 711, 417, −))
(850 (915 (219, −, −, −, −), 362, 856, 248, −))
(994 (864 (514, −, −, −, −), 858, 315, 856, −))
(831 (865 (616, −, −, −, −), 858, 198, 913, −))

Linkage distance

Figure 4.17: Dendrogram of MSOM for the 40 randomly selected non-trivial
5-ary trees.

MSOM. For optimal values α = 0.6 and β = 0.1, MSOM yielded worse
results than SOMSD regarding memory depth. WD is slightly higher than
in other models. On average MSOM had 153 winners for 15×15 map. The
dendrogram (Figure 4.17) reveals how MSOM encodes the structures. There
are very small merging distances (less than 0.5) within the class of the sim-
plest trees with only one child. The structure is more pronounced than the
root element in this case and it is visible for clusters of the same structure
but di�erent labels. For the 20×20 map the measure TQD increased (in
other models this measure decreased) to a high value 0.066 and STQD only
slightly increased. This is caused by more winners in the larger map, in this
case 239, which corresponds to WD = 0.096. This value is highest among all
models for this map size and corresponds to 59.7% winners in the map. In
the case of MSOM, again MED = 0 (for both map sizes).

RecSOM. This model performs best on this data set with α = 3.6 and
β = 0.1, for which TQD = 0.0002, being the smallest value among the mod-
els. Only for this model, MED > 0. WD = 0.053 corresponds to 132 winners
(out of 225). The map output activation (Figure 4.18) of randomly selected

67

Chapter 4. Model comparison

0 0.5 1 1.5 2

(865 (616, −, −, −, −))
(864 (357, −, −, −, −))
(832 (607, −, −, −, −))
(694 (473, −, −, −, −))
(526 (544, −, −, −, −))
(646 (615, −, −, −, −))
(912 (440, −, −, −, −))
(846 (269, −, −, −, −))
(751 (389, −, −, −, −))
(743 (490, −, −, −, −))
(656 (354, −, −, −, −))
(814 (365, −, −, −, −))
(873 (313, −, −, −, −))
(832 (77, −, −, −, −))

(618 (270, −, −, −, −))
(980 (832 (398, −, −, −, −), 839, 718, 913, 248))

(994 (864 (514, −, −, −, −), 858, 315, 856, −))
(951 (960 (59, −, −, −, −), 843, 711, 417, −))

(385 (618 (320, −, −, −, −), 540, 605, 898, −))
(307 (604 (557, −, −, −, −), 525, 556, 142, −))

(509 (520 (416, −, −, −, −), 631, 804, 261, 954))
(509 (520 (378, −, −, −, −), 633, 768, 142, 948))
(307 (635 (471, −, −, −, −), 582, 700, 125, 939))

(482 (656, 677, 851, 507, 934))
(917 (656, 579, −, −, −))

(533 (520 (444, −, −, −, −), 631, 954, 63, −))
(782 (751 (376, −, −, −, −), 641, 990, 787, −))
(831 (865 (616, −, −, −, −), 858, 198, 913, −))
(850 (915 (219, −, −, −, −), 362, 856, 248, −))

(795 (714, 746, 180, 975, 757))
(145 (893 (264, −, −, −, −), 833, 588, 220, 523))
(972 (915 (412, −, −, −, −), 839, 718, 248, 834))

(905 (814 (48, −, −, −, −), 815, 283, 21, 982))
(723 (865 (90, −, −, −, −), 803, 452, 39, 601))

(917 (871 (387, −, −, −, −), 767, 455, 34, 982))
(571 (734 (316, −, −, −, −), 735, 136, 55, 290))

(699 (770 (381, −, −, −, −), 642, 993, 985, 448))
(519 (559 (252, −, −, −, −), 614, 700, 882, 100))

(509 (604 (473, −, −, −, −), 612, 809, 942, 81))
(480 (578, 623, 742, 931, 24))

Linkage distance

Figure 4.18: Dendrogram of RecSOM for the 40 randomly selected non-trivial
5-ary trees.

trees (leaves were omitted) re�ects the di�erences compared to previous mod-
els. Even though simple trees with one child are strictly di�erentiated, there
are di�erences between them which means di�erent winners. Also more com-
plex trees are di�erentiated into clusters but not all clusters share the same
structure properties. Some clusters contain mixed tree structures and the
mixed root vertex values. Hence, the clustering properties of RecSOM on
this data set are not completely clear. The enlarged map provides slightly
better results regarding most measures as seen in Tables 4.11�4.13 (TQD,
STQD and WD increased, while QE decreased). For both map sizes, MED
> 0 which implies that every vertex is distinguished by the map. Hence,
RecSOM is the only model that can di�erentiate every input on the data set
that is 11 times larger than the number of neurons in the map.

We can summarize all these results as follows: SOMSD, unlike MSOM
and RecSOM, is by far more sensitive (i.e. less robust) to weight initializa-
tion. Regarding the memory depth, SOMSD and RecSOM clearly outperform
MSOM but only in case of binary and ternary trees. SOMSD turns out to
best cluster structural information. RecSOM clearly outperforms the other
models in terms of inputs discrimination, based on map activation. MSOM
consistently yield the lowest QE and all models are equal in terms of LWC.

68

Chapter 4. Model comparison

Table 4.11: Mean TQD and STQD measures for all models trained on the
5-ary graphical data set.

15×15 20×20
SOMSD 0.0072 3.17 0.003 3.18
MSOM 0.0013 2.49 0.066 2.52
RecSOM 0.0002 2.88 0.001 2.90

Table 4.12: Mean WD and MED measures for all models trained on the 5-ary
graphical data set.

15×15 20×20
SOMSD 0.044 0.0 0.071 0.0
MSOM 0.062 0.0 0.096 0.0
RecSOM 0.053 ∼10−7 0.071 ∼10−6

Table 4.13: Mean QE and LWC measures for the models trained on the 5-
ary graphical data set (LWCs for the larger maps are not shown, since they
remained unchanged).

15×15 20×20
SOMSD 0.001 0.373 0.00074
MSOM 0.00027 0.371 0.00019
RecSOM 0.0017 0.371 0.00160

69

Chapter 5

Processing structured data from

XML

Visualization of tree structures is a suitable task for recursive SOMs. We
illustrate the viability of this approach using a concrete example of visualiza-
tion of tree structures contained in simple XML �les and its practical usage
in information extraction for large XML �les.

Some experiments (Hagenbuchner et al., 2005; Kc et al., 2006) have al-
ready been conducted on XML data set model using SOMSD model. In that
case the data set consisted of very complex XML �les that needed to be
preprocessed and scaled down to be used for training. The trained map was
used to cluster and visualize trained map for SOMSD model.

5.1 XML format

Data sets can be encoded in various formats that allow structural and item
information to be saved. Although special proprietary formats can be used
there are also standard formats. Native format for tree structures that is
complex enough to be used for di�erent types of data sets is XML format.
XML format can be machine read, can be machine processed and validated.
However, XML format is not able to encode cyclic graphs and for such data
sets another format is needed. Also there is quite a lot of data already
represented in XML format ready for processing. Another easy way of getting
XML format data set is from database export.

The format of any XML �le can be de�ned through Document Type
De�nition (DTD) �le. Although DTD �les support only rudimentary data
types these are usually enough for describing most of the XML �les. Using
DTD the structure of the XML �le can be seen. It de�nes, in graph language,

70

Chapter 5. Processing structured data from XML

book (status)

author name year

Figure 5.1: Tree representation of the DTD for the �rst data set. It is a
complete ternary tree structure of depth two.

what is the structure of trees that can be created in the particular XML �le.
We use DTD to show the tree structure of the processed data.

We focus on two SOM models with feedback connections: SOMSD that
uses reference only to the winner index and MSOM that refers to the winner
content. We further focus on a simple XML data set as a proof of concept for
data visualization and a complex XML data set for information extraction.

5.2 Experiments

The �rst data set used to illustrate viability of the models on XML �les was
arbitrary XML �le consisting of library data about books. The structure of
the XML �le can be described by the following DTD:

<!ELEMENT library (book+) >

<!ATTLIST book status NMTOKEN #REQUIRED >

<!ELEMENT book (author, name, year) >

<!ELEMENT author (#PCDATA) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT year (#PCDATA) >

This DTD can be visualized as a forest, a group of trees. Fig. 5.1 shows
the tree structure of one of the trees in the group.

An attribute of element book was processed as well as elements author,
name and year. The set of trees created this way were simply ternary trees.

AN XML �le consists of 6 records (trees) to show visualization that is
available when using recursive SOM models. These 6 records contain 13
di�erent elements (labels). The whole data set size is 24 with 19 unique
labels. SOMSD model was chosen to be trained on this data set as this
model retains more information about structures (Van£o and Farka², 2009).
This is a desirable attribute for visualization of results. MSOM model can
be used as well.

The size of the map was set to 5 × 5 for visualization purposes. Larger
maps would di�erentiate worse than smaller maps. The inputs were presented

71

Chapter 5. Processing structured data from XML

Figure 5.2: Activities evoked by di�erent inputs in trained SOMSD map.
The top row shows map activity as a response to the complete trees and the
next two rows show activities of elements in XML.

for 2000 epochs. The neighborhood size was set to 3.0 decreasing to 0.5
during 1200 epochs and then kept stable at 0.5 for more stable organization.
Learning rate started at 0.3 and decreasing over the same time to 0.15 and
then decreasing to 0.1 over the last 800 epochs. The inputs were localistically
encoded into vectors of size 15.

Parameters α and β were set experimentally searching 〈0, 1〉 space in
0.1 steps independently. The best results (the most active neurons) were
achieved with parameters α = 0.5 and β = 0.1.

There are multiple types of visualization of resulting trained map. We
chose activity of the map for chosen input. It shows how the map organizes
input after training. Close activities of di�erent inputs suggest inputs that
have commonalities and activities of di�erent inputs that are far apart suggest
inputs that are di�erent. As map is trained using unsupervised learning only
input information is used to categorize data.

In Figure 5.2 map output activity for the chosen inputs are presented. In
the �rst row non-trivial trees are shown and these can be visually separated
from elements in the last two rows. Activities of elements were located in the
upper part and non-trivial trees had activities located in the lower part. This
separation was expected. Separation of non-trivial trees was more important.

Non-trivial trees were separated in this data set according to the con-
tent of the tree (Fig. 5.3). On the left, trees with the same root (sold) are
compared. These had very di�erent activities � the highest activities were
located in bottom corners. On the right, trees with di�erent roots but the
same children are compared. In this case, as expected, the highest activities
were closer both located in the lower left part of the map.

Complex structured data trained without any prior knowledge on recur-
sive maps lead to di�erentiating activities of input data into clusters that
can be visually detected and separated. This visualization can be used for

72

Chapter 5. Processing structured data from XML

(sold (Author1, Name1, 2009)) (sold (Author2, Name2, 2003)) (sold − Author1, Name1, 2009)) (warehouse − Author1, Name4, 2009))

Figure 5.3: Di�erences in activities depending on input on a trained SOMSD
map. Activities of two di�erent inputs with the same root (left), two similar
inputs with the di�erent root (right). Visualization reveals the di�erence
that can be hidden in the data set.

any data set extracted from XML �le trained on recursive maps.

5.3 Large XML File

The large XML �le was from XML Data Repository University of Washing-
ton 1. This data repository consists of publicly available datasets in XML
form. We decided to choose SIGMOD record data set as it was su�ciently
large and was in a right format for easy processing. SIGMOD data set is an
index of articles from ACM SIGMOD Record from 2001. Data in the XML
�le are information about issues and articles from ACM SIGMOD.

We chose only part of the XML consisting of information about articles.
We ignored information about issues. The corresponding DTD for this part
was de�ned:

<!ELEMENT articles (article)* >

<!ELEMENT article (title,initPage,endPage,authors) >

<!ELEMENT title (#PCDATA)>

<!ELEMENT initPage (#PCDATA)>

<!ELEMENT endPage (#PCDATA)>

<!ELEMENT authors (author)* >

<!ELEMENT author (#PCDATA)>

<!ATTLIST author position CDATA #IMPLIED>

In the SIGMOD XML �le no attributes are de�ned other than a position
of an author that was ignored but can be used as a supplementary information
for more precise information extraction. The tree structure extracted from
XML �le was trimmed to maximum out-degree of 4 and therefore 4-ary trees
were created.

1http://www.cs.washington.edu/research/projects/xmltk/xmldata/

73

Chapter 5. Processing structured data from XML

There are no values in the inner vertices of the tree and empty vertices
were used to encode these values. Information is only in the leaves of the
tree. There are 1504 records in the SIGMOD XML �le. The data set consists
of 10832 trees and labels with 6624 unique values. Out of these are 2773
non-trivial trees. Model chosen for this data set was MSOM as this model
di�erentiates inputs better than SOMSD model (Van£o and Farka², 2009).

The size of the map in case of larger XML �le was 15×15 as the data set is
comparably larger than in the previous case. Inputs were presented during 20
epochs. Neighborhood size was set to 5.0 decreasing to 0.5 during 12 epochs
and then kept stable at 0.5 for more stable organization. Learning rate
started at 0.3 and decreasing over the same time to 0.15 and then decreasing
to 0.1 over the last 8 epochs. Inputs were encoded into vectors of size 2. The
best results for MSOM model for the large XML data set yielded parameters
α = 0.6 and β = 0.1.

There are 164 active neurons (winners for at least one input) out of 225
neurons. These create 164 clusters of inputs that can be further processed
and analyzed. Using the map size of 225 on 6624 unique inputs pushes the
map to cluster similar inputs. Information about di�erent clusters can be
used to reduce the input dimension and extract similarities between inputs
in the same cluster.

0

0.5 1

1.5 2

2.5 3

3.5

Distance

Figure 5.4: Dendrogram of inputs in the trained map. Two separate clusters
can be seen: The cluster of trees (left) and the cluster of elements/leaves
(right). The merging distance is a little less than 3.5.

To see the clustering performed by the trained MSOM, dendrograms for
inputs were created. In the �rst dendrogram (Fig. 5.4) separation of leaves

74

Chapter 5. Processing structured data from XML

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance

Figure 5.5: Dendrogram of tree inputs in the trained map. Only trees were
selected and scaled in. Again two clusters can be seen: the cluster of articles
(left) and the cluster of authors (the simplest trees) (right). The left cluster
of articles can be further zoomed in and analyzed.

and trees takes place. Clusters of leaves and trees can be further analyzed.
We decided to focus on trees. Dendrogram (Fig. 5.5) shows separation of
simple trees consisting of author information and complex trees consisting
of the whole article data. As seen the tress with author information were
inseparable and formed one cluster.

Further inspection of the inputs is needed to extract the clustering infor-
mation.

5.4 Summary

Recursive SOM models can be exploited for an easier information extraction
and for a visualization of input data. Clustering of the XML data can lead
to creating new views on the known data set.

Using the XML format for input data brings advantages of this format
(syntax validation, parsing) to structured data it is representing. Combin-
ing XML format and recursive SOM models quick and easy unsupervised
processing can be created.

However there are some problems encountered while using XML format.
Attributes as well as element information has to be merged to create a unique
name. Empty label has to be de�ned when no information is available.

75

Chapter 6

Batch learning

The idea of batch learning in contrast to classic, online, learning is to present
input in a batch and not linearly, one input at a time. This approach is
quicker than online learning as the learning process is run after the whole
batch rather than after every input. In case of neural networks the weight
update is a time consuming operation and therefore the time complexity of
the batch learning is lower than that of online learning. The weights are
updated after the whole data set has been presented. Therefore the update
algorithm has to take all changes into account.

Another advantage of batch learning is a direct consequence of the batch
type of processing. It is the usage of distributed computing � to use multiple
computers on the computation of changes. The online learning has to be
processed linearly but in batch learning the ordering is not important. That
means that changes can be computed independently from each other for
every input. In other words the data set can be split into parts by a master
computer and provided to the slave computers along with the current state
of the model. The slave computers then send their results (changes) for their
inputs to the master computer which computes the new weights according
to the provided changes, and the new epoch of the learning can start.

Not all neural network models have batch version of the learning de�ned.
Where the batch learning is properly de�ned it is in the most cases the
better learning algorithm due to its time e�ciency and distributed computing
advantage mentioned earlier.

The simplest neural network model using batch learning algorithm is
a perceptron. Batch learning in this case is exemplary. Online learning
takes input, computes output and changes weights according to di�erence
between output and requested output. During batch learning all di�erences
and corresponding inputs are saved and used for weights update at the end
of the epoch.

76

Chapter 6. Batch learning

For the simple recurrent network a simple batch learning exists as well.
Multiple online learning methods exist for the simple recurrent network.
Batch learning is de�ned only for back propagation through time (BPTT)
(Haykin, 1999). The batch version of the BPTT algorithm is called epoch-
wise BPTT. Its main steps are:

1. forward pass through the data set for every input, responses for the
corresponding inputs are saved

2. backward pass to compute local gradients based on saved responses

3. weights adjustment based on computed local gradients

The same technique is used in batch learning of other models with the
di�erence in the second step. The second step is speci�c for the model for
which batch learning is de�ned. The precise algorithm with all equations can
be found in Haykin (1999), chapter 15.

6.1 Batch SOM

Kohonen (2001) proposed batch learning version for the SOM. If we take one
neuron from SOM and compute the in�uence regions of all results for this
neuron and compute the mean over union of these regions we get a new state
of the neuron in the map. This process can be done for all neurons. For
every input the information that has to be saved is: the amount of in�uence
for every neuron, the winner and the input. Batch learning can be described
as

wi =

∑m
t=1 h(i, i∗)(t)x(t)∑m

t=1 h(i, i∗)(t)
(6.1)

where m is the data set size, x(t) is the input at time t, h(i, i∗)(t) is the
neighborhood function between i-th neuron and the winner at time t.

The learning rate parameter is not used in batch learning algorithm 1 and
therefore there is no need to optimize this parameter. The only parameter
in�uencing the learning is the neighborhood size (and its change through
time). Another important di�erence between learning algorithms is that
weights are updated without taking old values into account in the case of
batch learning. Due to this property convergence is faster in batch learning
than in online learning. That means less epochs are needed for batch learning

1Learning rate parameter is removed in the process of creating Eq. 6.1

77

Chapter 6. Batch learning

to achieve similar results to online learning. In online learning the change of
weight is a�ected by the old value of the weight. The correctness of batch
learning algorithm (convergence and ordering of weights) was proved (Cheng,
1997). Batch learning optimizes the same cost function as its online variant.

Both these learning algorithms are describing the same process of weight
ordering (Kohonen, 2001). Despite that the resulting trained map using
online and batch learning can di�er.

In case of batch learning the space complexity is asymptotically the same
as for online learning (Eq. 1.9) as only the map weigths and the updates of
all weights are stored in memory at any given time:

S(SOMbatch) = O(Nn+Nn+ c) = O(Nn) = S(SOM) (6.2)

More important, the time complexity for one input, shows asymptotically
the same results as Eq. 1.10 even though the weight update step was removed:

T (SOMbatch
input) = O(n+Nn2 +N + c) = O(Nn2) (6.3)

The weight update step runs after every epoch, therefore the time com-
plexity of the batch SOM is lower but only by a constant:

T (SOMbatch) = O(pT (SOMbatch
epoch)) = O(p(mT (SOMbatch

input) +Nn2))

T (SOMbatch) = O(pmNn2 + pNn2) = O(pmNn2) (6.4)

The batch SOM has all the advantages of batch learning: faster and dis-
tributed computation. The di�erence in speed over epoch is less pronounced
in this model as the complexity of the computation lies more within com-
puting the winner than updating the weights. The important property is
faster convergence (only few epochs su�ce for the model to converge) and
distributed computing. The distributed computing can be used to compute
very large map sizes in shorter time on multiple computers.

But there are also some disadvantages to batch SOM. As mentioned ear-
lier the disadvantages are connected with di�erence between batch and the
online version. For batch SOM its learning algorithm is the advantage as well
as disadvantage. On one hand the algorithm makes computation faster and
fewer epochs are needed for the convergence. On the other side batch learn-
ing has di�erent results than online SOM, the data is not well organized, the
resulting trained map is sometimes not even converged (Fort et al., 2002).
There is one more disadvantage and that can be demonstrated using localist
encoding.

78

Chapter 6. Batch learning

6.2 Localist encoding and batch SOM

Batch learning fails if the data set is symbolic and has one hot (localist)
encoding of inputs (Van£o, 2009a). As an example data set we used Tic Tac
Toe data set (University of California Irvine, 2009). The results of using
batch SOM on such encoded input data are considerably worse than using
the online version of SOM algorithm.

This data set contains combination of states of the game Tic Tac Toe
(Fig. 6.1) as well as information about winning or losing of the starting
player. Data set contains 958 games of which 626 are successful games (win)
and the other games are unsuccessful (lose) for the starting player.

Figure 6.1: Final state of the game Tic Tac Toe. The �rst player (symbol
X) won this game as he got three his symbols in one diagonal.

Although this information is not used during learning, it is used in com-
parison of the results. This data set is complex from various standpoints.
Win or lose state occurs when the same mark is placed in a row, in a column
or either of the two diagonals.

In the encoding that was used the game plan is linearized and the infor-
mation about column and diagonal wins is partially lost. In the linearized
version column and diagonal wins are not clearly visible. For example the
game plan in Fig. 6.1 is linearized to the following vector:

x o o b x o b b x

where b means blank space.
For the encoding into the neural network localist code of length 3 for

every symbol was used. The length of input vector was 27.
For comparison of both learning algorithms we used 5 di�erent map sizes

(10×10, 15×15, 20×20, 25×25 and 30×30). As batch learning has quicker
convergence every map was trained using multiple number of epochs (100,
200, 300, 400 and 500 epochs). The learning rate parameter (for online
learning) is the same for all models. Starting with value 0.5 linearly decreases

79

Chapter 6. Batch learning

to value 0.2 during the �rst 70% of epochs (ordering phase) and then linearly
decreased to value 0.1 to the end (�ne-tuning phase).

Parameter σ (neighborhood size) linearly decreased during the �rst 70%
of epochs to 1.5 from the starting value depending on the map size. For the
map size 10×10 the starting value was 3.0, for the map size 15×15 it was
5.0, for the map size 20×20 it was 7.0, for the map size 25×25 it was 9.0 and
for the map size 30×30 it was 11.0 Training of every map (25 di�erent maps)
was repeated 100 times with random initialized map weights using interval
(0, 1). Results were averaged and compared using chosen measures.

6.2.1 Measures

We used two numeric measures for comparing results of the experiments.

• WD � level of winners computed as the ratio of the number of di�erent
winners for the entire data set and the size of the data set (Eq. 4.3
de�ned in section 4.1).

• WDmap � level of winners computed as the ratio of the number of
di�erent winners for the entire data set and the map size

WDmap =
|{j | ∃t : j = i∗(t)}|

|N |
(6.5)

Trained maps were visually inspected to see the distribution of the active
neurons. Also winner distribution was compared according to the won or
lost status of the input. Active neurons were labeled and the resulted maps
were analyzed.

6.2.2 Results

Online learning

Optimal result (the highest number of active neurons) for the map size 10×10
was achieved over 400 epochs. Longer learning (500 epochs) had worse result.
Analysis of the trained map (Fig. 6.2) shows equal distribution of the activity
for the �rst component, the second and the third component are equally
distributed as well. For all three components are visible multiple centers of
lower values (white color). The �rst three components represent the �rst
symbol in the game (the top left corner on the game board).

Increasing map size to 15×15 increased number of active neurons to 54,
that is 24 % of all neurons. The best result was achieved with training over

80

Chapter 6. Batch learning

Figure 6.2: The �rst three components of weight vectors of the trained map
10×10 over 400 epochs using online learning. For every neuron its �rst (left),
second (middle) and third (right) components of weight vector are shown.
Darker squares mean value is closer to 1, lighter squares mean value is closer
to 0.

300 epochs. Increasing size of the map did not bring increase in the per cent
of active neurons for this data set. Map size of 20×20 had 102 active neurons
over 200 epochs. In this case number of active neurons is twice as high as in
the case of map 15×15. For map size 25×25 training over 200 epochs had
the highest number of 104 active neurons. This increase is very low again.

The best result (in the case of the number of active neurons) yielded map
size 30×30 over 400 epochs, 119. The �rst three components of the trained
map of this size are shown (Fig. 6.3) for the visual analysis.

Figure 6.3: The �rst three components of weight vectors of the trained map
30×30 over 400 epochs using online learning. For every neuron its �rst (left),
second (middle) and third (right) components of weight vector are shown.
Darker squares mean value is closer to 1, lighter squares mean value is closer
to 0.

The higher map size shows the activity of the trained map better than in
the case of a small map size. The �tting of the components is better seen,
that means that the sum of the �rst three components (and the next three

81

Chapter 6. Batch learning

components, etc.) equals almost the same value (around 1). This e�ect is
caused by input encoding where only one value of these three components
is 1, the other values are 0 (localist encoding). The activity is not equally
distributed and areas with higher value are located in di�erent parts of the
map.

Figure 6.4: Graphical representation of the winners using online learning
for the map size 30×30. Symbol + means won game, symbol − lost game,
symbol ± means that the winner represents both won and lost games.

Graphical representation of active neurons and their association to the
won or lost games (Fig. 6.4) shows the ability of the map to categorize the
inputs of the game. The map is successful in inputs di�erentiation into
clusters of the same result without knowing rules of the game (15 neurons
out of 119 represent both won and lost games). There are multiple clusters
that are not clearly di�erentiated but there are no clusters of opposite values
lying next to each other.

Batch learning

Map size of 10×10 achieves worse results in case of number of active neurons
using batch learning. There is maximum of 5 active neurons in the case of
500 epochs. The resulting trained map (Fig. 6.5) shows the reason for the

82

Chapter 6. Batch learning

low number of the active neurons. Components are divided into more and
less active regions. In spite of the components having clear di�erentiation
from highest values to lowest values, the result is a very low number of active
neurons.

Figure 6.5: The �rst three components of weight vectors of the trained map
10×10 over 500 epochs using batch learning. For every neuron his �rst (sec-
ond, third) component of weight vector is shown.

For one particular neuron the distance between the weight vector and the
input is high even though partially (the �rst three components) the distance
is low. This result is likely when using batch learning where multiple winners
in�uence the weight vector of one neuron and so the resulting weight vector
is an average over di�erent inputs. For this data set the inputs are di�erent
in at least 3 values of the vector size of 27.

Increasing the size of the map to 15×15 (over 400 epochs) and also to
20×20 (over 500 epochs) did not help for this data set using batch learning
to increase the number of active neurons. Active neurons are located in the
corners for all sizes of the map. The next increase of the map size to 25×25
neurons (over 500 epochs) brought three times better results than in previous
cases.

For the largest map (30×30) trained over 500 epochs batch learning had
only 30 active neurons. For this map the �rst three components of weight vec-
tors of all neurons are shown (Fig. 6.6). Although similar to online learning
in the �tting of components, the structure is divided into only four areas.

Graphical representation of the winners (Fig. 6.7) shows where are all
30 winners located. As in the case of a smaller map active neurons are all
located in the corners. These are not distinguishable between won and lost
games. This is the result of a little number of active neurons to the data set
size even though there are only 2 types of game result.

83

Chapter 6. Batch learning

Figure 6.6: The �rst three components of weight vectors of the trained map
30×30 over 500 epochs using batch learning. For every neuron his �rst (sec-
ond, third) component of weight vector is shown. Components are clearly
di�erentiated into regions.

Figure 6.7: Graphical representation of the winners (BMUs) using batch
learning for the map size 30×30. Symbol + means won game, symbol − lost
game, symbol ± means that the winner represents both won and lost games.

Comparison of results

Comparing of the two learning algorithms on the selected data set shows the
unsuitability of batch learning. The measures WDmap (Tab. 6.1) and WD
(Tab. 6.2) show the di�erence between both learning algorithms.

84

Chapter 6. Batch learning

Map size online batch
10×10 10.0 5.0
15×15 40.0 2.2
20×20 24.0 1.3
25×25 25.5 2.4
30×30 13.2 3.3

Table 6.1: WDmap measure (in %) for all tested map sizes for both learning
algorithms.

Map size online batch
10×10 4.0 0.5
15×15 5.6 0.5
20×20 10.6 0.5
25×25 10.9 1.6
30×30 12.4 3.1

Table 6.2: WD measure (in %) for all tested map sizes for both learning
algorithms.

Even for the smallest map size the results are very di�erent for both
learning algorithms. Online learning has better results for both numerical
measures (WDmap and WD) on the selected data set. Comparison of the
trained maps shows the di�erence between the learning algorithms behavior.

The di�erence between the results is in�uenced by the method of learning
only. Batch learning uses result averaging from the whole epoch. In the case
of big di�erences between input vectors batch learning algorithm can cause
preferring small number of neurons in the map that cover most of the inputs
from the data set. Increasing the number of epochs does help only a little to
increase the number of active neurons.

Similar results can be acquired with batch learning on animal data set
(Ritter and Kohonen, 1989). The same type of encoding (localist) is used for
encoding properties of 16 animals. The results of the experiment showed the
ability to uniquely represent all 16 animals (map size 10×10). On the other
hand, batch learning had at most 6 active neurons uniquely encoding only
one animal.

Trained maps demonstrate where batch learning is di�erent from online
learning. Components of trained maps weight vectors using batch learning
show map divided into four parts (three di�erent areas). Highly active areas,
middle active areas and not active areas. There are 27 components and
therefore the computed distance over 27 values show similar results for very

85

Chapter 6. Batch learning

di�erent input vectors. This problem occurs when localist input encoding
is chosen. In this case, the trained map is di�erentiated into active and
nonactive areas. Batch learning has no means to get out of local minimum
(Fort et al., 2001) and therefore longer learning time increases only a little
the number of active neurons. Online learning can get out of local minimum
as weight vectors are dynamically shaped by learning during one epoch. This
thoughts are not supported by mathematical equations yet.

We showed problems with using batch learning on the practical exam-
ple. With localist encoding batch learning is less e�ective, takes longer and
has worse results than online learning. Averaging of the results collected
throughout the data set is the problem of batch learning algorithm. Deeper
theoretical analysis supported by practical tests should show the precise rea-
sons for the problem of batch learning for SOM model. Changes in batch
learning algorithm are needed to accommodate the disadvantages so that it
can be used for all data sets and all types of encoding. As the problem arises
from the fact that input data are averaged, one proposed untested solution
is to use the Eq. 6.1 not as the new weight but only as the ∆ weight added
to the old weight. However this solution slows down convergence of this
algorithm compared to original batch learning.

Although batch learning has problems with localist encoding it is very
e�ective in every other type of encoding. As mentioned earlier convergence
of batch learning is faster, learning one epoch is faster as well and therefore
batch learning should be used whenever possible. Also batch learning can be
implemented as a distributed algorithm and so multiple computers can be
used to compute large maps.

6.3 Batch recursive self-organizing maps

The theoretical possibility to learn recursive SOM models using batch al-
gorithm exists as there is batch SOM algorithm as well as batch recurrent
feedforward network algorithms. Di�erent recurrent SOM models may have
problem using the same approach but as there is universal taxonomy for
all the existing models used (SOMSD, MSOM, RecSOM) they should have
similar batch learning algorithm.

There are in principle two types of batch learning for structured data �
input wise and epoch wise2:

• input wise batch learning (IWBL) updates weights at once for the whole

2For non-structured data there exists only epoch wise batch learning as the input wise
learning is one step even in case of online learning.

86

Chapter 6. Batch learning

input � one structure (analogy to classic BPTT learning algorithm)

• epoch wise batch learning (EWBL) updates weights after all inputs
have been presented (epoch wise BPTT algorithm, batch SOM)

6.3.1 Input wise batch learning

As an inspiration to the input wise batch learning (IWBL) back propagation
through time can be used. The idea of the BPTT learning algorithm (used
in simple recurrent networks) is to unfold the network in history and train
it using backpropagation learning algorithm. The same idea can be used
for more complex recurrent SOM models. This way IWBL for recursive
SOM can be created. The main similarity between BPTT and IWBL is the
collection of the results throughout presentation of the input and updating
weights after the presentation of the input. The di�erences between BPTT
and IWBL for the recursive SOM are:

1. Output of the recursive SOM is not the actual output (which is not
de�ned) but the output of a context function (coordinates of the winner
for SOMSD, merged context and input weights for MSOM and `output'
for RecSOM),

2. The algorithm has to take the structure of the input into consideration
in case of more complex structures,

3. An update has to be computed during learning just like in batch SOM
(and hence the time e�ciency is only slightly better than that of online
learning),

4. After the last input presentation (end of a sequence, root of a tree) the
map is not unfolded in time as in BPTT but simply updated the same
way as batch SOM.

For every input and every vertex of the input, the winner is computed
according to the model used. The weight changes are not computed at that
point but only the information about the winner for current input is saved.
The actual learning is similar for the input weights as in case of batch SOM
(Eq. 6.6) and is similar for the context weights (Eq. 6.7) as well:

wi =

∑M
t=1 h(i, i∗)(t)x(t)∑M

t=1 h(i, i∗)(t)
(6.6)

87

Chapter 6. Batch learning

c
(j)
i =

∑M
t=1 h(i, i∗)(t)qj(t)∑M

t=1 h(i, i∗)(t)
(6.7)

In the equations 6.6 and 6.7 M corresponds to the number of vertices in
the input structure. For the context weight update index j is referring to all
contexts (one for sequences, k for trees with arity k).

The space complexity slightly increases as additional memory is needed
for intermediate results to be saved:

S(rSOMIWBL) = S(rSOM) +O(Mmax) (6.8)

where rSOM denotes any presented recursive SOM model and Mmax the
maximum value of M (structured input size). The space complexity will
be higher only if O(Mmax) > S(rSOM) which can happen for very complex
input structures.

Lower time complexity is expected for batch learning. Although there
is no computation of the new weights for one input, the time complexity is
asymptotically the same compared to online learning for all models as can
be seen in equations for the models (Eq. 3.3, Eq. 3.8 and Eq. 3.14).

The weights are updated (Eq. 6.6 and Eq. 6.7) after the whole structure
has been presented:

T (rSOMIWBL
epoch) = T (rSOMIWBL

input) + T (weight change) (6.9)

As can be seen from the equations for all recursive models the time com-
plexity of the weight change is asymptotically the same as for the input.
Therefore the result is asymptotically the same:

T (rSOMIWBL
epoch) = T (rSOMepoch) (6.10)

Also the resulting time complexity of batch learning is asymptotically the
same as for online learning:

T (rSOMIWBL) = T (rSOM) (6.11)

The time complexity is not asymptotically better than online learning
algorithm (even though for every recursive model the learning algorithm is
di�erent) and also the distributed computing is not available in this type of
batch learning as the computation through structure can not be separated.
For the computation of the successor all predecessors have to be already
computed and saved. Therefore IWBL has only the advantage of faster
convergence.

88

Chapter 6. Batch learning

x context
i i x context

i + 1 i + 1 x context
i + 2 i + 2

save update save update

apply all accumulated updates

Figure 6.8: Scheme of input wise batch learning of SOM. Learning consists
of two parts: the �rst part (top row) is the presentation of input (all vertices)
with saving the state of the map and the second part is the weight change
according to the vertex and the corresponding saved state.

To achieve all of the above mentioned points the following scheme of
IWBL can be drawn (Fig. 6.8). Pseudocode of the learning algorithm for
one input (Alg. 6.1) shows the learning process in a simpli�ed way.

Input wise batch learning is not very practical but is used for the more
useful recursive SOM models batch learning algorithm � epoch wise batch
learning.

6.3.2 Epoch wise batch learning

Epoch wise batch learning (EWBL) is an upgrade of IWBL algorithm. The
principles are the same but the EWBL is one step further than IWBL. This
algorithm is a batch algorithm for the whole epoch.

The equations used for IWBL (Eq. 6.6 and 6.7) are also used in this learn-
ing algorithm without change. The only change is in the learning algorithm.
The values of numerators and denominator are not reset after presenting
every input and neither weights are changed. Instead, the numerators and
the denominator are reset at the beginning of the epoch and then computed
throughout the epoch on all inputs (and all their vertices). The weights are
updated at the end of the epoch (after the whole data set has been presented).
Pseudocode 6.2 of the EWBL shows the simpli�ed learning algorithm.

EWBL algorithm is more useful as now the distributed computing is avail-
able for the training of the recursive SOM models. The algorithm enables the
data set to be split into inputs (or input groups) that are trained separately.

89

Chapter 6. Batch learning

Algorithm 6.1 Pseudocode of the input wise batch learning algorithm for
recursive SOM models. The learning algorithm is a merge of batch SOM
learning algorithm and BPTT algorithm for simple recurrent networks.
1: for all neurons do
2: input numerator ← 0;
3: context numerators ← 0;
4: denominator ← 0;
5: end for

6: for all vertices do
7: input ← current vertex;
8: contexts ← current contexts;
9: compute winner;
10: for all neurons in the map do {Eq. 6.6 and Eq. 6.7}
11: input numerator ← input numerator + h(i, i∗)x(t);
12: context numerators ← context numerators + h(i, i∗)qj(t);
13: denominator ← denominator + h(i, i∗);
14: end for

15: end for

16: for all neurons do
17: new input weight ← input numerator / denominator;
18: new context weights ← context numerators / denominator;
19: end for

For every epoch the current weights (input and context) and inputs have to
be provided to the slave computers which send their resulting numerators
and denominator to the master computer. The master computer then sums
all variables from the slave computers and computes the new weights.

This enables to work with large maps (millions of neurons) in a reasonable
time even for very time consuming RecSOM model. The time complexity is
not signi�cantly lower but the distributed computing possibility makes this
method very useful in real life scenarios. The online versions of the recursive
SOM learning algorithms can be run only on one computer with no possibility
to use processing power of more computers.

With regard to the criticism of batch learning for SOM this does not apply
in this case. The reason for the exclusion is that the argument lies in localist
encoding. In case of using recursive SOM models and localist encoding, the
context (as part of input) will not be in localist encoding thus rendering the
argument meaningless. The only model whose contexts use localist encoding
is SOMSD. For this model the reasoning does not apply and in theory is not
immune to localist encoding problem of SOM's batch learning.

90

Chapter 6. Batch learning

Algorithm 6.2 Pseudocode of the epoch wise batch learning algorithm for
recursive SOM models. The learning algorithm is updated input wise batch
learning algorithm expanded on the whole data set.
1: for all neurons do
2: input numerator ← 0;
3: context numerators ← 0;
4: denominator ← 0;
5: end for

6: for all inputs do
7: for all vertices do
8: input ← current vertex;
9: contexts ← current contexts;
10: compute winner;
11: for all neurons do
12: input numerator ← input numerator + h(i, i∗)x(t);
13: context numerators ← context numerators + h(i, i∗)qj(t);
14: denominator ← denominator + h(i, i∗);
15: end for

16: end for

17: end for

18: for all neurons do
19: new input weight ← input numerator / denominator;
20: new context weights ← context numerators / denominator;
21: end for

6.4 Summary

In this chapter we presented existing batch learning algorithm for SOM and
showed its advantages. These make batch SOM very useful in practical
applications. However batch learning in its current form has its disadvantages
too as we demonstrated in experiment with real data. The disadvantage
focuses on the problem with the algorithm when using localist input encoding.
We proposed update of batch learning algorithm to solve this problem.

For the recursive models we proposed two types of batch learning algo-
rithms. Both are based on existing batch algorithms for other neural network
models. The �rst one focuses on batch processing of one structured input.
The data set is then processed similarly to SOM model with structured in-
put behaving as one input. The second algorithm enhances the �rst one to
process the whole data set in a batch mode. That means the actual learning
is done only after the whole data set has been presented. The advantages

91

Chapter 6. Batch learning

of the mentioned batch learning for SOM apply and therefore this algorithm
can be used for distributed computing of the recursive SOMs.

92

Chapter 7

Data extraction and

reconstruction

Since the encoded tree structures become distributively encoded (approxi-
mated) by a recursive SOM, we can think of it as a distributed memory. To
be able to use recursive SOM models as a memory model, the encoded data
has to be extracted at least partially from the trained map1. The RAAM
model already consists of the decoder part so no extra work is needed to
extract data from the hidden layer. There is no decoder similar to RAAM
model so it has to be proposed how to extract data back from the trained
map.

In case of tree structures the situation is more complex. The memory
depth is usually very shallow, only in the simplest cases the map memory
depth is su�cient enough (Van£o and Farka², 2009) to be used straight-
forward as a memory. The data has to be reconstructed during the input
presentation. We will focus on the methods of the data extraction (decod-
ing) from the trained map if memory depth is su�cient and continue with
data reconstruction if the memory depth is not as deep as to cover all data
structures.

7.1 Lookup table

The simplest non-connectionist approach to data decoding from the trained
map is a lookup table. If the trained map can uniquely identify the input
from the state of the map (winner or map activation) then a simple lookup

1The applications other than memory, such as data mining or visualization, do not
need this

93

Chapter 7. Batch learning

input winner winner position

(d(a(a(an)))) 95 [9, 5]
((dn)v) 2 [0, 2]
(an) 40 [4, 0]

(p(dn)) 83 [8, 3]
((dn)(p(dn))) 3 [0, 3]

((dn)(v(d(an)))) 4 [0, 4]
(a(an)) 94 [9, 4]
(d(an)) 96 [9, 6]
(v(dn)) 93 [9, 3]

((d(an))(v(p(dn)))) 5 [0, 5]
(a(a(an))) 90 [9, 0]
(v(d(an))) 80 [8, 0]
(p(d(an))) 70 [7, 0]

(dn) 51 [5, 1]
(v(p(dn))) 91 [9, 1]

a 39 [3, 9]
d 9 [0, 9]
n 49 [4, 9]
p 48 [4, 8]
v 59 [5, 9]

Table 7.1: The sample lookup table for SOMSD and map size of 10×10.

table created at the end of the training can identify input based on the state
of the map.

The lookup table can have two columns, for example using the binary
data set from Chapter 4 and SOMSD model with a 10×10 map (result of an
experiment) can be seen in Tab. 7.1.

Using this table is very simple. After presenting one input, the state of
the map is read and then the lookup table is searched. If the state is found
in the lookup table the input is read in the same row. If the state is not
found (that means the input was not presented during learning) the return
argument has to be de�ned. For example the algorithm can return the closest
input to the state of the map.

The possibility of implementation of the lookup table varies from a simple
program memory for simple data sets to a database table for very large data
sets (which means large map as well as the need to satisfy the condition that
every input is uniquely identi�ed).

The problem is that the lookup table has to be built for every training
anew. This is the problem with all decoding algorithms as new training

94

Chapter 7. Batch learning

(with the randomly initialized weights) creates di�erent weights and therefore
di�erent states of the map for the same input. For faster access the table
can be sorted or in case of databases indexed.

7.2 Feedforward network as a decoder

The connectionist approach is to create a neural network on top of the trained
map to work as a decoder. This is a cleaner but also a more di�cult solution
(the whole structure of the encoder-decoder will be a neural network). The
simplest connectionist approach is to use a feedforward network. The input
layer can be a trained map with activations of the current input or simply
an encoded number of the winner (in case of SOMSD, MSOM, etc.). In both
cases the feedforward network on top of the map will have to be trained as
an auto-associator, i.e. the input to the map will be the required output.
This can be either trained after every vertex (ideal for data reconstruction)
or after the whole input is presented. In the latter case the requested output
will be the whole input. Depending on the size of the data set, the requested
output can be coded as a localist (for small data sets) or a distributed (for
large data sets) vector. In Figure 7.1 an example architecture can be found
over SOMSD model.

For the simplest cases only one-layer feedforward network can be used.
Every neuron in the layer can be trained for one input. In other cases every
neuron can have its receptive �eld de�ned and use it to decode parts of
the map. These are only ideas and not implementation proposals. The
implementation depends on the requirements of the decoder.

The idea of using a neural network on top of the map as a decoder can
be extended. The requested output may not be the input itself but an input
class for example. Activations of the trained map can serve as inputs to
another module.

7.3 Data reconstruction

Data reconstruction process is needed for decoding of tree as well as of long
sequences. This is the case when memory depth is lower than the depth
of the structures in the data set. In the previous chapter we introduced a
measure called the tree receptive �eld (Section 4.1). This measure quanti�es
the memory depth of every neuron in the map and is higher for sequences
and lower for tree structures. The quantizer depth measure shows an average
memory depth and for the tree structures. It is usually around one and even

95

Chapter 7. Batch learning

Figure 7.1: Feedforward network as a decoder over SOMSD model. In this
example the feedforward network has two layers. The requested output is
the whole structured input after the root has been presented to the trained
map.

below one for very large data sets (see Chapter 4).
To be able to reconstruct all structures from the trained map to their full

depth, all types of receptive �elds of the data set have to be found in the
map. In addition the receptive �eld size has to be at least the size of the
arity plus one. In case of sentences this size has to be at least two. The
principle is to build up the structure on the �y.

That means that we do not wait for the last vertex (root) to be presented
but decode the structure right after presentation of every vertex in the struc-
ture. As the presentation proceeds bottom up and data reconstruction is top
down, all information about the map (usually encoded in the winner or in
the case of RecSOM in the activity of the map) has to be saved for recon-
struction. The reconstruction then takes the information about the map and
decodes it using a chosen decoding algorithm. As only partial information is
provided for every vertex, the missing information has to be provided to the
decoding algorithm. This has to build the structure based on the winner's
receptive �eld and the winner sequence. As mentioned earlier, the decoding
algorithm can be a neural network or a simple algorithm. The di�erence is
that the result from the decoding algorithm has to be saved and then the
results have to be constructed to create the full structure.

96

Chapter 7. Batch learning

As an example, let's take the data set consisting of tree structures of
arity 2 (binary trees) � we can use the binary data set from Chapter 4 again.
Let two trees `(a(an))' and `(a(a(an)))' have the same winning neuron in
SOMSD model (thus making receptive �eld of this neuron to be `(a(ax))'),
let it be 90 (position [9, 0]). Let the other inputs have the same winning
neurons as in section 7.1 Tab. 7.1. That means that the trained map can not
distinguish between the two selected trees. The processing will proceed for
input `(a(an))' as follows:

- vertex `n', no contexts, saved winner is: 49
- vertex `a', no contexts, saved winner is: 39
- no vertex, saved winner is: null
- no vertex, saved winner is: null
- vertex with no label, contexts of winners 49 and 39, saved winner is: 40
- vertex `a', no contexts, saved winner is: 39
- vertex with no label, contexts of winners 40 and 39, saved winner is: 90

The reconstruction process starts right after presenting the root. The
sequence of saved winners is (from root to the bottom):

90, 39, 40, null, null, 39, 49.

Using the lookup table we have following receptive �elds:

`(a(a -))', `a', `(an)', null, null, `a', `n'

where `-' sign means unknown value.
This will be reconstructed to `(a(an))'. A similar result can be achieved

using a feedforward network.
This approach only uses the receptive �eld information. However, in

case of very large data set and therefore shallow TRF, partial information
can be extracted using not only TRF but also STRF. Data reconstruction
will not be complete but as STRF ≥ TRF it can be used to provide more
information even though data in the vertices is not known. Using both data
and structural information, even partial, helps in data reconstruction.

7.4 Summary

In this chapter we presented a few ideas how to use recursive SOM models as
memory, i.e. how to use trained map to retrieve the original structured data.
We showed universal approaches for retrieval in two cases: information can

97

Chapter 7. Batch learning

be completely retrieved from the trained map or only partial information can
be retrieved from the trained map.

If the structured data can be successfully retrieved from the trained map
we provided two approaches on how to do it. The �rst one was algorithm
using lookup table that is created at the end of learning. This approach is
precise but how to proceed when input is not found has to be de�ned based on
requirements of the task. The second one was neural network approach using
feedforward network on top of the map. The network can be trained during
or after the training of the map. The results are not perfectly precise but the
advantage of this solution is that the feedforward network can approximate
the result.

For the other case when the trained map is not able to successfully encode
all input data we proposed data reconstruction idea that uses receptive �elds
and structure receptive �elds of neurons in decoding data. Also for this idea
the reconstruction process runs throughout the presentations of all structured
data inputs.

98

Chapter 8

Conclusion

In the thesis we focused on processing tree structured data with recursive self-
organizng maps. The structures that can be processed are limited to trees
and acyclic oriented graphs. We evaluated time and space complexity for all
models to facilitate th comparison of their properties. The models process
structured data di�erently based on the type of their context representation
(feedback).

We focused on three models, SOMSD, MSOM and RecSOM. SOMSD uses
coordinates of the last winner for feedback. MSOM uses merged information
about the last winner, namely its context and input weights, for feedback.
RecSOM, with the highest time and space complexity, uses the activation of
the whole map for the feedback.

For MSOM we argued that despite the fact that the computation of the
context is commutative with respect to children Hammer et al. (2004b) it does
distinguish between the branches of a tree. We also added an experiment to
support our theoretical claim. This makes MSOM suitable for processing
trees.

To show how the selected models process tree structured data with various
degrees of complexity, three data sets were chosen for experimental compari-
son. For this, we introduced four and applied two existing quantitative mea-
sures for this purpose. With respect to content-and-structure memory depth
(TQD measure), there is no clear winner for all three data sets. Regard-
ing the structure depth (STQD measure), SOMSD yields the best results
suggesting that it can cluster trees very well according to their structural
properties. The models di�er in the way how they di�erentiate among the
trees and cluster them. For SOMSD, the tree structure is more important
than the content (of the labels), but the content also plays a role when the
structure is the same. MSOM clusters the trees in the map more preferably
by the content than SOMSD but the structure is also very important. Rec-

99

Chapter 8. Conclusion

SOM creates complex organization in representing trees based on both the
structure and the content. Regarding the uniqueness of output representa-
tions, it turns out that for the purposes of input discrimination, the winner
index is only su�cient in the case of simple tree data sets, when the number
of map units is higher than the number of di�erent vertices.

We provided practical results of recursive SOMs on two XML encoded
data sets, with di�erent purposes. We presented visualization capabilities of
the models on the �rst data set containing example library in XML format.
Data mining capabilities of the recursive models were tested on the second,
more complex data set, that contained information about the articles. XML
format is a native format of many real life applications and we successfully
implemented recursive models to use this format.

We developed batch learning for the recursive SOMs to be used more ef-
fectively. They can be implemented using multiple computers in a distributed
way. This is a practical solution that enables to compute larger maps than
before in a shorter time by distributing the computation. We also showed the
problems with batch learning for the classic SOM and we proposed solutions
to circumvent this problem.

The recursive SOMs can also be used as a memory for structured data.
We provided solutions for data extraction from the trained maps, the lookup
table and feed forward network, to be used for memory retrieval. In the case
of shallow memory depth we proposed a data reconstruction algorithm that
uses receptive �elds and structure receptive �elds of neurons to build up the
structure from the map state.

For future work the implementation of distributed recursive SOMs is re-
quired to test the models on large data sets and large map sizes. Making
the batch versions more e�ective is a great challenge as well. Combined with
XML data processing this can lead to data mining, clustering and visualiza-
tion of the whole databases. Also further extending recursive models to all
graphs would mean a big step forward in processing structured data using
neural networks.

100

Bibliography

Bar-Joseph, Z., E. Demaine, D. Gi�ord, and T. Jaakkola (2001). Fast optimal
leaf ordering for hierarchical clustering. Bioinformatics 17, 22�29.

Barreto, G., A. F. R. Araújo, and S. C. Kremer (2003). A taxonomy of
spatiotemporal connectionist networks revisited: The unsupervised case.
Neural Computation 15 (6), 1255�1320.

Be¬u²ková, �. (2000). Neurón a mozog. Predná²ka Neurovedy I, 26.10.2000
v rámci celo-UK predmetu Kognitívne vedy.

�er¬anský, M. and P. Ti¬o (2007). Comparison of echo state networks with
simple recurrent networks and variable-length Markov models on symbolic
sequences. In 17th International Conference on Arti�cial Neural Networks,
pp. 618�627.

Chappell, G. J. and J. G. Taylor (1993). The temporal Kohonen map. Neural
Networks 6, 441�445.

Cheng, Y. (1997). Convergence and ordering of Kohonen's Batch Map. Neu-
ral Computation 9 (8), 1667�1676.

�ihák, R. (2004). Anatomie 3. Grada Publishing.

Craik, F. I. and R. S. Lockhart (1972). Levels of processing: A framework
for memory research. Journal of Verbal Learning and Verbal Behavior 11,
671�684.

Craik, F. I. and E. Tulving (1975). Depth of processing and the retention
of words in episodic memory. Journal of Experimental Psychology: Gen-
eral 104 (3), 268�294.

Diestel, R. (2005, August). Graph Theory (Graduate Texts in Mathematics).
Heidelberg: Springer.

101

Chapter 8. Conclusion

Elman, J. L. (1990). Finding structure in time. Cognitive Science 14 (2),
179�211.

Farka², I. and M. Pokorný (2007). Processing tree-structured data with the
linear RAAM neural network. Technical Report TR-2007-011, Comenius
University in Bratislava.

Farka², I. and P. Van£o (2007a). Spracovanie postupností symbolov pomocou
rekurzívnych neurónových máp. Kognice a um¥lý ºivot 7, 99�105.

Farka², I. and P. Van£o (2007b). Spracovanie postupností symbolov pomocou
rekurzívnych neurónových máp. Kognícia a umelý ºivot 7, 99�106.

Fodor, J. A. and Z. W. Pylyshyn (1988). Connectionism and cognitive archi-
tecture: a critical analysis. In S. Pinker and J. Mehler (Eds.), Connections
and Symbols. Cambridge, Mass.: MIT Press.

Fort, J. C., M. Cottrell, and P. Letremy (2001). Stochastic on-line algorithm
versus batch algorithm for quantization and self organizing maps. Neural
Networks for Signal Processing 9, 43�52.

Fort, J. C., M. Cottrell, and P. Letremy (2002). Advantages and drawbacks
of the Batch Kohonen algorithm. ESANN Proceedings 2002, 223�230.

Frasconi, P., M. Gori, A. Kuechler, and A. Sperduti (2001). A Field Guide
to Dynamic Recurrent Networks, Chapter From Sequences to Data Struc-
tures: Theory and Applications, pp. 351�374. Cambridge, CA: IEEE Press.

Frasconi, P., M. Gori, and A. Sperduti (1998). A general framework for pro-
cessing of data structures. IEEE Transactions on Neural Networks 9 (5),
768�786.

Gori, M., M. Mozer, A. C. Tsoi, and R. Watrous (1997). Special issue on
recurrent neural networks for sequence processing. Neurocomputing 15 (3�
4), 181�182.

Hagenbuchner, M., A. Sperduti, and A. C. Tsoi (2003). A self-organizing
map for adaptive processing of structured data. IEEE Transactions on
Neural Networks 14 (3), 491�505.

Hagenbuchner, M., A. Sperduti, and A. C. Tsoi (2005a). Contextual process-
ing of graphs using self-organizing maps. In 13th European symposium on
Arti�cial Neural Networks, pp. 399�404.

102

Chapter 8. Conclusion

Hagenbuchner, M., A. Sperduti, and A. C. Tsoi (2005b). Contextual self-
organizing maps for structured domains. In ECML Workshop on Relational
Machine Learning, pp. 46�55.

Hagenbuchner, M., A. Sperduti, A. C. Tsoi, F. Trentini, F. Scarselli, and
M. Gori (2005). Lecture Notes in Computer Science 3977, Chapter Clus-
tering XML documents using self-organizing maps for structures, pp. 481�
496. Springer-Verlag.

Hammer, B. (2000). Learning with Recurrent Neural Networks. Springer
Lecture Notes in Control and Information Sciences 254. Springer.

Hammer, B. (2003). Perspectives on learning symbolic data with connection-
istic systems, Chapter Adaptivity and Learning, pp. 141�160. Springer.

Hammer, B. and B. J. Jain (2004). Neural methods for non-standard data. In
M. Verleysen (Ed.), European Symposium on Arti�cial Neural Networks,
pp. 281�292. D-side Publications.

Hammer, B., A. Micheli, A. Sperduti, and M. Strickert (2004a). A general
framework for unsupervised processing of structured data. Neurocomput-
ing 57, 3�35.

Hammer, B., A. Micheli, A. Sperduti, and M. Strickert (2004b). Recursive
self-organizing network models. Neural Networks 17 (8�9), 1061�1085.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. New
York: Prentice Hall.

Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley
& Sons Inc.

Jaeger, H. (2001). Short term memory in echo state networks. Technical Re-
port GMD Report 152, German National Research Center for Information
Technology.

Jedli£ka, P. (2002). Synaptic plasticity, metaplasticity and BCM theory.
Bratislavské lekárske listy 103, 137�143.

Jordan, M. I. (1989). Serial order: A parallel distributed processing approach.
In Advances in Connectionist Theory: Speech. Hillsdale: Erlbaum.

Kaski, S., J. Kangas, and T. Kohonen (1998). Bibliography of self-organizing
maps: papers: 1981-1997. Neural Computing Surveys 1, 102�350.

103

Chapter 8. Conclusion

Kc, M., M. Hagenbuchner, A. C. Tsoi, F. Scarselli, A. Sperduti, and M. Gori
(2006). XML document mining using contextual self-organizing maps for
structures. In INEX, Volume 4518 of Lecture Notes in Computer Science,
pp. 510�524.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43, 59�69.

Kohonen, T. (1984). Self-Organization and Associative Memory. Berlin:
Springer.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE 78 (9),
1464�1480.

Kohonen, T. (1992). Symp. On Neural Networks; Alliances and Perspectives
in Senri. Osaka, Japan: Senri Int. Information Institute.

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.

Kohonen, T. and P. Somervuo (1998). Self-organizing maps of symbol strings.
Neurocomputing 21 (Issues 1�3), 19�30.

Koskela, T., M. Varsta, J. Heikkonen, and K. Kaski (1998a). Temporal se-
quence processing using Recurrent SOM. In Proceedings of the 2nd Inter-
national Conference on Knowledge-Based Intelligent Engineering Systems,
pp. 290�297.

Koskela, T., M. Varsta, J. Heikkonen, and K. Kaski (1998b). Time series
prediction using recurrent SOM with local linear models. International
Journal of Knowledge-Based Intelligent Eng. Systems 2 (1), 60�68.

Kröse, B. J. A. and M. Eecen (1994). A self-organizing representation of
sensor space for mobile robot navigation. Proc. IROS '94 1, 9�14.

Kurz, A. (1992). Building maps for path-planning and navigation using learn-
ing classi�cation of external sensor data. Arti�cial Neural Networks 1 (2),
587�590.

Kvasni£ka, V., �. Be¬u²ková, J. Pospíchal, I. Farka², P. Ti¬o, and A. Krá©
(1997). Introduction to the Theory of Neural Networks. Bratislava: IRIS.

Lukosevicius, M. and H. Jaeger (2009). Reservoir computing approaches to
recurrent neural network training. Computer Science Review 3 (3), 127�
149.

104

Chapter 8. Conclusion

Martinetz, T. and K. Schulten (1991). A neural-gas network learns topolo-
gies. In Proceeedings of the International Conference on Arti�cial Neural
Networks, Amsterdam, pp. 397�402. North-Holland.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics 5, 115�133.

Minsky, M. and S. Papert (1969). Perceptrons. Cambridge, Massachusetts:
MIT Press.

Mori, R., Y. Bengio, and R. Cardin (1989). Speaker independent speech
recognition with neural networks and speech knowledge. In Advances in
neural information processing systems 2, pp. 218�225. Morgan Kaufmann
Publishers Inc.

Návrat, P., M. Bieliková, �. Be¬u²ková, I. Kapustík, and M. Unger (2002).
Umelá inteligencia. Vydavatelstvo STU, Bratislava.

Neubauer, N. (2005). Recursive SOMs and Automata. Master's thesis, Cog-
nitive Science, University of Osnabrück.

Palmer, C. (2005). Sequence memory in music performance. Current Direc-
tions in Psychological Science 14, 247�250.

Pöllä, M., T. Honkela, and T. Kohonen (2006). Bibliography of self-
organizing map (SOM) papers: 2002-2005. Unpublished SOM bibliog-
raphy.

Pollack, J. (1990). Recursive distributed representations. Arti�cial Intelli-
gence 46 (1-2), 77�105.

Ritter, H. (1997). Self-organizing maps for robot control. International Con-
ference on Arti�cial Neural Networks 1327 1997, 673�684.

Ritter, H. and T. Kohonen (1989). Self-organizing semantic maps. Biological
Cybernetics 61, 241�254.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review 65, 386�408.

Rumelhart, D. E., G. Hinton, and R. J. Williams (1986). Parallel Distributed
Processing. Cambridge, MA: The MIT Press.

�íma, J. and R. Neruda (1997). Teoretické otázky neuronových sítí. Matfyz
Press.

105

Chapter 8. Conclusion

Sin£ák, P. and G. Andrejková (1996a). Neurónové siete (Inºiniersky prístup),
Volume 1. Elfa s.r.o.

Sin£ák, P. and G. Andrejková (1996b). Neurónové siete (Inºiniersky prístup),
Volume 2. Elfa s.r.o.

Sperduti, A. and A. Starita (1997). Supervised neural networks for the clas-
si�cation of structures. IEEE Transactions on Neural Networks 8 (3), 714�
735.

Steil, J., R. Koiva, and A. Sperduti (2006). Unsupervised clustering of con-
tinuous trajectories of kinematic trees with SOM-SD. In Proceedings of the
14th European Symposium on Arti�cial Neural Networks, Bruges, Belgium,
pp. 1�6.

Strickert, M. and B. Hammer (2003). Unsupervised recursive sequence pro-
cessing. In Neurocomputing, pp. 433�439. D-side Publications.

Strickert, M. and B. Hammer (2004). Self-organizing context learning. In
European Symposium on Arti�cial Neural Networks, pp. 39�44.

Strickert, M. and B. Hammer (2005). Merge SOM for temporal data. Neu-
rocomputing 64, 39�71.

Tai, W. (1995). A batch training network for self-organization. In Interna-
tional Conference on Arti�cial Neural Networks, Volume 2, pp. 33�37.

Ti¬o, P., I. Farka², and J. van Mourik (2006). Dynamics and topographic or-
ganization of recursive self-organizing maps. Neural Computation 18 (10),
2529�2567.

University of California Irvine (2009). Machine learning repository. internet.
http://archive.ics.uci.edu/ml/.

Van£o, P. (2009a). Dynamika dávkového u£enia na modeloch samoorganizu-
júcich sa máp. Kognícia a umelý ºivot 9, 357�362.

Van£o, P. (2009b). Visualization of simple XML data using recursive self-
organizing neural maps. Informatics 2009 : International Conference on
Informatics 10, 341�346.

Van£o, P. (2010). Dekódovanie ²truktúrovaných dát z natrénovaných
rekurentných SOM. Kognícia a umelý ºivot 10. Submitted.

106

Chapter 8. Conclusion

Van£o, P. and I. Farka² (2009). Recursive self-organizing networks for pro-
cessing tree structures: Empirical comparison. In IJCCI 2009 : Proceed-
ings of the International Joint Conference on Computational Intelligence,
Volume 64, pp. 459�466.

Van£o, P. and I. Farka² (2010). Experimental comparison of recursive
self-organizing maps for processing tree-structured data. Neurocomput-
ing 73 (7�9), 1362�1375.

Voegtlin, T. (2002a). Neural Networks and Self-Reference. Ph. D. thesis,
Universite Lyon 2.

Voegtlin, T. (2002b). Recursive self-organizing maps. Neural Networks 15 (8-
9), 979�992.

Werbos, P. J. (1990). Backpropagation through time: What does it do and
how to do it. Proceedings of IEEE 78, 1550�1560.

Williams, R. J. and D. Zipser (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation 1 (2), 270�
280.

107

