
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

COMPUTATIONAL ANALYSIS OF MEMORY CAPACITY

OF AN ECHO-STATE NETWORK

MASTER THESIS

2015 Radomír BOSÁK

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

COMPUTATIONAL ANALYSIS OF MEMORY CAPACITY

OF AN ECHO-STATE NETWORK

MASTER THESIS

Study programme: Mathematics

Study �eld: Mathematics 1113

Supervisor: prof. Ing. Igor Farka², Dr.

Department of Applied Informatics

Bratislava 2015 Radomír BOSÁK

UNIVERZITA KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZYKY A INFORMATIKY

COMPUTATIONAL ANALYSIS OF MEMORY CAPACITY

OF AN ECHO-STATE NETWORK

DIPLOMOVÁ PRÁCA

�tudijný program: Matematika

�tudijný odbor: Matematika 1113

Vedúci práce: prof. Ing. Igor Farka², Dr.

Katedra aplikovanej informatiky

Bratislava 2015 Radomír BOSÁK

24342441

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Radomír Bosák
Study programme: Mathematics (Single degree study, master II. deg., full time

form)
Field of Study: 9.1.1. Mathematics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Computational analysis of memory capacity of an echo-state network

Aim: 1. Provide an overview of echo-state neural networks (ESN) and their
computational properties related to the regime at the edge of chaos.
2. Implement an ESN, driven by a stochastic scalar input and using
computational simulations, systematically analyze its memory capacity, as a
function of various parameters.
3. Design and test an iterative method for reservoir orthogonalization, aimed at
maximizing the memory capacity.

Annotation: ESNs have become an efficient approach to training recurrent neural
networks. However, their computational properties are not yet well understood.
Various ways of improving ESN performance based on reservoir adaptation
or parameter optimization have been proposed, with focus on different
performance criteria, such as the memory capacity.

Keywords: recurrent neural network, reservoir computing, memory capacity

Supervisor: prof. Ing. Igor Farkaš, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, PhD.

Assigned: 30.11.2013

Approved: 02.12.2013 prof. RNDr. Ján Filo, CSc.
Guarantor of Study Programme

Student Supervisor

24342441

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Radomír Bosák
Študijný program: matematika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.1.1. matematika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Computational analysis of memory capacity of an echo-state network
Výpočtová analýza pamäťovej kapacity siete s echo stavmi

Cieľ: 1. Urobte prehľad o sieťach s echo stavmi (ESN) a ich výpočtových vlastností
týkajúcich sa režimu na hranici chaosu.
2. Implementujte ESN so skalárnym stochastickým vstupom a systematicky
pomocou výpočtových simulácií analyzujte jej pamäťovú kapacitu, v závislosti
of rôznych parametrov modelu.
3. Navrhnite a otestujte iteratívnu metódu na ortogonalizáciu rezervoára,
s cieľom maximalizovať pamäťovú kapacitu.

Anotácia: Siete s echo stavmi (ESN) sa stali efektívnym prístupom k trénovaniu
rekurentných neurónových sietí. Avšak výpočtové vlastností ESN neboli
doteraz dostatočne preskúmané. Boli navrhnuté rôzne spôsoby na zlepšenie
fungovania ESN, založené na adaptácii rezervoára alebo optimalizácii
parametrov, s dôrazom na sledovanie rôznych kritérií na fungovanie modelu,
ako napríklad pamäťovej kapacity.

Kľúčové
slová: rekurentná neurónová sieť, rezervoárové počítanie, pamäťová kapacita

Vedúci: prof. Ing. Igor Farkaš, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, PhD.

Dátum zadania: 30.11.2013

Dátum schválenia: 02.12.2013 prof. RNDr. Ján Filo, CSc.
garant študijného programu

študent vedúci práce

�estne prehlasujem, ºe som túto diplomovú prácu vypracoval samostatne s pouºitím

citovaných zdrojov.

.....................................

Po¤akovanie Touto cestou sa chcem po¤akovat svojmu vedúcemu diplomovej práce

prof. Ing. Igorovi Farka²ovi, Dr. za ochotu, pomoc, odborné rady a podnetné

pripomienky, ktoré mi pomohli pri písaní tejto práce.

Abstract

Echo state networks (ESN) present a novel approach for using recurrent neural net-

works on prediction tasks. One of the important measures of performance of echo state

networks is the short term memory capacity, introduced in Jaeger (2001b). ESNs,

as an e�cient approach avoids time consuming training of all weight matrices and, in-

stead, requires only tuning of output weights. However, the input and recurrent weight

matrices should be suitably initialized. In this thesis we consider a parametrized ini-

tialization of these matrices. The tested parameters were the input and hidden weight

matrix scaling, reservoir size and matrix sparsity. Through systematic computational

experiments, we search the parameter space for values which yield maximal memory

capacity. We locate the optima for recurrent matrix scaling parameter and describe

which parameters increase (reservoir size) and which decrease the memory capacity

(input weight matrix scaling and matrix sparsity). Furthermore, an orthogonalization

process for recurrent weights is presented, which considerably increases the memory

capacity.

Keywords: Neural networks, Echo state networks, Short term memory capacity

Abstrakt

Siete s echo stavmi predstavujú nový prístup vo vyuºívaní rekurentných neurónových

sietí na predik£né úlohy. Jedna z dôleºitých mier výkonnosti siete s echo stavmi je jej

krátkodobá pamä´ová kapacita, zavedená v Jaeger (2001b). Siete s echo stavmi sú efek-

tívnym prístupom, ktorý sa vyhýba £asovo náro£nému trénovaniu v²etkých váhových

matíc a namiesto toho vyºaduje iba nastavenie výstupných váh. Av²ak vstupné a

rekurentné matice musia by´ vhodne inicializované. V tejto práci uvaºujeme parametri-

zovanú inicializáciu týchto matíc. Testované parametre boli: ²kálovanie vstupnej a

vnútornej váhovej matice, ve©kos´ rezervoáru a riedkos´ vnútornej matice. Cez ex-

perimenty preh©adávame parametrický priestor a h©adáme hodnoty parametrov, ktoré

dávajú maximálnu pamä´ovú kapacitu. Lokalizujeme optimálne hodnoty parametra

pre ²kálovanie vnútornej matice a popí²eme, ktoré parametre zvy²ujú (ve©kos´ rez-

ervoáru) a ktoré zniºujú (²kálovanie vstupnej matice a riedkos´ vnútornej matice).

Navy²e prezentujeme ortogonaliza£nú procedúru, ktorý zna£ne zvy²uje pamä´ovú ka-

pacitu neurónovej siete.

K©ú£ové slová: Neurónové siete, Siete s echo stavmi, Krátkodobá pamä´ová ka-

pacita

CONTENTS CONTENTS

Contents

List of Figures 4

List of Tables 6

1 Theoretical introduction 10
1.1 Arti�cial Neural networks . 10

1.1.1 Practical ANN representation 10
1.1.2 Neural network dynamics . 11
1.1.3 Types of neural networks . 11

1.2 Echo state networks . 12
1.3 Echo state network learning . 15
1.4 Measures of ESN performance . 16
1.5 Motivation for this work . 19

2 Previous results 20
2.1 Echo states equivalent conditions . 20
2.2 Memory capacity bound . 20
2.3 Reservoir initialization guidelines . 21

3 Experiments 23
3.1 Experimental setup . 24
3.2 Recurrent matrix scaling . 24

3.2.1 Chaotic behaviour and eigenvalues 26
3.2.2 Optimal sigma and circular law 27

3.3 Reservoir size . 28
3.3.1 Relationship between largest singular value and spectral radius . 31

3.4 Matrix sparsity . 31
3.5 Orthogonalization procedure . 33
3.6 Input matrix scaling . 35
3.7 Summary . 37

4 Conclusion 38

References 39

Appendices 40

A Side results 40
A.1 Distribution of memory capacity at the edge of chaos 40
A.2 MC forgetting curves . 41

B Used software and graphics 43

3

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Illustration of ESN architecture . 13

2 Illustration of ESN dynamics, taken from Jaeger (2007). Reservoir neu-

rons create various echoes as a response to an input stimulus. 14

3 Estimation of the Lyapunov exponent, taken from Boedecker et al.

(2012). After each network update, the distance between network state

trajectories is reset to γ0. 18

4 ESN initialization scheme. 23

5 Memory capacity of the 100-neuron reservoir for di�erent values of σ. . 24

6 Memory capacity of the 100-neuron reservoir changing with spectral

radius of the recurrent matrix. 25

7 Memory capacity of the 100-neuron reservoir changing with the largest

singular value of the recurrent matrix. 26

8 Memory capacity changing with σ for di�erent reservoir sizes. 29

9 Memory capacity changing with spectral radius of the recurrent matrix

for di�erent reservoir sizes. 30

10 Memory capacity changing with largest singular value of the recurrent

matrix for di�erent reservoir sizes. 30

11 Largest singular value plotted against spectral radius for di�erent matrix

sizes. Each data point represents 100 matrix instances. 31

12 Memory capacity changing with σ for di�erent matrix sparsities. 32

13 Memory capacity changing with spectral radius of the recurrent matrix

for di�erent matrix sparsities. 33

14 Memory capacity changing with largest singular value of the recurrent

matrix for di�erent matrix sparsities. 33

15 Memory capacity of 30 reservoir instances changing during orthogonal-

ization process. 35

16 Memory capacity as a function of σ for di�erent input matrix scaling. . 35

17 Memory capacity as a function of the spectral radius of the recurrent

matrix for di�erent input matrix scaling. 36

4

LIST OF FIGURES LIST OF FIGURES

18 Memory capacity as a function of the largest singular value of the recur-

rent matrix for di�erent input matrix scaling. 36

19 Memory capacity histograms for di�erent parameters σ. 40

20 Memory capacity histograms for di�erent parameters σ plotted on single

image. 41

21 MCk values of a 100-neuron reservoir for di�erent values of parameter σ. 42

22 MCk values of a 20-neuron reservoir for di�erent values of parameter σ. 42

5

LIST OF TABLES LIST OF TABLES

List of Tables

1 List of commonly used activation functions. 12

2 How values of ρ and smax determine the existence of echo states. 14

3 Memory capacity e�ectiveness for increasing reservoir size. 29

6

INTRODUCTION

Introduction

Throughout the history, mankind has always been inspired by nature, be it art or tech-

nological inventions and discoveries which fuelled the technological progress. Millions

of years of evolution on Earth had enough patience to �nd useful solutions on various

mechanical and other problems, which one encounters on daily basis. The hook-and-

loop fastener, for example, is attributed to George de Mestral, a Swiss engineer, who

supposedly invented it on a hunting trip in Alps, when examining the burrs of burdock

sticking to his clothes.

With the advent of computers, and their increasingly larger use on automation, we

need algorithms, which can make complex decisions and consider many factors, often in

conditions and situations that human cannot anticipate. Then these algorithms need

to be able to extrapolate and generalize. These are the kind of problems which fall

to the �eld of Machine Learning (ML), or more broadly, Arti�cial Intelligence (AI).

The precision of such algorithms can be of great economic importance, if we consider

automated quality control of massively produced integrated circuits. The importance

may lie in security if talking about monitoring subsystems in nuclear power plants, or

autonomous cars, which are already being tested in real tra�c.

While in past complex decisions were left entirely to a human, later the so called

expert systems were invented. These, however, had to be con�gured/programmed by

a human with expertise in the problem.

The Arti�cial neural networks (ANNs) were invented as an inspiration from

human brains. The cooperation of mathematics and biology allowed the creation of

a model of a neuron � a fundamental cell the brain is composed of. Later, models of

whole neural networks were presented � neurons, together with synapses, which are

neural interconnections capable of transmitting information.

When searching for suitable neuron and neural network models, many things had

to be taken to account. The given model had to have certain features which a human

brain has, such as the ability to compute � to process the input signal and perform (or

at least approximate) some function. Or the ability to remember and recall previous

input signals or knowledge derived from them and to use them in decision-making.

7

INTRODUCTION

Then there is the ability to learn - to alter its inner structure (synapses) based on

experience and through it - to react better in the future. A well known phenomenon

is the brain plasticity: it is capable of rewiring itself and replace the functionality of

damaged brain-parts.

One of the of the brain qualities we demand is the ability to perceive the environment

and its stimuli in temporal context; to process the input signals as a temporal series, so

that the past inputs can be used in computation. One of the attempts to achieve this

was the utilization of existing models and projecting the temporal axis on the spatial

axis: this means that we add new neurons which repeat the past inputs and provide it

to the current computation.

Another possibility (and one more biologically plausible) how to include the tem-

poral aspect is to use recurrent neural networks (RNNs). In RNNs the current

state of the network depends not only on the current inputs, but also on the previous

network state. This way, the neural network gains 'memory'. Many types of RNNs

(such as Elman's RNN) were developed over the years. However, a lot of them suf-

fered from computationally expensive learning algorithm and slow convergence. During

gradual change of network parameters, bifurcations can occur (Doya, 1992) in network

dynamics, which destroy the convergence of commonly used gradient descent methods

for synaptic weight adaptation.

In reaction to this a new paradigm called Reservoir Computing (RC) came into

light, which used these principles:

1. Instead of training each network synapse, the synaptic weights are generated

randomly during network initialization. This ensures that the network state will

represent enough complex non-linear transformation of the input. The output is

then taken as a suitable linear combination of the network state. Only output

weights are altered during training.

2. The inner (hidden) layer, also called the reservoir, has a forgetting property

(later referred as the echo state property), which ensures the stability of the

network.

These principles were applied and independently developed under the names Echo

state networks (ESNs) (Jaeger, 2001a) and Liquid state machines (LSM) (Maass et al.,

8

INTRODUCTION

2002). In this work we will be working exclusively with echo state networks. From the

time of its appearance the ESNs gained much popularity due to its implementation

simplicity and non-expensive learning algorithm.

This, however, does not mean there is nothing to improve. How `randomly' should

the network weights be initialized? The reservoir should be able to make complex

enough transformations of the input, but at the same time, it should have the forgetting

property. How to achieve that the information is not forgotten too soon? How to

normalize the input signal so that the unimportant information does not clutter the

network and the important information is not lost in numerical errors?

This thesis is focused on the problem of initialization of reservoir in an Echo state

network and tries to answer questions such as those just mentioned. From a purely

mathematical point of view, it is a study of properties of highly non-linear dynamical

systems, particularly recurrent neural networks. Since a strictly mathematical analysis

of such a system would be very di�cult (there are some that follow that approach)

we chose a computational approach. That means that we implement a model on a

computer, set up an experiment, and then through repeated simulations we measure

the observed model property or feature.

We will end this introduction with an overview of the thesis structure.

• Section 1 will de�ne and describe echo state networks and all notions necessary

for understanding. The short-term memory capacity will be de�ned as well.

• Section 2 provides an overview of results, concerning the memory capacity, al-

ready covered by literature.

• Section 3 covers the contribution of this thesis. These are mainly in the form of

experiments whose output is depicted as function graphs. Results and observa-

tions are commented.

• Section 4 provides a summary of presented results and discusses possible future

work.

9

1 THEORETICAL INTRODUCTION

1 Theoretical introduction

1.1 Arti�cial Neural networks

Arti�cial neural networks (ANNs) are a family of algorithms inspired by biological

neural networks, which are used in machine learning. By biological neural networks we

can imagine an animal's central nervous system, or brain in particular. As problem-

solving tools, ANNs excel in many areas, where traditionally used tools have been slow

and ine�cient.

From computation centralization perspective, the ANNs use decentralized approach:

Instead of using one central processor / problem solver, performing a speci�c human-

prescribed algorithm, arti�cial neural networks consist of large number of (often iden-

tical) units called (arti�cial) neurons, each of them performing a simple operation.

Though simple individually, in larger numbers these neural networks are capable of

producing very complex behaviour.

Another paradigm used by neural networks is massive parallelism. Neurons are

performing all their computations in parallel. Technological development in the last

decades (multi-core processors, multiple CPUs on one computer, high CPU speed) have

made neural computation a viable and a�ordable option.

1.1.1 Practical ANN representation

In practice, an arti�cial neural network can be represented as an oriented graph. Ver-

tices are the neurons. Edges represent the connections between neurons - the synapses.

At each time t ∈ T (with time being discrete or continuous), each neuron i has its ac-

tivation value xi(t) ∈ R. Biologically, the activation value corresponds to membrane

potential resident in neuron, or its excitation level, at time t.

The strength of neural synapse from neuron i to neuron j is represented by a real

number wji. A positive number wji can be understood as an excitatory connection,

while wji < 0 acts as an inhibitory connection. In many neural network models, we

allow self-connections, that is, neuron is connected to itself, forming a loop in the

graph.

10

1 THEORETICAL INTRODUCTION 1.1 Arti�cial Neural networks

1.1.2 Neural network dynamics

When considering a neural network dynamics, a neuron j changes its activation value

according to activation values of all neurons connecting to it and their respective synap-

tic weights. A discrete-time formula may look something like this:

xj(t+ 1) =
∑
i∈I

wji · xi(t) (1)

where I is the index set of all neurons which are connected to neuron j. In addition,

the sum is typically passed through activation function f , forming:

xj(t+ 1) = f

(∑
i∈I

wji · xi(t)

)
(2)

A well chosen activation function f can make all the di�erence in pursuit of con-

structing a neural network capable of solving a given task. Activation functions can

be used to introduce non-linearity to the model, to bound the neural activations (an

unbounded membrane potential is not realistic in biological systems) or the introduce

non-symmetry (bias input).

Examples of commonly used activation functions is shown in Table 1.

1.1.3 Types of neural networks

Neural networks can be categorized in many ways; by their size, topology, dynamics

(discrete/continuous time), activation function, neuron types. A common distinction

is made between feedforward and recurrent neural networks.

In feedforward neural network (FFNN) the synapse graph does not contain cycles,

or loops. The network is organized into neuron layers with �rst layer being the input

layer, containing input neurons. The last layer is the output layer and all other are

called hidden layers. The only connections which exist are connections from neurons

in i-th layer to neurons in (i+ 1)-th layer. No interconnections between neurons in the

same layer exist, and no neuron connects to neurons from previous layers.

On the other hand, a recurrent neural network (RNN) allows graph cycles and

loops. Neurons can be organized into layers, but no strict interconnection conditions

11

1 THEORETICAL INTRODUCTION 1.2 Echo state networks

identity
function

f(x) = x

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

sigmoid
function f(x) =

1

1 + e−x

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

hyperbolic
tangent

f(x) = tanh(x)

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

threshold
function

fa(x) =

{
0 x < a

1 x ≥ a

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

Table 1: List of commonly used activation functions.

are enforced. An example of a recurrent network is the simple recurrent network

(Elman, 1990). Another example of recurrent network - which will be in the centre of

our interest - is the echo state network.

1.2 Echo state networks

Echo state network (ESN) is a speci�c type of recurrent neural network introduced by

Jaeger (2001a). It consists of three layers of neurons: input, hidden (recurrent layer,

a.k.a reservoir), and output layer.

Input neurons connect to reservoir neurons and they have connections to output neu-

rons. What makes this architecture a recurrent network are interconnections between

neurons in reservoir.

The networks we consider are discrete-time, so we have time step t ∈ Z. Activations

12

1 THEORETICAL INTRODUCTION 1.2 Echo state networks

K inputs
N reservoir units

L outputs

Figure 1: Illustration of ESN architecture

ofK input neurons at time t are denoted u(t) = (u1(t), . . . , uK(t)). Similarly we denote

activations of N reservoir neurons and L output neurons as x(t) = (x1(t), . . . , xN(t))

and o(t) = (o1(t), . . . , oL(t)), respectively.

Activation of reservoir and output neurons are updated according to formulas:

x(t+ 1) = f(W in · u(t+ 1) +W · x(t)) (3)

o(t+ 1) = f out(W out · x(t+ 1)) (4)

where f : RN → RN and f out : RL → RL are suitable activations functions, typically

f = tanh and f out = id (tanh is taken element-wise). W in, W and W out are input,

recurrent and output matrices, respectively, which represent strength of particular

synapses between neurons.

Now we can get to de�ning property of an echo state network, borrowing the de�-

nition from (Jaeger, 2001a):

De�nition 1. Assume that all inputs come from a compact set U . A network is said to

have echo states if the current state x(t) is uniquely determined by left-in�nite input

history u−∞ = (. . . , u(t− 1), u(t)).

This can be reformulated as follows: there exists an echo function E = (e1, . . . , eN),

ei : UN → R such that for all left-in�nite input histories the following equation holds:

x(t) = E(. . . ,u(t− 1), u(t))

Necessary and su�cient condition for network echo-stateness are analyzed in (Jaeger,

2001a). It turns out that the existence of echo states has relation to the largest singular

13

1 THEORETICAL INTRODUCTION 1.2 Echo state networks

Figure 2: Illustration of ESN dynamics, taken from Jaeger (2007). Reservoir neurons create

various echoes as a response to an input stimulus.

value smax and the spectral radius ρ (= |λmax|, the largest eigenvalue in absolute value)

of the reservoir matrix W . We will assume the tanh activation function and restate

the propositions here:

Theorem 1 (su�cient condition). If smax < 1, then the network has echo states.

Theorem 2 (necessary condition). If ρ > 1, the input set contains the sequence 0 and

the admissible state set is [−1, 1]N , then the network has no echo states.

Spectral radius ρ and the largest singular value smax of an arbitrary matrix W

automatically satis�es 0 ≤ ρ ≤ smax , so regarding the existence of echo states we can

di�erentiate between 3 cases, which are depicted in the following table:

0 < ρ < smax < 1 Echo states exist
0 1smax

0 ≤ ρ ≤ 1 ≤ smax Echo states may exist
0 1 smax

0 < 1 < ρ < smax No echo states
0 1 smax

Table 2: How values of ρ and smax determine the existence of echo states.

As noted in Jaeger (2001a, p. 8) a convenient strategy to obtain a reservoir matrix

14

1 THEORETICAL INTRODUCTION 1.3 Echo state network learning

with echo states is to generate some matrix W and then use a global scaling using

α ∈ R+

Ŵ := αW

such that the spectral radius and the largest singular value lands into desired regions

on real axis. Observe that ρ and smax scale linearly with α,

ρ̂ = αρ ŝmax = αsmax .

This gives us an interesting scaling interval

(αmin, αmax) :=

(
1

smax

,
1

ρ

)

under which the echo states certainly exist, and above which there are no echo states

(if the zero input sequence is an admissible input). Jaeger (2001a, p. 9) further notes

that one obtains echo states in most cases even if α ∈ (αmin, αmax).

1.3 Echo state network learning

Eventually, we would like the ESN to be able to solve problems, by which we mean the

following: after receiving a given sequence of inputs, the ESN should produce certain

desired outputs, given by some goal function G(. . . ,u(t− 1),u(t),x(t)).

This ability of ESN to model given goal function lies entirely in suitable choice of

neuron connections' matrices W in,W and W out (and architectural choices as reservoir

size and activation functions f, f out). The approach, presented in (Jaeger, 2001a) is to

generate the input and the recurrent matrix (more-or-less) randomly, and let

the output matrix be determined by supervised learning on the training data (which

can be thought of as a set of input�target pairs).

So, to �nd an optimal matrix W out which approximates best the target function, we

reduce our problem to:

f out
(
W out · x(n)

)
= d(n) t ∈ Z (5)

15

1 THEORETICAL INTRODUCTION 1.4 Measures of ESN performance

which is equivalent to

W out · x(t) = (f out)−1 (d(t)) t ∈ Z (6)

where d(t) is the target output at time t.

Since there is (possibly) in�nite number of linear equations with only �nitely many

variables (W isN×N), we can solve this problem only approximately, reformulating the

problem as a least squares problem and resorting to methods such as linear regression.

Method used by Boedecker et al. (2012) is to store the reservoir states into a long

matrix as columns, to 'solve' an approximate equation:

W out · (x(0), x(1), . . . x(1000)) = (d(0), d(1), . . . d(1000))

and then taking the Moore-Penrose pseudoinverse to get the `optimal' matrix W out.

This is also the approach taken during all experiments presented here which required

ESN training.

1.4 Measures of ESN performance

The ESN initialization (choice of input and recurrent matrices) a�ects how well the

ESN models the goal function. How to quantify this? We could give the ESN the

training data input u(t), calculate the output o(t) and then compare it with desired

output - by getting the mean square of their di�erence. So this error tells us how well

this ESN instance performs in a speci�c task. But, are there any general measures of

ESN performance?

There are quite a few. The measure we will be most concerned about is short

term memory capacity, abbreviated MC. This notion introduced in Jaeger (2001b)

measures the ability of the reservoir to store and recall previous inputs fed into the

network. In this thesis, we will deviate a bit from Jeager's original de�nition, not

allowing direct input-to-output neuron connections, and therefore we will restate the

de�nition of memory capacity:

16

1 THEORETICAL INTRODUCTION 1.4 Measures of ESN performance

De�nition 2. Consider an ESN with K = 1 input nodes, N reservoir nodes and L

output nodes. Memory capacity of this network is a real number de�ned as:

MC :=
∞∑
k=1

MCk :=
∞∑
k=1

max
Wout

k

[
ρ2 (u(t− k), ok(t))

]
(7)

ρ2 (u(t− k), ok(t)) is the squared correlation coe�cient between activation of the input

neuron and k-th (k = 1, . . . , N) output neuron

ok(t) = W out

k · x(t) (8)

Note: The underlying probability space used in ρ calculation is composed of all left-

in�nite sequences of inputs. Thanks to the echo state property, x(t) is uniquely deter-

mined by the left-in�nite input sequence.

Another measure of reservoir performance is Lyapunov exponent. Lyapunov ex-

ponent is a term from dynamical systems theory and it can be used to describe critical-

ity of an ESN, when looked upon as a dynamical system. For our purposes, Lyapunov

exponent will be a real number λ assigned to an ESN. λ > 0 roughly means a chaotic

system, while λ < 0 refers to a subcritical system. A point λ ≈ 0 is called the critical

point, or the edge of chaos.

As Boedecker et al. (2012) shows, the criticality of an ESN heavily correlates with

memory capacity and overall network performance. The optimal performance is often

achieved for system just below the edge of chaos.

The idea behind Lyapunov exponent is to measure sensitivity to perturbations in

initial conditions (Zeng et al., 1991). The de�nition of Lyapunov exponent used in

Boedecker et al. (2012) is:

De�nition 3 (Lyapunov exponent).

λ = lim
k→∞

1

k
ln

(
γk
γ0

)

where γ0 is the initial distance between dynamical system state of perturbed and unper-

turbed instance. γk is the distance after k steps.

Since the Lyapunov exponent is de�ned as a limit, is can only be estimated in most

17

1 THEORETICAL INTRODUCTION 1.4 Measures of ESN performance

cases. The measuring procedure is modi�ed, to avoid numerical over�ows.

1. Two identical neural network copies (with reservoir states x1 and x2) are taken.

2. A small perturbation to the neuron j activation value is introduced to the second

network, such that ‖x1(t)− x2(t)‖ = γ0, where t = 0.

3. The simulation is advanced one step further, calculating x1(t+ 1) and x2(t+ 1).

4. The new distance between states γt := ‖x1(t + 1) − x2(t + 1)‖ is recorded and

the second state is renormalized to the distance γ0.

x2(t+ 1)← x1(t+ 1) + (γ0/γt)(x
2(t+ 1)− x1(t+ 1))

5. Steps 3�4 are performed repeatedly.

Figure 3: Estimation of the Lyapunov exponent, taken from Boedecker et al. (2012). After

each network update, the distance between network state trajectories is reset to γ0.

The Lyapunov exponent λj corresponding to the neuron j is then ln(γk/γ0) averaged

over all measured k. The resulting Lyapunov exponent λ is then taken as an average

λj for echo neuron j in the reservoir.

In this work, we have not focused on measuring the Lyapunov exponent and analysing

its relation to memory capacity because this was already done in Boedecker et al.

(2012). The transition from ordered to chaotic dynamics (the edge of chaos) is often

visible when tuning the reservoir parameters in the form of local maximum of memory

capacity.

Another inspection of network parameters which a�ect the memory capacity, but

with regard to Lyapunov exponent was done in Baran£ok and Farka² (2014). Both

18

1 THEORETICAL INTRODUCTION 1.5 Motivation for this work

structured and unstructured input data were tested. The investigated network param-

eters were the reservoir sparsity and input data shift (in case of unstructured, random

input).

Boedecker et al. (2012, chapter 5), de�nes more advanced measures of reservoir per-

formance such as information storage and information transfer, but these are beyond

the focus of this thesis.

1.5 Motivation for this work

The e�ects of various ESN parameters on memory capacity have not yet been system-

atically investigated. In this thesis, we search the parameter space for values which

achieve the greatest memory capacity. Furthermore, we suggest procedures, such as

matrix orthogonalization that contribute to an increase of memory capacity. Various

alterations of original reservoir initialization procedure are investigated as well.

19

2 PREVIOUS RESULTS

2 Previous results

This chapter will cover some theoretical facts about echo state networks and memory

capacity. The results concerning memory capacity were taken mostly from section 3 of

Jaeger (2001b).

2.1 Echo states equivalent conditions

It turns out that the property of having echo states can be equivalently de�ned using

the notions uniformly state contracting, state forgetting and input forgetting network.

These provide a better understanding of the echo state property. Their de�nitions can

be found in Jaeger (2001a).

Theorem 3. Assume that the input comes from a compact set U and that the network

update function T : (u(t), x(t)) 7→ x(t+1) is continuous. Then the following conditions

are equivalent.

1. The network has echo states.

2. The network is uniformly state contracting.

3. The network is state forgetting.

4. The network is input forgetting.

2.2 Memory capacity bound

A note about MC de�nition: the propositions of this section were proven, assuming a

network architecture allowing neural connections directly between input- and output-

layer neurons. This means that the output matrix W out is (K + N)× L and that the

output layer is updated according to:

o(t) = W out ·
(
u(t)

x(t)

)
(9)

In section 3 of this thesis, that contains experiments which measure memory capacity,

we use an MC de�nition according to Boedecker et al. (2012). This de�nition does

20

2 PREVIOUS RESULTS 2.3 Reservoir initialization guidelines

not allow input�output neural connections and was chosen such that we can compare

results.

The di�erence in de�nition, does not render the following proposition completely

invalid, since one de�nition can be seen as a special case of the other. A (N + 1)

unit reservoir with the last neuron serving as a mere delay of the input can mimic

the behaviour of a reservoir which allows direct input�output connections. This means

that if using Boedecker's de�nition, we expect to achieve maximal MC only N − 1 (or

N −MCk=0 ≈ N − 1 to be precise).

The memory capacity de�nition (7) involves an in�nite sum. At �rst glance, it is

not clear whether the memory capacity is a �nite number. It turns out, that under

reasonable circumstances, the memory capacity is not only �nite, but also bounded by

N , where N is the reservoir size. We will restate the proposition here:

Theorem 4. The memory capacity for recalling an i.i.d. (independent, identically

distributed) input by an N-unit ESN with identity activation function is bounded by N .

The condition f(x) = x allowed the theorem to be proven by means of linear algebra.

Another useful proposition is one that states the conditions under which is the full

memory capacity achieved. Note that the sizes of matrices W and W in are N ×N and

1×N respectively.

Theorem 5. The memory capacity of an ESN with identity activations functions is

exactly N , i� the matrix MN = (W 1W in . . .WNW in) has full rank.

Two notes to this theorem:

1. In generic case, the full-rank condition is satis�ed. By generic case, we mean that

the space of matrices which do not satisfy the condition has measure 0.

2. In computer-simulated neural networks, the full memory capacity is rarely achieved,

especially for large reservoirs. This is due to numerical errors.

2.3 Reservoir initialization guidelines

The papers Luko²evi£ius and Jaeger (2009) and Luko²evi£ius (2012) provide a nice and

clear overview of practical tips on reservoir initialization. In the following paragraphs

21

2 PREVIOUS RESULTS 2.3 Reservoir initialization guidelines

we will emphasize their most important suggestions.

In Luko²evi£ius and Jaeger (2009), the authors have suggested to generate big,

sparsely and randomly connected reservoir. Many reservoir neurons ensure that

there are many input signal transformations, which can be linearly combined into a

larger family of functions. The reservoir sparsity makes the activation signals only

loosely coupled, and random connections ensure that the neural activations are di�er-

ent.

As for the input matrix, it is advised to be dense and scaling should be adjusted

according to amount of non-linearity we expect from the function, which the neural

network is trying to perform. Larger input weights cause the tanh activation function

to operate in its non-linear range. A bias input added to neurons has a similar e�ect.

The scaling of the reservoir (recurrent) matrix can be done, by setting its spectral

radius ρ = ρ(W). It should be less than 1, so that the reservoir has the echo state

property. The closeness to 1 can a�ect the memory the network has and the non-

linearity it can perform. Values of ρ close to 1 have longer memory and drive the

activations into non-linear regions of tanh activation function.

Further, di�erent reservoir topologies were suggested, as well as reservoir decom-

posed into modules (Luko²evi£ius and Jaeger, 2009). A modi�cation of the neuron

activation update formula can be made introducing a sort of a momentum term �

these are called leaky integrator neurons.

A disadvantage of the standard reservoir architecture is that it has only one hidden

layer. So in the tasks where little memory is needed, but the target output yd(t)

is a complex transform of the input u(t), the ESN can fail, where a feed-forward

multilayer NN would succeed. To �x this, one has to delay the target output yd(t) by k

steps, so that the signal passes multiple iterations before reaching the output. Another

possibility is to update the reservoir (or its part) k times each iteration.

Reservoir pre-training tips which are taking the concrete task data into account are

presented in Luko²evi£ius and Jaeger (2009).

22

3 EXPERIMENTS

3 Experiments

As indicated earlier, selecting the concrete neural network model requires both ini-

tialization of input/reservoir matrix and adaptation of output weights. We mentioned

that the input and reservoir matrix are chosen 'more-or-less random'. But how ran-

dom? In the following experiments, we try to �nd such initialization procedure and

such parameters that maximize the network performance in terms of memory capacity.

As can be seen from memory capacity de�nition, the memory capacity is uniquely de-

termined by known input matrix, recurrent matrix (inherently containing reservoir size

and network topology), input signal distribution and the choice of activation function

f (for us it will be always f = tanh). In our experiments we consider an unstructured

input: a sequence of independent, uniformly distributed real numbers from the interval

[−1, 1].

That leaves us with problem of generating input and reservoir matrices. Following

Boedecker et al. (2012), we choose elements of the input matrix from U(−τ, τ) uniform

distribution and elements of the recurrent matrix from N(0, σ2) normal distribution.

Parameters τ and σ are real and positive. So one task is to �nd an optimal σ and

τ . Apart from that, several other reservoir modi�cations are tested, such as: scaling

the reservoir to certain spectral radius (ρ) / largest singular value (smax); making the

matrix sparse/orthogonal; changing the number of neurons in reservoir (reservoir size).

A diagram of the presented reservoir initialization possibilities being the result of the

problem analysis is shown in Figure 4.

reservoir

size

matrix

sparsity

smax

or

or

or

orthogonalization

MCW

W
in

}

Figure 4: ESN initialization scheme.

23

3 EXPERIMENTS 3.1 Experimental setup

3.1 Experimental setup

In a generic experiment we used an ESN composed of 1 input unit and 100 reservoir

units. The number of output neurons was chosen 150, or 1.5 times the reservoir size,

when the reservoir size was subject of testing and was di�erent from 100. The parameter

τ was chosen 0.01, apart from experiments where the e�ect of τ was investigated. The

reservoir activation function used was f = tanh and output activation function f out

was an identity function: f out(x) ≡ x.

In all �gures, the y-axis represents the measured memory capacity. For each σ/ρ/smax

parameter value (on x-axis), multiple (≥ 1000) network instances were generated and

their memory capacity was computed. Since a single σ/ρ/smax parameter can yield

di�erent reservoir matrices, the memory capacity belonging to certain σ/ρ/smax pa-

rameter value can be regarded as a random variable. The plot lines in the following

graphs represent the average memory capacity for that particular parameter values;

the vertical bars surrounding the plot lines represent the interval (memory capacity

mean ± standard deviation).

3.2 Recurrent matrix scaling

In this experiment, we had �xed τ = 0.01 and reservoir size and generated reservoir

matrices for di�erent values of σ to see which value of σ produced a reservoir with

highest memory capacity:

0.04 0.06 0.08 0.10 0.12 0.14 0.16
σ

10

0

10

20

30

40

50

m
em

o
ry

 c
ap

ac
it
y

Figure 5: Memory capacity of the 100-neuron reservoir for di�erent values of σ.

24

3 EXPERIMENTS 3.2 Recurrent matrix scaling

The memory capacity is maximized at the value σ ≈ 0.09. As we will see later, this

value has something to do with the circular law (which will be explained later, too).

Directly setting σ is not the only way of generating the reservoir. We can also

generate the recurrent matrix elements from N(0, 1) distribution and then scale the

matrix so that it has a speci�ed spectral radius (or the largest singular value).

The generating algorithm would then be:

1. Generate a recurrent matrix W with elements selected from N(0, 1) distribution

2. Compute its spectral radius ρ(W)

3. Scale the matrix: W ← W · ρnew
ρ(W)

4. Now the matrix W has the desired spectral radius.

The same goes for the largest singular value smax (which is equal to matrix operator

norm).

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
ρ

10

15

20

25

30

35

40

45

50

m
em

o
ry

 c
ap

ac
it
y

Figure 6: Memory capacity of the 100-neuron reservoir changing with spectral radius of the

recurrent matrix.

25

3 EXPERIMENTS 3.2 Recurrent matrix scaling

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
smax

10

0

10

20

30

40

50

m
em

o
ry

 c
ap

ac
it
y

Figure 7: Memory capacity of the 100-neuron reservoir changing with the largest singular

value of the recurrent matrix.

Figure 6 and Figure 7 show how the memory capacity changes for matrices scaled

to have speci�ed spectral radius (largest singular value, respectively).

All these three �gures indicate that the memory capacity is maximized at certain

optimal value, while declining when we distance ourselves from that optimal point.

The point of optimum is also recognizable by sudden increase of memory capacity

variance. The large variance (and therefore the standard deviation as well) marks the

transition from stable to chaotic reservoir dynamics. The change of memory capacity

distribution at this optimal point is discussed in Appendix A.1.

3.2.1 Chaotic behaviour and eigenvalues

As we can see from Figure 6, the memory capacity is maximized slightly under the value

ρ = 1. The largest absolute eigenvalue 1 is an important boundary value, because when

taking vectors x(t) and u(t) very small, the reservoir update formula

x(t+ 1) = tanh(W in · u(t+ 1) +W · x(t)) , (10)

changes to

x(t+ 1) ≈ W in · u(t+ 1) +W · x(t) (11)

26

3 EXPERIMENTS 3.2 Recurrent matrix scaling

because the tanh function operates in its 'linear' domain (close to zero). Several itera-

tions operate like this:

x(t+ k) ≈ W k · x(t) +W k−1 ·W inu(t+ 1) +W k−2 ·W inu(t+ 2) + . . .

+ W 1 ·W inu(t+ k − 1) +W inu(t+ k) (12)

The important part is W kx. If we take the Jordan normal form of the matrix

W = UΛU−1 then having eigenvalues (in absolute value) greater than 1 causes the

expression W kx = UΛkU−1x to diverge. So small perturbations of the network state

x around x0 = 0 are ampli�ed. Although the bounded nonlinear activation function

tanh prevents the reservoir activations from leaving the compact interval [−1, 1] this

situation still leads to chaotic behaviour of the dynamic system which has detrimental

e�ect on memory capacity, as Boedecker et al. (2012) observed.

Moreover, having the spectral radius less or equal to 1 was a necessary condition

for a reservoir to have echo states, as proven by Jaeger (2001a). And without echo

states, the memory capacity is not well-de�ned (since it assumes, that the states are

dependent only on left-in�nite input history).

3.2.2 Optimal sigma and circular law

The reason why optimal value of reservoir scaling parameter σ is around 0.09 is tied

to the optimal spectral radius (the largest absolute eigenvalue). The connection is

namely a theorem called the circular law. It states that if we take a random N × N

matrix whose elements are taken i.i.d. (independent and identically distributed) from

distribution with mean 0 and variance 1/N , the limiting distribution of its eigenvalues

is the unit disc. This means that the limiting spectral radius is 1.

Since a multiple a ·W of matrix W with eigenvalues λi has eigenvalues a · λi, this

with circular law yields, that the variance corresponding to the limit spectral radius 1 is

σ2 = 1/N . A N = 100-unit reservoir gives us corresponding parameter value σ = 0.1.

Our measured optimum σ = 0.09 provides a spectral radius slightly less than 1. Note

that the circular law gives us a hint how the optimal σ parameter changes with the

reservoir size.

27

3 EXPERIMENTS 3.3 Reservoir size

The loss of echo states would account for the decrease of memory capacity for σ >

σopt, but why does the memory capacity fall for σ < σopt? That is, why is there a

global maximum in Figure 5? The answer could be � numerical errors.

If we decrease the σ reservoir scaling parameter, we therefore decrease also the

smallest singular value of the matrix. A singular value (for example 10−3) represents a

direction in state vector space which shrinks by 10−3 after one reservoir update. After

a few iterations, the information in direction representing the k-past input can get very

quickly under the �oating point precision provided by the computer. For the standard

data type float64 the machine epsilon (which is the maximum relative rounding error

when rounding a number to the nearest representable one) is 2−53 ≈ 1.1 · 10−16. So, if

the average activation in the reservoir had the order of 0.1 and the smallest singular

value would be 10−3, in the worst case scenario, an information could be lost after 5

iterations. For illustration, the matrices W,W in could be:

W in =



0.2

−0.15

...

−0.09


W =



0.9 0 0 . . . 0

0 0.89 0 . . . 0

0 0 0.92 . . .
...

...
...

... . . . 0

0 0 . . . 0 10−3


This observation leads us to two conclusions:

1. Tuning N and τ parameters can a�ect the memory capacity, which is shown in

the input matrix scaling paragraph below.

2. Finding the reason for a small memory capacity in too small singular values /

eigenvalues, gives us a whole range of reservoir optimization techniques which

try to manipulate singular values and eigenvalues. We will return to this in later

paragraphs.

3.3 Reservoir size

Next we investigated the e�ect of number of reservoir neurons on memory capacity.

Since the optimal reservoir scaling may vary with reservoir size, we plotted the memory

28

3 EXPERIMENTS 3.3 Reservoir size

capacity against the matrix-generating value (σ, ρ or smax) and represented di�erent

reservoir sizes as separate lines.

0.04 0.06 0.08 0.10 0.12 0.14 0.16
σ

10

0

10

20

30

40

50

60

70

m
em

o
ry

 c
ap

ac
it
y

16
36
49
64
100
225

Figure 8: Memory capacity changing with σ for di�erent reservoir sizes.

As Figure 8 shows, reservoirs of every size attain MC maximum at certain σ value

and drift to zero MC for σ → 0 or∞. The position of the optimal σ value should move

according to the circular law, discussed in the previous section.

Notice that the maximal MC value does not grow linearly with reservoir size. Larger

reservoirs have worse ratio MCmax/reservoir size.

N 16 36 49 64 100 225
maximal MC 14 25 29 33 42 64

MCmax

reservoir size
86% 69% 59% 52% 42% 28%

Table 3: Memory capacity e�ectiveness for increasing reservoir size.

The reason behind the diminishing e�ectiveness lies again in numerical rounding

errors. Large matrices may have a higher number of small singular values and therefore

more directions in which the information strength shrinks considerably. Moreover,

information about each past input signal is more distributed and very precise readout

matrices may be needed to recover it.

Now, let us take a look at dependency on spectral radius based reservoir scaling:

29

3 EXPERIMENTS 3.3 Reservoir size

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
ρ

0

10

20

30

40

50

60

70

m
em

o
ry

 c
ap

ac
it
y

16
36
49
64
100
225

Figure 9: Memory capacity changing with spectral radius of the recurrent matrix for di�erent

reservoir sizes.

The optimal spectral radius for reservoir matrix moves less than optimal σ param-

eter, when reservoir size changes. Values close under 1 seem to be acceptable for large

reservoirs.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
smax

10

0

10

20

30

40

50

60

70

m
em

o
ry

 c
ap

ac
it
y

16
36
49
64
100
225

Figure 10: Memory capacity changing with largest singular value of the recurrent matrix

for di�erent reservoir sizes.

The dependence on the largest singular value depicted in Figure 10 look very sim-

ilar to Figure 9, but with x-axis doubled. There is no apparent advantage of using

the largest singular value as the scaling factor compared to using the spectral radius.

The relationship between smax and ρ in random matrices is discussed in the following

paragraph.

30

3 EXPERIMENTS 3.4 Matrix sparsity

3.3.1 Relationship between largest singular value and spectral radius

If we scale the reservoir according to largest singular value, how do we pick an optimal

value? As the reservoir size increases, this optimum approaches the value 2. Let us

plot the largest singular values and spectral radii of random matrices:

0.4 0.6 0.8 1.0 1.2 1.4 1.6
ρ

0.5

1.0

1.5

2.0

2.5

3.0

s m
a
x

1

16

64

100

225

Figure 11: Largest singular value plotted against spectral radius for di�erent matrix sizes.

Each data point represents 100 matrix instances.

For 1 × 1 matrix, the only eigenvalue, the only singular value and the only matrix

element coincide (in absolute value), and so the relationship between smax and ρ is

simple: smax = ρ.

For larger matrices the largest singular value and spectral radius cannot be deter-

mined from each other, but still, in average they tend to depend linearly on each other,

forming a line smax = k · ρ, 1 ≤ k ≤ 2. The limit line seems to be smax = 2 · ρ which

is approached by large reservoirs (this was tested on 4000× 4000 matrix).

3.4 Matrix sparsity

Interconnections between biological neurons are located in a three-dimensional eu-

clidean space and do not generally form a complete graph. Therefore, it is biologically

plausible that the matrix W representing their strength could be sparse. We investi-

gate the e�ect the matrix sparsity has on memory capacity. Sparsity 0.8 means that

80% of the weights are set zero.

A 100-neuron reservoir with 0.8 sparsity would be generated as follows:

1. Generate the matrix using N(0, σ2) distribution.

31

3 EXPERIMENTS 3.4 Matrix sparsity

2. Choose 80
100
· 1002 = 8000 weights which will be set zero.

3. Optionally, scale the matrix to have the desired spectral radius (or largest singular

value).

Again, the optimal scaling may vary for di�erent matrix sparsities, so the matrix

scaling parameters were included in the plot.

0.0 0.1 0.2 0.3 0.4 0.5
σ

10

0

10

20

30

40

50

m
em

o
ry

 c
ap

ac
it
y

0
0.5
0.9
0.93
0.96
0.99

Figure 12: Memory capacity changing with σ for di�erent matrix sparsities.

Memory capacity maxima are attained at di�erent σ values. In particular, leaving

more synapses zero means that we have to compensate for it with stronger synapse

strengths to distribute the same amount of signal.

A pleasing observation is that the memory capacity falls very slowly with increasing

sparsity, making sparse reservoir a viable option. Having a matrix more sparse does

not increase the memory capacity, but it is generally advised (Luko²evi£ius and Jaeger,

2009) when processing structured data.

Moreover, matrix sparsity allows using sparse matrix representations and therefore

e�cient matrix multiplication algorithms. If we keep the neuron out-degree (number

of neurons each neuron is connected to) �xed, the cost of reservoir update increases

only linearly with the reservoir size, instead of quadratically.

32

3 EXPERIMENTS 3.5 Orthogonalization procedure

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
ρ

5

10

15

20

25

30

35

40

45

50

m
em

o
ry

 c
ap

ac
it
y

0
0.5
0.9
0.93
0.96
0.99

Figure 13: Memory capacity changing with spectral radius of the recurrent matrix for

di�erent matrix sparsities.

According to Figure 13, matrix sparsity does not a�ect the optimal spectral radius,

which means we do not have to worry about this parameter.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
smax

10

0

10

20

30

40

50

m
em

o
ry

 c
ap

ac
it
y

0
0.5
0.9
0.93
0.96
0.99

Figure 14: Memory capacity changing with largest singular value of the recurrent matrix

for di�erent matrix sparsities.

Surprisingly, the optimal smax does not stay constant when changing matrix sparsity,

and even gets beyond the 'boundary' value 2. The Figure 14 shows that singular values

and eigenvalues behave di�erently when it comes to sparse matrices.

3.5 Orthogonalization procedure

Permutation matrices (which are a special case of orthogonal matrices) were tested

by Boedecker et al. (2012) (and suggested by Hajnal and Lörincz (2006)) as a way of

33

3 EXPERIMENTS 3.5 Orthogonalization procedure

reservoir matrix initialization which outperforms other initialization methods in both

memory capacity and in some structured data prediction (NARMA 30-th order system).

The matrix chosen in Boedecker et al. (2012) in fact is only `almost' orthogonal �

it is a permutation matrix scaled by factor of, for example 0.95 � to guarantee echo

states in the ESN.

The observation that `orthogonal' matrices perform so well in memory capacity task

led us to the following, the orthogonalization process. The idea is to have a homotopic

bridge between a randomly generated matrix to a matrix with columns forming an

orthogonal basis (but not necessarily orthonormal basis). These 'quasi'-orthogonal

matrices tend to have very high memory capacities.

The process itself is a gradient descent method in the space of N×N matrices based

on energy function

E(V) := ‖[M(V)]TM(V)‖2 ,

whereM(V) denotes matrix V whose columns have been normed and ‖ ·‖ is Frobenius

norm. Di�erentiating this energy function leads to an update formula

∆v(i) = −η 4

‖v(i)‖
[
I −m(i)m(i)T

] (
MMT − I

)
m(i) (13)

∆V =
(
∆v(1),∆v(2), . . . ,∆v(n)

)
(14)

V ← V + ∆V (15)

with the learning speed η. Note that v(i) is the i-th column of matrix V .

34

3 EXPERIMENTS 3.6 Input matrix scaling

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
orthogonality

20

30

40

50

60

70

80

90

100

m
em

o
ry

 c
ap

ac
it
y

change of MC during orthogonalization process

Figure 15: Memory capacity of 30 reservoir instances changing during orthogonalization

process.

Figure 15 shows that using the orthogonalization process vastly improves the mem-

ory capacity of a randomly (normally-distributed) generated matrix.

The orthogonality axis depicted in Figure 15 is de�ned similarly to aforementioned

energy function; It is computed as an average 1− cos(angle), where angle is an angle

between two matrix columns (when considered as vectors).

3.6 Input matrix scaling

It turns out that parameter τ has a profound e�ect on memory capacity: The memory

capacity increases with decreasing τ . This is true for τ ≥ 10−7. Then the MC

growth stops.

0.04 0.06 0.08 0.10 0.12 0.14 0.16
σ

20

0

20

40

60

80

100

m
em

o
ry

 c
ap

ac
it
y

0.1
0.01
0.0001
1e-06
1e-07
1e-08

Figure 16: Memory capacity as a function of σ for di�erent input matrix scaling.

35

3 EXPERIMENTS 3.6 Input matrix scaling

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
ρ

0

20

40

60

80

m
em

o
ry

 c
ap

ac
it
y

0.1
0.01
0.0001
1e-06
1e-07
1e-08

Figure 17: Memory capacity as a function of the spectral radius of the recurrent matrix for

di�erent input matrix scaling.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
smax

20

0

20

40

60

80

100

m
em

o
ry

 c
ap

ac
it
y

0.1
0.01
0.0001
1e-06
1e-07
1e-08

Figure 18: Memory capacity as a function of the largest singular value of the recurrent

matrix for di�erent input matrix scaling.

This surprising e�ect may be caused by the fact, that when τ is small, reservoir

activations are low as well and the activation function (tanh) operates in its linear range.

The diminishing e�ect might be caused by limited precision of computer �oating-point

operations as suggested by Jaeger (2001b).

36

3 EXPERIMENTS 3.7 Summary

3.7 Summary

The summary of previous sections is provided in short points:

1. Reservoir size increases the MC, but the increase is worse than linear.

2. Matrix sparsity decreases the MC slightly.

3. For all three approaches of generating the recurrent matrix (σ, ρ, smax) there exists

an optimal value, for which the MC is maximal. The optimal σ value moves, while

the optimal spectral radius (optimal largest singular value) approaches the value

ρ = 1 (the value smax = 2 respectively). This makes ρ and smax better alternatives

for matrix scaling in matrix initialization.

4. The process of orthogonalization increases the MC greatly.

5. The MC increases with decreasing input matrix parameter τ . This is due to

neuron activations operating in `linear' range of tanh activation function.

37

4 CONCLUSION

4 Conclusion

This thesis provides an experimental overview of impact of various reservoir initializa-

tion parameters on memory capacity. We need to keep in mind that the high memory

capacity is not the only thing we want from an ESN and that the parameters which

yield optimal memory capacity can perform poorly on real-world, structured data.

Interesting is the revelation, how strong is the loss of memory capacity a�ected by

rounding errors and the numerical precision of the �oating-point representation of real

numbers in computers. This opens the door of possibilities for using reservoir matrices

close to orthogonal, for those who seek very large memory capacity. Here, the idea was

developed only brie�y (in form of the orthogonalization procedure) and provides space

for further research.

38

REFERENCES REFERENCES

References

Baran£ok, P. and Farka², I. (2014). Memory capacity of input-driven echo state net-

works at the edge of chaos. In Proceedings of the International Conference on Arti-

�cial Neural Networks (ICANN). Hamburg, Germany.

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2012). Information

processing in echo state networks at the edge of chaos. Theory in Biosciences,

131(3):205�213.

Doya, K. (1992). Bifurcations in the learning of recurrent neural networks. In Circuits

and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE International Symposium

on, volume 6, pages 2777�2780 vol.6.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179�211.

Hajnal, M. A. and Lörincz, A. (2006). Critical echo state networks. In Kollias, S. D.,

Stafylopatis, A., Duch, W., and Oja, E., editors, ICANN (1), volume 4131 of Lecture

Notes in Computer Science, pages 658�667. Springer.

Jaeger, H. (2001a). The ``echo state'' approach to analysing and training recur-

rent neural networks - with an erratum note. There is an Erratum note for

this techreport at http://www.faculty.jacobs-university.de/hjaeger/pubs/

EchoStatesTechRepErratum.pdf .

Jaeger, H. (2001b). Short term memory in echo state networks.

Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9):2330. revision #143667.

Luko²evi£ius, M. (2012). A practical guide to applying echo state networks, volume 7700

of Lecture Notes in Computer Science, pages 659�686. Springer Berlin Heidelberg, 2

edition.

Luko²evi£ius, M. and Jaeger, H. (2009). Survey: Reservoir computing approaches to

recurrent neural network training. Comput. Sci. Rev., 3(3):127�149.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without

stable states: A new framework for neural computation based on perturbations.

Neural Comput., 14(11):2531�2560.

Zeng, X., Eykholt, R., and Pielke, R. A. (1991). Estimating the lyapunov-exponent

spectrum from short time series of low precision. Phys. Rev. Lett., 66:3229�3232.

39

http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRepErratum.pdf
http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRepErratum.pdf

A SIDE RESULTS

Appendices

A Side results

A.1 Distribution of memory capacity at the edge of chaos

In chapter dedicated to recurrent matrix scaling parameters (σ, ρ and smax), we men-

tioned that at the optimum, the memory capacity variance suddenly increases. This

can be observed on the vertical bars in most �gures, which represent the standard devi-

ation. The standard deviation, however, does not tell us about the actual distribution

of the memory capacity.

The network setup was: a 100-neuron reservoir with tanh activation functions and

input matrix initialisation parameter τ = 0.01.

0.00

0.25

0.50

σ=0.080

0.0

0.2

0.4

σ=0.085

0.0

0.2
σ=0.090

0.00

0.08

0.16

σ=0.095

0.00

0.04

0.08

σ=0.100

0.00

0.04

0.08

σ=0.105

0 10 20 30 40 50 60
0.00

0.04

0.08

σ=0.110

Figure 19: Memory capacity histograms for di�erent parameters σ.

Figures 19 and 20 show, that the memory capacity distribution at the edge of chaos

does not simply start shifting backwards, but instead, develops another peak. So,

closely behind this turning point, both very good and very bad (in terms of memory

capacity) reservoirs are generated.

This can make a di�erence if we do not care about performance of an average

40

A SIDE RESULTS A.2 MC forgetting curves

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ=0.080

σ=0.085

σ=0.090

σ=0.095

σ=0.100

σ=0.105

σ=0.110

Figure 20: Memory capacity histograms for di�erent parameters σ plotted on single image.

reservoir, but adopt an initialization strategy similar to `pick best of 10 generated

reservoirs'.

A.2 MC forgetting curves

Recall that the memory capacity is de�ned as an in�nite sum

MC =
∞∑
k=1

MCk .

The next value in a temporal sequence, which the network is supposed to predict does

not necessarily depend on every past input. It may depend, for example, on only 10-th

and 15-th past input. An example of such sequence could be one, generated by the

equation

x(t) = x(t− 10)x(t− 15) + 0.2x(t− 10)− 0.4x(t− 15) .

In that case, individual MCk are of interest (and not the whole sum).

In two following experiments, we set τ = 0.01 and calculate the MCk values for a

100-neuron reservoir on Figure 21 and for a 20-neuron reservoir on Figure 22.

41

A SIDE RESULTS A.2 MC forgetting curves

0 20 40 60 80 100 120

k

0.0

0.2

0.4

0.6

0.8

1.0

M
C
k

σ=0.080

σ=0.085

σ=0.090

σ=0.095

σ=0.100

σ=0.105

σ=0.110

Figure 21: MCk values of a 100-neuron reservoir for di�erent values of parameter σ.

0 10 20 30 40 50 60

k

0.0

0.2

0.4

0.6

0.8

1.0

M
C
k

σ=0.200

σ=0.210

σ=0.220

σ=0.230

σ=0.240

σ=0.250

Figure 22: MCk values of a 20-neuron reservoir for di�erent values of parameter σ.

42

B USED SOFTWARE AND GRAPHICS

B Used software and graphics

All experiments were programmed in programming language python, using numerical

library numpy and graphical library matplotlib.

All images (except Figure 2, Figure 3 and university logo in the title page) were

created by me and are hereby released into public domain, according to the CC0 licence.

The source code for the python function memory_capacity used in most experi-

ments is given in the code listing below.

from numpy import random, zeros, tanh, dot, linalg, \
corrcoef , average, std, sqrt, hstack

import scipy.linalg

def memory_capacity(W, WI, memory_max=None, iterations=1200,
iterations_skipped=None, iterations_coef_measure=100,
runs=1, input_dist=(−1., 1.),
use_input=False, target_later=False):
"""Calculates memory capacity of an ESN
[given by its input weights WI and reservoir weights W].
W = q x q matrix storing hidden reservoir weights
WI = q x 1 vector storing input weights

Returns: a non−negative real number MC
MC: memory capacity sum for histories 1..MEMORY_MAX
"""
matr ix shape check s
if len(WI.shape) != 1:

raise Exception("matrix WI must be vector−shaped!")
q, = WI.shape
if W.shape != (q, q):

raise Exception("W and WI matrix sizes do not match")

if memory_max is None:
memory_max = q

if iterations_skipped is None:
iterations_skipped = max(memory_max , 100) + 1

iterations_measured = iterations − iterations_skipped
vec t o r i n i t i a l i z a t i o n
X = zeros(q)
if use_input:

S = zeros([q + 1, iterations_measured])
else:

S = zeros([q, iterations_measured])

genera t e random inpu t
u = random.uniform(input_dist[0], input_dist[1],

iterations)

run 2000 i t e r a t i o n s and f i l l t h e mat r i c e s D and S
for it in range(iterations):

X = tanh(dot(W, X) + dot(WI, u[it]))

if it >= iterations_skipped:

43

https://creativecommons.org/publicdomain/zero/1.0/

B USED SOFTWARE AND GRAPHICS

record the s t a t e o f r e s e r v o i r a c t i v a t i o n s X
in t o S
if use_input:

S[:, it − iterations_skipped] = \
hstack([X, u[it]])

else:
S[:, it − iterations_skipped] = X

prepare matr ix D o f d e s i r e d v a l u e s
(t h a t i s , s h i f t e d i npu t s)
assert memory_max < iterations_skipped
D = zeros([memory_max , iterations_measured])
if target_later:

i f we a l l ow d i r e c t input−ou tpu t connec t ions ,
t h e r e i s no po in t in measuring 0−de l a y corr . c o e f .
(i t i s a lways 1)
for h in range(memory_max):

D[h,:] = u[iterations_skipped − (h+1) \
: iterations − (h+1)]

else:
for h in range(memory_max):

D[h,:] = u[iterations_skipped − h \
: iterations − h]

c a l c u l a t e p s eudo inve r s e S+ and wi th i t , t h e matr ix WO
S_PINV = scipy.linalg.pinv(S)
WO = dot(D, S_PINV)

do a new run f o r an unb iased t e s t o f q u a l i t y o f our
newly t r a i n e d WO. We s k i p memory_max i t e r a t i o n s to
have l a r g e enough window
MC = zeros([runs, memory_max]) # memory capa c i t y
for run in range(runs):

u = random.uniform(input_dist[0], input_dist[1],
iterations_coef_measure + memory_max)

X = zeros(q)
o = zeros([memory_max , iterations_coef_measure])
for it in range(iterations_coef_measure + memory_max):

X = tanh(dot(W, X) + dot(WI, u[it]))
if it >= memory_max:

we c a l c u l a t e ou tpu t nodes us ing WO
if use_input:

o[:, it − memory_max] = \
dot(WO, hstack([X, u[it]]))

else:
o[:, it − memory_max] = dot(WO, X)

co r r e l a t e ou t pu t s w i th i npu t s (s h i f t e d)
for h in range(memory_max):

k = h + 1
if target_later:

uslice = u[memory_max − k : memory_max \
+ iterations_coef_measure − k]

cc = corrcoef(uslice, o[h, :]) [0, 1]
else:

uslice = u[memory_max − h : memory_max \
+ iterations_coef_measure − h]

cc = corrcoef(uslice, o[h, :]) [0, 1]
MC[run, h] = cc ∗ cc

return sum(average(MC, axis=0))

44

	List of Figures
	List of Tables
	1 Theoretical introduction
	1.1 Artificial Neural networks
	1.1.1 Practical ANN representation
	1.1.2 Neural network dynamics
	1.1.3 Types of neural networks

	1.2 Echo state networks
	1.3 Echo state network learning
	1.4 Measures of ESN performance
	1.5 Motivation for this work

	2 Previous results
	2.1 Echo states equivalent conditions
	2.2 Memory capacity bound
	2.3 Reservoir initialization guidelines

	3 Experiments
	3.1 Experimental setup
	3.2 Recurrent matrix scaling
	3.2.1 Chaotic behaviour and eigenvalues
	3.2.2 Optimal sigma and circular law

	3.3 Reservoir size
	3.3.1 Relationship between largest singular value and spectral radius

	3.4 Matrix sparsity
	3.5 Orthogonalization procedure
	3.6 Input matrix scaling
	3.7 Summary

	4 Conclusion
	References
	Appendices
	A Side results
	A.1 Distribution of memory capacity at the edge of chaos
	A.2 MC forgetting curves

	B Used software and graphics

