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Abstract

Recent advancements in machine learning have led to a state in which achieving more
accurate models is often no longer the primary aim. The focus is rapidly shifting to-
wards designing models that can demonstrate diverse but valuable qualities in addition
to excellent performance. One of the current challenges in deep learning is the lack
of robustness — poor accuracy on out-of-distribution data, which opens the door for
deliberate attacks on models, against which they fail to defend. Another concern is the
insufficient level of transparency and explainability of deep neural networks. During
the interaction with people, the ability to express the model’s reasoning is vital, as it
leads to greater trust and promotes the deployment of machine learning models. In
this work, we aspire to address these two concerns.

One of the key concepts we leverage throughout most of this work is attention. At-
tention mechanisms in machine learning have brought huge success in the past years.
Nevertheless, in our opinion, it is not a fully explored area, and still provides a solid ba-
sis for further development. With all this in mind, we focus on three parallel research
lines in this work. First, we analyze a group of malicious inputs called adversarial
examples. We utilize them in standard deep learning models and propose ways to in-
vestigate their distinctions from in-distribution data. Second, in the hope of mitigating
the effects of adversarial examples on image classification, we propose and examine an
attention-based model, RecViT. Third, we design multiple approaches to build upon
the state-of-the-art in the task of addressee classification in the human-robot interac-
tion scenario. By leveraging the attention modules in our model design, we are able
to craft human-readable explanations during the addressee estimation. Hopefully, this
facilitates smoother and more trustworthy human-robot interaction.

Keywords: attention, explainability, robustness, adversarial examples



Abstrakt

Najnovšie pokroky v strojovom učení nás priviedli do stavu, v ktorom zvyšovanie pres-
nosti modelov často nie je prvoradým cieľom. Úlohou môže byť aj vytvorenie modelu,
ktorý okrem excelentnej úspešnosti bude mať aj iné potrebné kvality. Jednou zo súčas-
ných výziev hlbokého učenia je nedostatočná robustnosť, t.j. nízka presnosť na dátach
mimo trénovacej distribúcie. Toto otvára dvere pre rôzne útoky, proti ktorým sa mo-
dely nedokážu brániť. Ďalším problémom je nedostatočná úroveň transparentnosti a
vysvetliteľnosti hlbokých neurónových sietí. Keďže hlboké učenie má v rôznych úlohách
ľuďom pomáhať, pri interakcii často vyžadujeme nielen správnu a rýchlu odpoveď, ale
aj jej zdôvodnenie. Zvýšená vysvetliteľnosť modelov by preto viedla k širšiemu nasade-
niu umelej inteligencie v každodennom živote, a vo všeobecnosti k väčšej dôvere voči
týmto modelom. Práve preto sa v tejto práci venujeme robustnosti a vysvetliteľnosti
v hlbokom učení.

Jeden z kľúčových konceptov, ktorý v tejto práci využívame, je pozornosť. Mecha-
nizmy pozornosti v ostatných rokoch priniesli obrovské úspechy, no podľa nášho názoru,
tento koncept stále nie je dostatočne preskúmaný a ponúka mnohé smery v ktorých by
vývoj umelej inteligencie mohol napredovať. Preto v tejto práci skúmame tri paralelné
výskumné línie. Po prvé, analyzujeme skupinu škodlivých vstupov, taktiež nazývaných
aj adverzariálne vstupy. Tieto dáta používame v štandardných modeloch hlbokého uče-
nia a navrhujeme spôsoby, ako skúmať ich rozdiely od čistých dát. Po druhé, s cieľom
zmiernenia účinkov adverzariálnych vstupov na klasifikáciu obrázkov, navrhujeme a
testujeme model založený na pozornostnom mechanizme, RecViT. Po tretie, navrhu-
jeme viacero prístupov riešenia odhadu adresáta pri interakcii robota s ľuďmi. Vďaka
dizajnu s pozornostným mechanizmom, naše modely ponúkajú spôsoby, ako z nich
extrahovať zrozumiteľné vysvetlenia ich rozhodnutí. Dúfame, že práve takáto práca
umožní plynulejšiu a dôveryhodnejšiu interakciu človeka s robotom.

Kľúčové slová: pozornosť, vysvetliteľnosť, robustnosť, adverzariálne vstupy
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Introduction

Machine Learning (ML) is a transformative field that conceptually originated from a
model of a biological neuron — the perceptron (McCulloch and Pitts, 1943; Rosenblatt,
1958). Due to the inability of Neural Networks (NNs) to scale to non-linear problems,
their popularity at first dropped. However, when the backpropagation was formulated
by Rumelhart et al. (1986), NNs again became interesting. Suddenly, it was possible to
train a multi-layer perceptron capable of approximating any non-linear function. This
opened the door for Deep Learning (DL), i.e., stacking many layers of perceptrons to
create large models trained for various tasks. Since then, deep learning has grown into
such dimensions that nowadays, we can solve tasks with unprecedented complexities
in an end-to-end manner without any explicit programming of the rules generating the
decisions.

Deep learning comes with its disadvantages. When employing ML in critical tasks,
an erroneous output could lead to serious harm (e.g., medical misdiagnosis, misinter-
pretation of a traffic sign, heavy financial loss). Due to that, the need to provide
explanations alongside the raw outputs has emerged. By design, NNs are not capa-
ble of producing them. Therefore, interest in eXplainable Artificial Intelligence (XAI)
started to rise, and now it is an intensively researched topic that focuses on bridging the
gap between the remarkable performance and the interpretability of the deep learning
models (Linardatos et al., 2021).

The lack of interpretability is not the sole flaw of deep learning. It was first shown
by Szegedy et al. (2014) that neural networks can be fooled using a class of malicious
input called Adversarial Examples (AEs). These inputs often closely resemble realistic,
in-distribution data, so the possibility of secretly feeding them into NNs is a highly
concerning issue. Numerous defense methods have since been suggested. Sadly, none
of them can provide satisfactory robustness (Carlini and Wagner, 2017).

Tightly connected to the previously mentioned topics are methods of attention.
Attention mechanisms in the current form, abundantly employed in the state-of-the-
art neural networks, originated from works in Natural Language Processing (NLP)
(Bahdanau et al., 2015). Later, the attention mechanisms were refined and presented
in one of the most influential works of the modern history of Artificial Intelligence (AI),
where the transformer was proposed (Vaswani et al., 2017). Nowadays, its adaptation
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to the image domain is a state-of-the-art tool for image processing. As attention
mechanisms are relatively recent, they provide a solid ground for exciting research, not
only to improve the interpretability but also to explore their potential to resist the
AEs.

This thesis is structured as follows. In Chapter 1, we briefly introduce Deep Neural
Networks (DNNs), their training mechanism, and commonly used architectural designs
for image processing (convolutional networks) and sequential processing (recurrent net-
works). Moving on to Chapter 2, we point out the vulnerable side of deep learning,
where we describe the most crucial development of adversarial examples and compare
some attacking and defense strategies. Chapter 3 is dedicated to the interpretability
and explainability of deep learning, a short taxonomy elaborating on a few, often used
techniques. We conclude our theoretical overview in Chapter 4, in which we introduce
the attention mechanisms in deep learning, their historical development, and the most
prominent publications in the field. In the following chapters, we describe our work,
which is divided into three parallel research lines. In Chapter 5, we examine AEs and
their distinctions from clean data in deep neural network classifiers. This is followed
by the Recurrent Vision Transformer (RecViT) proposal in Chapter 6, using which we
aim to narrow the gap between adversarial robustness and generalization. We con-
clude with Chapter 7, which is dedicated to the proposal of an explainable model for
addressee estimation, which can be leveraged in a humanoid robot for a smoother and
more trustworthy interaction.
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Chapter 1

Artificial neural networks

Neural networks, combined with the training of deep learning models, are now consid-
ered one of the key and most influential developments in the relatively new history of
machine learning. Thanks to neural networks, humanity achieved the biggest advance-
ments in the history of artificial intelligence. All of this, however, is inspired by the
theoretical knowledge about biological principles in the human brain.

1.1 Training of neural networks

Training is crucial to having a working neural network model. But what exactly is
training? What should a well-trained network do? Ideally, it should perform the task
it was designed to do, flawlessly. Let us make a demonstration on image classification.
After training using the training set, we expect the network to correctly classify even the
previously unseen images (from the same distribution). Thus, we want it to generalize
well and often to output human-like decisions. This is, however, exceptionally hard to
formulate precisely. Therefore, during learning, we must be satisfied with optimizing
the so-called error function while considering that generalization is our overall goal.
An elemental example of an error function is the squared difference between the target
and the network output, considering the one-dimensional case.

A neural network consists of numeric parameters (weights) and activation functions.
During the training, the weights are modified so that the network output corresponds
to the desired one. Only after the BackPropagation (BP) was formulated could neural
networks be effectively trained (Rumelhart et al., 1986). An optimizer, such as Stochas-
tic Gradient Descent (SGD), is used during the training. SGD performs a small step
against the direction of the gradient of the error function for a given input. These steps
are repeated many times until the network fulfills our expectations (or, in practice, until
it reaches a point where it can no longer learn useful features).

Many beneficial modifications of SGD exist, each with pros and cons. For instance,
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keeping the information about previous updates (momentum) can help the network
converge faster or overcome local extrema during training (Qian, 1999). Other pos-
sibilities are to scale the learning rate per each weight adaptively (i.e., in AdaGrad
and RMSprop) (Duchi et al., 2011; Ruder, 2017), or to remove the learning rate as
a tunable parameter and automatically determine the best update rate in each step
(Zeiler, 2012). One of the most commonly used optimizers is adaptive moment esti-
mation (Adam), which employs exponential moving average of gradients, and similarly
constructed normalization of the learning rate (Kingma and Ba, 2014).

Optimizing the performance using training data is often insufficient to reach our
goals and teach the network to generalize well. We should also monitor the validation
error — error on unseen data. If this error starts increasing, the training should halt,
regardless of the error on the training data. Otherwise, the network could get over-
trained (i.e., yielding excellent performance on training data while performing poorly
on test data). Different approaches, such as dropout (Srivastava et al., 2014), pre-
vent overtraining and support regularization. The dropout technique turns off random
neurons during training and keeps them active when feeding the test data. Another
possibility is to use weight decay — an extra modification that keeps the weights small.
Thus, it mitigates the accumulation of extreme values.

Data normalization is another crucial step in making models function properly.
Normalization does not concern only the input values but also the initialized weights.
Those should be initialized such that when computing the forward pass, the final
activation neither converges to zero nor diverges to infinity. Various solutions for this
have been proposed, depending on what kind of activation functions we use. A quality
boost during training can be delivered by using batch normalization, proposed in Ioffe
and Szegedy (2015). Batch normalization is a technique to standardize the network
input and can be applied repeatedly, either to activations before or after a layer output.

The above theory provides only the fundamentals of training deep networks. The
general history of individual training methods and their technical description are not
the focus of this work, so we will not elaborate on them any further. The following
two sections will introduce convolutional and recurrent neural networks. Both concepts
serve as inspiration or a base point upon which we build in this work.

1.2 Deep convolutional neural networks

Networks with fully connected layers proved to be an invaluable tool for processing
data. But what about images? We can, of course, process an image with fully connected
layers as well. To do that, we first need to flatten the image. Even given a smaller
image size of 128×128 pixels, the number of inputs is 16384. If we set the number
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of neurons in the first hidden layer to achieve a considerable reduction, for example,
100, we need 1 638 400 trainable parameters — more than a million. Training such a
network would require a lot of patience and, mainly, a vast amount of training data and
computational power. Convolutional layers can provide a considerably better solution
for image manipulation.

A convolution processes the input image without flattening it, thus it retains the
spatial structure. Also, the number of parameters required to calculate the forward pass
is only a fraction of the traditional, fully connected layer. All is due to the convolution
operator, which is between two functions f and g defined as

(f ∗ g)(x) =
∫

f(z)g(x− z)dz. (1.1)

In the case of discrete objects, the integral gets replaced with a sum

(f ∗ g)(i) =
∑

a

f(a)g(i− a). (1.2)

By adding another dimension to our functions f and g, we get

(f ∗ g)(i, j) =
∑

a

∑
b

f(a, b)g(i− a, j − b). (1.3)

We can view the convolution operator as a measure of overlap between f and g, when
one of the functions is “flipped”. When a convolutional layer is used in NNs, the
convolution kernel is a small matrix n×n whose values are optimized during training.

We can compute the hidden-layer activations using only a few parameters. For
practical reasons, the kernel size is kept relatively small (usually 2×2, 3×3, 5×5, or
7×7). This means that the calculated activation at a certain point with index (i, j) is
influenced only by the pixels near (i, j) in the input image. The region of the input
image influencing an activation on the hidden layer is called its receptive field. Usually,
wider kernels or more hidden layers are used to make the receptive fields larger as the
receptive fields grow and go deeper into the network.

The convolution is translation-invariant, which results from the fact that the kernel
is shifted through the input image, and regardless of the position, the same output
is produced, given the small region with the same pixel intensities. Translational
invariance is often highly desirable. For instance, during image classification, the object
of interest can be located anywhere in the image, and we want the network to output
the same category, regardless of the object’s position.

A convolutional layer deployed in practical applications consists of more than a
single kernel, each trained by backpropagation. They tend to learn various features;
each filter is sensitive to different structures to capture the most relevant information
jointly. In a deep convolutional network, the features learned in the first layers resemble
edge detectors, similar to Gabor filters in the human brain. As we go deeper into the
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network, the filters tend to be sensitive to increasingly more complex structures, and
the last layer often contains filters sensitive to particular objects or parts of them, given
that the task is object recognition.

To better manipulate the dimensions of the hidden layer, we use stride and padding.
The padding adds rows and columns of zeros to the activation map to keep the map’s
original shape even after convolution. On the contrary, stride reduces the number of
parameters (shrinks the map) by shifting the kernel by a constant.

It is advisable to use pooling after a convolutional layer. Pooling reduces the number
of hidden neurons by taking the average or the maximum from small blocks, creating
an activation map of a smaller dimension.

Figure 1.1: The LeNet-5 architecture (LeCun et al., 1998).

The first work, where the power of Convolutional Neural Networks (CNNs) was
demonstrated, was the creation of LeNet (LeCun et al., 1998), with the architecture
depicted in Fig. 1.1. In the following years, convolutional networks were not used very
much due to the difficulties of setting the convolutional filters correctly.

A major breakthrough was achieved when AlexNet was introduced (Krizhevsky
et al., 2012). AlexNet is a huge convolutional neural network, classifying about 1.2
million images into 1000 categories with the state-of-the-art accuracy, surpassing the
previous network by a considerable margin. Since then, CNNs have become the first
choice to analyze image data, and many novel architectures incorporating convolutional
layers have been proposed.

1.3 Recurrent networks

Previously, we have shown that we can process static data remarkably well by using
feed-forward neural networks with convolutional or fully connected layers. On the
other hand, let us assume we have a series of inputs x1, x2, ..., xt,∈ Rd, and we want to
predict the next one. Considering the previous approach, the only choice is to trim the
sequence into equally long parts, such that the input dimension would always be the
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same, feed it to the network, and train it by backpropagation to predict the next input.
This approach neglects the influence of distant points, thus offering poor performance.

To better manipulate sequential data, Recurrent Neural Networks (RNNs) were
designed (Elman, 1990). A simple RNN consists of feed-forward architecture and it
contains a hidden state ht, which is updated every time step. There are also two
trainable matrices W x and Uh used to compute the hidden state ht, combining both
the new input xt and the previous state of the hidden layer ht−1, and a trainable matrix
W y to compute the output yt:

ht = σh(W xxt + Uhht−1 + bh),

yt = σy(W yht + by),
(1.4)

where σ denotes the activation functions and b indicates the biases.

Using this approach, the hidden state ht can theoretically contain information about
all previous states and is not limited to a fixed window. Having ht, we can formally
condition the output yt on all previous inputs.

RNNs can be trained by minimizing the cross-entropy loss using BackPropagation
Though Time (BPTT) (Werbos, 1990). We can view BPTT as the recurrent network
unfolded in time, and thus, the weights can be modified thanks to information from
the gradient. Although the training of RNNs seems straightforward, it is often tricky
to make them learn more complex tasks.

1.3.1 Long short-term memory

RNNs, especially when multiple layers are stacked on one another (also known as deep
RNNs), suffer from the problem of vanishing and exploding gradients, i.e., gradients
progressively becoming extremely small or large, respectively. Another drawback of
simple RNNs is their inability to capture long-term dependencies. For example, if
x1 significantly influences x100, the hidden state at the time step t = 100 will barely
capture the correct relationship, and the error will be significant. To prevent this kind
of issue, the Long Short-Term Memory (LSTM) unit was designed (Hochreiter and
Schmidhuber, 1997).

An LSTM unit consists of input gate it ∈ Rn×h, forget gate f t ∈ Rn×h and output
gate ot ∈ Rn×h, which are updated after an input is presented. Using these vector
variables along with the cell activation c̃t, the memory ct and the hidden state ht are
updated. The exact operations are defined as follows:
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it = σ(W ixt + U iht−1 + bi),

f t = σ(W fxt + U fht−1 + bf ),

ot = σ(W oxt + U oht−1 + bo),

c̃t = tanh(W cxt + U cht−1 + bc),

(1.5)

ct = f t ⊙ ct−1 + it ⊙ c̃t,

ht = ot ⊙ tanh(ct),
(1.6)

where ⊙ represents the element-wise multiplication, W and U are the trainable ma-
trices and b are the trainable bias vectors.

Afterwards, one can extract the needed information and train the network from the
hidden representation ht. Thanks to the specifically designed gates, information can be
processed even if it was inserted into the network a long time ago, mitigating the issues
with long-term dependencies. The design of LSTM also provides a computationally
efficient way to propagate gradients through the memory c, reducing the problem of
exploding and vanishing gradients.

1.3.2 Gated recurrent unit

Another approach for processing sequential data provides Gated Recurrent Unit (GRU)
(Cho et al., 2014a). GRU achieves comparable results to LSTM, as it is derived from
it. As an advantage, implementing a GRU unit has a smaller computational demand.
The GRU unit consists of the update gate zt, the reset gate rt, and the candidate
activation vector h̃t, and is defined as follows:

zt = σg(W zxt + U zht−1 + bz),

rt = σg(W rxt + U rht−1 + br),

h̃t = ϕ(W hxt + Uh(rt ⊙ ht−1) + bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t.

(1.7)

Similarly, as in LSTM, W and U denote the weight matrices, b the biases and ⊙ the
operation of element-wise multiplication.

For many years, GRU and LSTM have been the best choices when modeling sequen-
tial data with NNs. Different approaches are still being invented, creating yet other
modifications of LSTM and GRU. These architectural designs are the predecessors to
modern, attentional sequential data processing methods, described in Chapter 4.
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Chapter 2

Vulnerability of deep learning

Szegedy et al. (2014) were the first to point out that neural networks exhibit certain
counter-intuitive properties. A well-generalizing classifier is expected to produce similar
answers to two close inputs. While this usually holds, the so-called Adversarial Exam-
ples (AEs) violate this property. Thus, AEs are inputs to machine learning models that
closely resemble clean data but deliberately cause misclassification. More precisely, let
us have a well-trained neural network fθ parameterized by θ, an input x and its cor-
responding label l, and assume that x is correctly classified: fθ(x) = l. An adversarial
example xadv is a modified input, such that ∥x− xadv∥ < ϵ, but fθ(xadv) ̸= l.

The existence of these corrupted inputs indicates potential core flaws in the way
neural networks generalize. It also raises concerns about the safety of using machine
learning modes in critical applications. Even though in this work, we discuss and
address AEs exclusively in the vision domain, the lack of robustness has been shown
in other applications, such as speech recognition (Carlini and Wagner, 2018), text
and malware classification (Ebrahimi et al., 2018; Hu and Tan, 2017), reinforcement
learning (Huang et al., 2017), and many more.

2.1 Adversarial attacks

Besides pointing out the vulnerabilities of machine learning models, Szegedy et al.
(2014) also suggested a reliable way to produce adversarial examples. Their computa-
tion was, however, relatively slow and required many steps of box-constrained L-BFGS
optimization.

Shortly after the discovery of AEs, Goodfellow et al. (2015) investigated their lin-
ear nature. They explained the existence of AEs as an emergent property of high-
dimensional dot products. Having many dimensions, the “adversarial perturbation”
aligns with the model’s weights, contributing to large activations of certain neurons,
which, propagated further, results in a misclassification. Furthermore, the authors in-
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Figure 2.1: Computation of an adversarial example. A small, carefully crafted per-
turbation (middle) causes a high-confidence misclassification (right) of a previously
correctly classified image (left) (Goodfellow et al., 2015).

troduced an efficient way of generating AEs — the Fast Gradient Sign Method (FGSM).
Assume we have a neural network classifier fθ parameterized by θ and an input-target
pair (x, l). Let L(x, l; θ) be the cost function used during the optimization of fθ, then

η = ϵsign(∇xL(x, l; θ)) (2.1)

is the analytically computed change of the input x so that the misclassification occurred
with high probability. This leads to the following single-step computation of an AE:
xadv = x + η. As demonstrated in Fig. 2.1, the perturbation is often so small that it
is imperceptible to a human observer.

Considering the attacker’s limitations, adversarial attacks can be split into two
main categories: black-box and white-box. While using black-box attacks, the attacker
has very little information about the data or the model. In the white-box setting, the
attacker can access any and all vital information, such as the architecture, optimizer,
data, and much more. Gray-box attacks, which are quite commonly utilized, ease
from several limitations of the strict black-box definition; therefore, in this case, little
information about the model or the data can be provided1.

Yet another categorization of the attacks is based on the target specification. The
target can be unspecified or fixed to a particular output. When not specifying the
target (non-targeted attack), the only goal of the attacker is to cause misclassification.
The opposite is true when employing a targeted attack, where one optimizes the network
to produce a specific target value. Nonetheless, since the majority of the known attacks
can be written in both forms, further in this chapter, we omit the description of most
of the targeted alternatives.

1In the literature, gray-box attacks are often labeled as black-box, mainly if the attacker’s restric-
tions are substantial.
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2.1.1 White-box attacks

Naturally, further modifications of the existing FGSM attack were proposed. Kurakin
et al. (2017) suggested a straightforward extension of the FGSM attack, the Basic
Iterative Method (BIM). BIM also stems from the linear approximation of the loss
function, but the AEs are found iteratively. In each iteration, a simple FGSM step is
applied and the result is clipped to the range of possible pixel values. This results in
a slower but stronger attack of generally smaller perceived average perturbation.

The idea of utilizing the linear approximation of the loss function was further re-
fined by Madry et al. (2018), who proposed the Projected Gradient Descent (PGD)
attack. Similarly to BIM, PGD iteratively computes the gradient w.r.t. the input
to progressively converge to an AE. However, in this case, the authors use random
restarts from inputs located in the close vicinity of the original image. Due to the
repeated computations, the attack has higher potential to overcome local extrema in
the multi-dimensional loss landscape.

PGD, BIM, and FGSM are particularly suitable for producing AEs constrained by
the L∞ norm, which translates to having a hard limit for the maximal pixel change.
However, as the goal of AEs is to fool the network while resembling the original, the
distance measure can vary. Therefore, a more general norm computation, the Lp norm,
is often used:

∥x∥p = (|x1|p + |x2|p + |x3|p + ... + |xn−1|p + |xn|p)
1
p . (2.2)

Keeping this in mind, Carlini and Wagner (2017) introduced three adversarial at-
tacks, each constraining its optimization in different Lp norm (L0, L2 and L∞). All of
them proved to generate consistent and unique AEs, but since their L2 attack (often
referred to as the Carlini-Wagner or, shortly, CW attack) stands out the most, we only
elaborate on this version. The approach of the proposed L2 attack is to minimize the
joined objective function ∥η∥2 + c · g(x + η) such that x + η ∈ [0, 1]n, where g is a
mapping, satisfying g(x + η) ≤ 0 in case of a successful attack. The choice of g was
empirically tested and the best effect on the optimization process was yielded by the
following function:

g(x′) = max(max{Z(x′)i : i ̸= t} − Z(x′)t,−κ), (2.3)

where Z(x′)i is the i-th logit of the input x′, t is the target class in case of a targeted
attack, and κ is a parameter used for controlling the confidence of the generated AEs.
To find an AE with the smallest possible perturbation, a modified binary search is
employed to optimize the value of the parameter c.

To be able to use a common optimizer such as Adam (Kingma and Ba, 2014), the
authors also introduced a clever reparametrization δi = 1

2(tanh(wi) + 1) − xi, so that
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no clipping was necessary. The resulting AE is always within the correct interval. To
obtain an AE, the optimization has the following form:

minimizew

∥∥∥∥1
2(tanh(w) + 1)− x

∥∥∥∥2

2
+ c · f

(1
2(tanh(w) + 1

)
. (2.4)

Later, Chen et al. (2017) proposed a generalization of the Carlini-Wagner L2 at-
tack. Here, the objective function is combined with the L2 and the L1 perturbation
magnitude:

minimizew c · f(w, t) + β∥w − x∥1 + ∥w − x∥2
2, (2.5)

while w ∈ [0, 1]p. The additional utilization of the L1 norm promotes sparsity in the
perturbation. Even though the optimization procedure resembles the CW attack, this
version produces qualitatively different AEs.

2.1.2 Black-box attacks

Until now, we have discussed attacks in which the attacker has access to all the required
information about the network. However, in reality, the attacker may not have the
luxury of unlimited access to the model simply because it is commonly hidden from
the users. Luckily for the attackers (and unfortunately for the defenders), it was
shown that AEs possess the ability to transfer, i.e., an AE fooling one network has
high potential to fool another one, trained on a similar task (Szegedy et al., 2014).
This was further elaborated on and confirmed in Goodfellow et al. (2015). This opens
the door for generating AEs on a substitute model using a white-box attack, then
fooling the original one.

Building a surrogate model

Lacking the input corpus, the training of a surrogate model is an immensely difficult
task. It often led to methods working under unrealistic settings, such as querying the
black-box model too many times (which can be detected by the defender) (Xu et al.,
2016). In other cases, sampling of a huge-dimensional input space rendered the train-
ing of the substitute model impractical (Srndic and Laskov, 2014). These challenges
were eventually resolved by Papernot et al. (2017), who first demonstrated the possi-
bility of employing practical black-box attacks. To alleviate the exhaustive sampling of
the input space, the authors introduced Jacobian-based dataset augmentation, which
approximates the decision boundary of a ML model using as few samples as possible.

In another work, Liu et al. (2017) examined the strength and the predicted class of
the AEs transferred from one network to another. Their primary result suggests that
having multiple networks and generating AEs to fool all of them results in a particu-
larly strong AEs with high potential to fool another, unprotected network. They also
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Figure 2.2: Iterations of the boundary attack. With each call of the black-box model,
the image is continuously morphed to be as similar as possible to the original image
(Brendel et al., 2017).

noted that the AEs often do not transfer with their target class; nonetheless, when
optimized using more networks, the probability of fooling an arbitrary network while
keeping the target class increases. This opens space for strong and targeted black-box
attacks.

Prompting the network

Assembling a surrogate model is not the only way to produce high-quality black-box
attacks. Brendel et al. (2017) proposed the boundary attack, in which the attacker starts
out by picking an image classified as the intended incorrect label. This is followed by a
continuous alteration of the image along the classification boundary to become closer
to the given original image while keeping the incorrect prediction label. A downside of
this method is the number of calls (≈ 105), which the attacker needs to make to obtain
an AE that closely resembles the original image. The progress of the boundary attack
for a specific target is shown in Fig. 2.2.

An attack, which deviates from the strict black-box setting, was introduced in
Su et al. (2019), where the vector of output probabilities is used to craft the AEs.
The confidence score serves to evaluate the fitness function in a differential evolution
algorithm (Storn and Price, 1997). Their main goal, however, was to find only a few
pixels to perturb in order for the image to become adversarial. They showed that it
is possible to reliably produce AEs with 1 to 3 perturbed pixels, opening a world of
attacking possibilities restricted by the L0 norm.

2.2 Towards robust models

Ever since the discovery of AEs, researchers have been searching for a model that resists
the influence of malicious inputs and provides a reliable and proper generalization. The
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ultimate goal is to design a model that, in case of receiving out-of-distribution data,
behaves as close to human expectations as possible. This section is, therefore, dedicated
to a brief overview of several frequently referenced defense techniques.

2.2.1 Defensive distillation

Among one of the earliest and most promising defenses against AEs is defensive dis-
tillation (Papernot et al., 2016). In the past, in addition to allowing for a better
generalization, distillation has been used to reduce the model size. Here, the authors
leveraged the generalization properties of distillation to train a more robust network.
The training itself consists of two simple steps. First, a teacher network is trained
using standard backpropagation while setting a high softmax temperature T on the
last layer:

softmax(x, T ) = exp (x/T )∑
i exp (xi/T ) . (2.6)

Second, to promote uncertainty during the inference, a student network is trained
using the “soft” labels, i.e., the output probabilities from the teacher network. The
student network is trained with the same (high) temperature as the teacher network.
To harness the benefits of the non-standard training, the softmax temperature is set
to T = 1 during the inference of the student model. This simple procedure results in
a model exhibiting immense robustness gains; according to the authors, in some cases,
the success of an attack dropped from 95% to 0.5%.

2.2.2 Noise manipulation

As AEs are usually crafted by adding noise to clear inputs, denoising is a reasonable
strategy to alleviate their adverse effects. One of the methods to achieve this is feature
squeezing (Xu et al., 2017). The authors of the article investigated two distinct image
compression techniques: bit depth reduction and spatial median smoothing. To detect
an AE, the classification results of the original image vs. the squeezed image are
compared. If significant disparities are found, the input is rejected and labeled as
adversarial.

The opposite perspective on eliminating the adversarial noise was elaborated on by
Liu et al. (2018). Here, instead of denoising, the authors aim to cancel the adversarial
perturbation by adding random noise during the inference. This is achieved via “self-
ensemble”, i.e., an ensemble of multiple outputs from the same model (given the output
is non-deterministic). They introduced the noise layer, which generates a random noise
vector ϵ, where ϵi ∼ N (0, σ2), and combines it with the input to the layer x′ −→ x′ + ϵ.
The noise layer is then used before every convolution. The final output is the class
with the highest cumulative probability score.
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2.2.3 Adversarial training

Back-feeding adversarial examples into the network, also known as Adversarial Training
(AT), was first tested in Szegedy et al. (2014). By alternating the training phases
(phase 1: clean dataset, phase 2: updated pool of adversarial samples), it was possible
to improve the network’s robustness on the MNIST dataset (LeCun and Cortes, 2010).
Later, Goodfellow et al. (2015) included AEs in a way that disregards the need to
actually generate them. They instead incorporated the FGSM attack into the loss
function, hence in every computation step, loss for the actual input x and also the
hypothetical adversarial input is taken into consideration:

L̃(x, l; θ) = αL(x, l; θ) + (1− α)L(x + ϵsign(∇xL(x, l; θ)), l; θ). (2.7)

Using this setup, the adversarially trained network was able to resist the AEs arguably
more than before (the attack success dropped from 89.4% to 17.9%). On the other
hand, even the rate of transferability (to and from the adversarially trained model)
was greatly reduced (19.6 % and 40.9 %).

Advancing in the research line further, the first major and in-depth analysis of
adversarial training was done by Madry et al. (2018). Their perspective on the problem
of AEs is the following saddle point optimization:

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
η∈S

L(x + η, l; θ)
]

. (2.8)

The inner maximization corresponds to input perturbation that causes extreme loss
values, and the outer minimization should provide a model that resists the adversar-
ial perturbation. The saddle point optimization is claimed to be possible via robust
adversarial training using the PGD attack. In the subsequent analysis, the authors
successfully used AE to strengthen a network for MNIST classification. However,
the optimization of CIFAR10 (Krizhevsky, 2012) did not yield satisfactory robustness
within the given perturbation budget.

2.2.4 Adversarial logit pairing

Since adversarial training has gained a lot of popularity, Kannan et al. (2018) proposed
a technique for further improvement, the Adversarial Logit Pairing (ALP). In addition
to the standard AT, ALP forces the logits of an AE to resemble the logits of their
counter-parting clean example. This is achieved by the integration of the following
regularization term into the loss function, penalizing the distances of the two logits:

λLZ(Z(x), Z(xadv)), (2.9)

where λ determines the regularization strength, and LZ is the loss penalizing the differ-
ences in the logits Z(·) of the original x and the adversarial xadv example. While ALP
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achieved great improvements when defending against white-box attacks, the robustness
against black-box attacks was on par with the state-of-the-art.

2.3 Evaluation of defense strategies

Even though it appears that it is possible, and quite manageable, to train a robust
model, the opposite is true. Most of the previously mentioned defense strategies (and
considerably more) fail to provide the reported robustness. To support this claim,
Athalye et al. (2018) disproved 7 out of 9 defenses published at the International
Conference on Learning Representations in 2018. They established three main error
types during a defense proposal:

1. Shattered gradients: In this case, the defending model has broken gradients.
In other words, the gradient becomes non-differentiable, non-existent, or simply
provides meaningless direction.

2. Stochastic gradients: Due to the non-deterministic nature of inference in some
defense mechanisms, the gradient, while available, does not correspond to the
optimization necessary to find an AE.

3. Exploding and vanishing gradients: When trying to achieve robustness via
prolonging the computation time (e.g., more layers or iterative computation of
the output), computing the gradient w.r.t. the input can have a similar effect as
in the unfolded computational graphs in RNNs — they explode or vanish.

Having pointed out these peculiarities in model design and evaluation, it is now easier
to notice how this can lead to erroneous robustness evaluation. When applying white-
box attacks to networks based on invalid gradients, they often fail due to incorrect
gradient information. However, the inability to find AEs does not prove their nonex-
istence. In fact, using gradient-free attacks or replacing the corrupted gradients with
an approximation of the correct ones (as for defensive distillation) did show that the
proposed defenses were indeed invalid.

Defense evaluation is especially tricky when the gradients are broken, but it does not
mean that evaluation of other defense types is trivial (Carlini et al., 2019). For example,
Tramer (2022) proved that, in theory, it is highly unlikely to achieve the reported
detection rate of feature squeezing (Xu et al., 2017), while Lucas et al. (2023) pointed
out the flaws in leveraging randomness when defending against white-box attacks.

It was later shown that even a promising defense, such as ALP, is subjected to
skewed evaluation. Engstrom et al. (2018) pointed out three main arguments why
ALP does not provide proper generalization: 1) by switching to a non-targeted attack,
the performance drops significantly; 2) by increasing the number of PGD attack steps,
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Figure 2.3: Loss landscape visualization for a standard model (top row) vs. a model
trained with ALP (bottom row) in three different ImageNet samples (Engstrom et al.,
2018).

a higher rate of AEs fooled the network than the originally reported number; and 3) the
plot of the loss function after ALP revealed locally distorted gradients (see Fig. 2.3),
which means that a strong gradient-free AE can fool the network.

2.4 What next?

While many defenses fail, adversarial training using strong AEs indeed strengthens the
deep ML models. The increase of robustness, while often only moderate, comes with
a cost of sizeable computational demand during the training, and is usually employed
using only specific types of adversarial perturbations, leaving the door open for other
attacks (Tramer and Boneh, 2019). Even though there are fair limitations of AT, it is
the best method so far for defending against the AEs, and further improvements, such
as Kurakin et al. (2018), can make it even better.

One of the advantages the researchers now have is the provided exploration of
weaknesses in robustness evaluation (Carlini et al., 2019). Thus, when proposing novel
detection or defense methods, researchers have a vast library of tools and knowledge
to make the best possible and unbiased evaluations.

Unfortunately, the increase in robustness often comes with lower accuracy on clean
data (Tsipras et al., 2019). Several papers promote the idea of an inherent trade-
off between robustness and accuracy, i.e., a model cannot resist adversarial examples
and, simultaneously, be accurate on clean data (Zhang et al., 2019). On the flip side,
some works believe robustness to be achievable by a superb generalization, rendering
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robustness and generalization not a contradictory goal (Stutz et al., 2018; Gilmer et al.,
2018).

Since robust models are not yet within reach, the attention is shifting towards
understanding and explaining the behavior of AEs and out-of-distribution data in the
ML systems (Ilyas et al., 2019; Shamir et al., 2022). As artificial intelligence plays an
integral part in everyday life, now it is more important than ever to be aware of possible
threats. While no permanent solution is found for the robustness problem, new attacks
are constantly being developed, exploiting the weaknesses in modern machine learning.
An example of this was provided by Cohen et al. (2024) who proposed the “AI worm”,
an adversarial attack to fool chatGPT-4 and Gemini-pro generative models.
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Chapter 3

Explainable and interpretable
machine learning

Given the black-box nature of deep learning models, they are commonly required to
support their outputs with some reasoning. Due to this, the interest in eXplainable
Artificial Intelligence (XAI) has steadily grown in the last decade (Linardatos et al.,
2021; Barredo Arrieta et al., 2020). While academics discuss XAI on a theoretical
level, having models that explain their decisions can also be beneficial from a practical
point of view. For developers, it could provide a means for faster and more reliable
production. For example, when a deep learning system does not work as expected, it
could be possible to discover the root of the problem easier, leading to faster and more
efficient model diagnosis. People using DL models would be more confident in the
provided output, leading to strengthening trust in machine learning in general. This is
especially important in critical applications, where a misjudgment causes catastrophic
outcomes. Explainability could provide a way to ensure that the opaque model treats
everyone fairly and without biases; therefore, ethical and legal requirements could also
be fulfilled if explanations, alongside the predictions, would be provided.

The terms explainability and interpretability are closely related and often used in-
terchangeably (Zhang et al., 2021). Even though it appears that there is no clear
consensus as to what exactly these terms refer to, there have been certain attempts
to define them. In a review paper by Angelov et al. (2021), the authors used the
definition of interpretability as the “capacity to provide interpretations in terms to be
understandable to a human”, while explainability “is related to the notion of expla-
nation as an interface between humans and an AI system.” These definitions mostly
correspond to our usage of these terms in this thesis, yet as with many other definitions
regarding this topic, they are not rigorous and lack any mathematical formality. For
this reason, we will not indulge in searching for the “best” possible definition and leave
this task for future considerations.
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3.1 Taxonomy of interpretability

Interpretability techniques are commonly divided into several categories. An especially
vital distinction is based on their applicability to specific model families. Interpretabil-
ity algorithms that are restricted to certain types of models are called model-specific.
On the other hand, methods that can be applied regardless of the properties of the
black-box model are called model-agnostic.

Another distinction between interpretability techniques is based on the explanation
coverage. Global methods focus on explaining the whole model as it is, whereas local
methods generate explanations for a single input instance, and each time a different
input is presented, the explanation needs to be generated anew.

The techniques are often further divided into two other categories. Post-hoc meth-
ods strive to explain black-box models without changing their architecture or com-
putations, whereas the purpose of ante-hoc, also known as intrinsic techniques, is to
produce models that are interpretable on their own, so that there would be no need to
use other methods to explain the model.

It is also important to note that the data type used as an input greatly impacts
the choice of interpretability method. Let us make an example. In a mortgage ap-
plication, one can construct the inputs as vectors encoding crucial aspects, such as
age, marital status, income, etc. Using a global method to assess which of the inputs
influences the outcome the most is a viable option. On the other hand, applying such
a method for image classification (thus searching for a single, most influential pixel)
can be computationally very demanding and lead to poor explanations.

3.2 Global methods

In general, global methods are used to determine the relationship between the individ-
ual input features and the model output. Even though these methods function properly
mainly when applied to simpler models, where the input complexity is also modest (i.e.,
concatenated features of categorical or numerical data), some of the methods provide
exceptionally helpful approximations of the model behavior.

Partial Dependence Plot (PDP) works by altering a chosen feature across all the
dataset samples to a fixed value. These newly created input points are used to compute
the average output of the model. By progressively selecting all possible values of the
selected feature (or, in the case of a continuous feature after a regular sampling), we
end up with a relationship between the feature value and the model output. Alterna-
tively, a tuple of features can be fixed simultaneously to produce a 3D plot of their
effect on the output. A considerable drawback of this method is the assumption of in-
dependent features, which is rarely satisfied in practice. When the data are correlated,
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by modification of a single feature, one can create unrealistic data, and feeding them
into the model can result in significant errors.

To mitigate the issues with correlated data, Apley and Zhu (2020) proposed the
Accumulated Local Effects (ALE). It estimates the partial derivatives by computing
the difference in the predictions by slightly altering a single feature in the input. This
delicate shift ensures that the data is still realistic and allows the influence of only the
feature of interest to be separated. The result is further normalized to differentiate
between the effect of the analyzed feature and the result of the input. In cases when
the data are too correlated, this method cannot truly capture the whole model.

There are many other methods to interpret the models globally. For example, a
model-agnostic method with a simple yet very powerful strategy is to employ a global
surrogate. This means replacing a complex black-box model with a simple one that
is interpretable by design (e.g., a linear model or a decision tree). In this case, the
surrogate model is trained to match the original outputs as closely as possible.

3.3 Local methods

Given the complexity of modern machine learning models, producing global explana-
tions is often an unrealistic wish. To provide explanations, local methods that aim to
explain the output for individual input instances are often leveraged.

3.3.1 Model-agnostic methods

One of the easiest ways to create a local interpretation of a model is to use Local
Interpretable Model-agnostic Explanations (LIME) proposed by Ribeiro et al. (2016).
LIME, in its essence, creates a local surrogate simple enough to be interpretable by
design. To implement it, one first needs to choose a suitable surrogate model. The
second step is to obtain a dataset consisting of randomly perturbed elements of the
input around which the model is being approximated. This is followed by the training,
where each input contributes with a factor negatively correlating with its proximity
to the original point (e.g., a bell curve, having its peak at the input to be explained).
The whole process of creating an explanation model can be denoted as the following
optimization problem:

explanation(x) = arg min
g∈G

L(f, g, πx) + Ω(g), (3.1)

where L is a loss function measuring the discrepancy between the original model f and
the local surrogate g given the training data πx constructed around a particular input
x. The surrogate model g is picked from a family of simple and inherently explainable
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 3.1: Illustration of LIME to explain the highest contributions of image regions
(clusters of superpixels) to top three output classes (Ribeiro et al., 2016).

models G. The penalizing term Ω(g) assesses the complexity of g, yielding high values
for complex models.

To use LIME while having numerical features, generating a new dataset around
the original point is relatively straightforward. The features can be slightly altered,
creating new points close to the original input. The authors also included instructions
on dealing with other data types, such as text or images.

• Text: In this case, individual words of a sentence can be “turned off,” i.e.,
completely omitted from the sentence. The more words are left out, the farther
the new sentence is from the original. These newly created sentences are then
used to train the surrogate model.

• Images: Random perturbation of pixels would be tedious and not very useful
since the pixels in the image are highly correlated. For this reason, the authors
proposed to create “superpixels” — interconnected sets of pixels with similar
semantic meaning. Those can be found and grouped algorithmically by detecting
the neighboring color changes. The superpixels are subsequently used to alter
the image. By setting some of them to a neutral activation (for example, gray),
a similar strategy to processing the text input can be applied (turning subsets of
the superpixels off) to create the dataset. A sample explanation of image data is
shown in Fig. 3.1.

Another approach to explaining a model locally is to compute the Shapley values
(Lundberg and Lee, 2017). In this game-theoretical approach, each feature is a “player”
in a game, where the prediction is the “payout.” Thus, the goal is to fairly distribute
the payout among the players. Computing the Shapley values is quite a common way
to explain the model locally.
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3.3.2 Model-specific methods

There are also techniques that are specially tailored for a particular model family. Here,
we introduce a few of them designed to generate explanations of how neural networks
process visual input.

Let us have a grayscale image I0 ∈ Rm×n, its corresponding class l, and the class
score yl = f(I0)l, implemented as a black-box model f . One could ask, how does yl

change in the proximity of I0? Which pixels of the image contribute to class l, or
perhaps which pixels contribute to classifying the image to one of the other classes?
To have answers for this kind of question can be especially useful when the predictions
are not in accordance with the expectations.

Among the first and the most cited works in which the authors calculated image-
specific saliency maps in a deep convolutional network is Simonyan et al. (2014). Their
motivation for the solution comes from calculating the first-order Taylor expansion,
where we are interested in the linear approximation of yl around the image I0, which
can be obtained using partial derivative:

w = ∂f(I0)l

∂I

∣∣∣∣∣
I0

. (3.2)

Having computed the derivative w, they defined the saliency map M ∈ Rm×n as
Mij = |wh(i,j)|, where h is the rearrangement function, mapping the pixel position (i, j)
to its corresponding index of the vector w of dimensionality m× n. In the case of an
image with multiple color channels, the maximal absolute value through all channels
of the derivative is taken, given a fixed position (i, j).

Note that the computation of the derivative consists only of a single backpropa-
gation step. Thus, to create the saliency map, no other operation is required. Even
though this method is applicable to multiple types of models, it is included in the
category of model-specific methods due to its applicability to models with computable
gradients and also the very specific application on image data. The resulting map can
be used as an explainability tool to strengthen the trustworthiness of the network and
to see whether the correct features of the input were considered when making the de-
cision. On the other hand, this map can also be used as a preprocessing step for other
downstream tasks. For example, based on the saliency map defined above, the authors
successfully created a weakly supervised automatic object localization (examples are
shown in Fig. 3.2).

Guided backpropagation (Springenberg et al., 2015) is yet another method for pro-
ducing visual explanations in the form of saliency maps, combining deconvolutional
networks (Zeiler et al., 2010) with the approach of using image-specific gradient infor-
mation introduced above. These methods, along with layer-wise relevance propagation
(Montavon et al., 2018), occlusion maps (Zeiler and Fergus, 2013), and many more, also

23



Figure 3.2: Process of semi-supervised object localization. The original image (left)
is used to compute the saliency map (middle left). After applying a threshold on the
saliency map (middle right), a bounding box is created, which is used to separate the
object of interest from the background (right) (Simonyan et al., 2014).

produce insightful information about the salient regions in the images and help make
the networks more interpretable. Even though, in recent times, they are somewhat
overshadowed by Grad-CAM and its variations (further discussed in the text below),
these methods are still in use and provide interesting research opportunities.

A different view on visualization of important image regions is offered by the Class
Activation Mapping (CAM) (Zhou et al., 2016). CAM creates a map of the same
dimensions as the input image, where the value of each pixel is calculated according
to its contribution to the output. It uses a specifically designed convolutional neural
network trained for image classification. The mapping is obtained as follows:

1. given an image I0, let fk(i, j) be the activation of the k-th channel at the (i, j)
spatial location at the last convolutional layer. Next, F k is defined as a global
average pooling (Lin et al., 2014) of the activations: F k = 1

N

∑
i,j fk(i, j).

2. For a class l, the input to the softmax is ∑k wl
kFk, where wl

k is the correspond-
ing weight of class l to k-th channel. For the CAM algorithm, wl

k is also the
importance of Fk for the class l. Hence, the activation mapping is calculated as:

Mc(i, j) =
∑

k

wl
kfk(i, j) (3.3)

As we may notice, the activation map has the same dimensions as the last con-
volutional layer. To get the importance of each pixel of the input image, the map is
simply upsampled to the required dimensions, creating a smoother looking visualisa-
tion. The smoothness of the map, however, prevents us from seeing the fine-grained
pixel contributions.

Being unable to capture these details is certainly a disadvantage. However, a more
severe drawback of CAM is the inability to generalize over different models and its con-
straint to use convolutional layers, followed by global average pooling. The accuracy of
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this kind of model does not get on par with the state-of-the-art architectures, raising
the question of whether a more precise model would yield qualitatively different acti-
vation mapping. These issues are addressed and solved in the successor of CAM, the
Gradient-weighted Class Activation Mapping (Grad-CAM) proposed by Selvaraju et al.
(2017), which works on a variety of CNN model families, as long as all the network
components are fully differentiable.

Grad-CAM does not directly use trained weights to determine the importance of
individual feature maps at a given layer as its predecessor CAM, but these weights are
replaced by the average partial derivatives w.r.t. the feature map components:

αl
k = 1

N

∑
i

∑
j

∂yl

∂fk(i, j) . (3.4)

After the importance scores are calculated, the feature maps of a chosen depth (for a
given input) are linearly combined, with their corresponding weights αl

k. In order to
keep only the positive influences on the class of interest, ReLU is applied:

Ll
Grad-CAM = ReLU

(∑
k

αl
kfk

)
. (3.5)

Similarly to CAM, the resulting map is coarse-grained; hence, after the upsampling
to the original dimensions, one cannot distinguish the fine details in the input image.
For this reason, the authors also applied element-wise multiplication of the Ll

Grad-CAM

with the result obtained from guided backpropagation, also known as Guided Grad-
CAM (see in Fig. 3.3).

Among the major advantages of Grad-CAM is the fact that if the network’s com-
ponents are all differentiable and the initial layers are convolutional, it is capable of
producing visualizations regardless of the task. The authors demonstrated this feature
in image captioning and visual question-answering tasks.

3.4 Dimensionality reduction

In this section, we introduce techniques that serve for dimensionality reduction. Their
goal is to transform a set of high-dimensional points into a space of lower dimensions
while preserving as much information about the original data structure as possible. In
the literature, these methods are rarely labeled as interpretability methods, yet they
provide a non-trivial insight into the data. These methods are also often applied to
visualize the internal processes in deep black-box models.

The type of dimension reduction matters. For example, one can employ Principal
Component Analysis (PCA) to preserve the maximum possible variability. Alas, PCA
offers only a linear dimensionality reduction and does not consider different data classes.
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(a) Original Image (b) Guided Backprop Cat (c) Grad-CAM Cat (d) Guided Grad-CAM Cat

(e) Original Image (f) Guided Backprop Dog (g) Grad-CAM Dog (h) Guided Grad-CAM Dog

Figure 3.3: The process of producing Guided Grad-CAM visualizations of two different
target classes that are dominant in the image, cat and dog (Selvaraju et al., 2017).

Therefore, techniques for non-linear dimensionality reduction incorporating informa-
tion about data point attribution were invented. One such example is t-distributed
Stochastic Neighbor Embedding (t-SNE) — a technique that is often used to reduce
spaces of dimensions reaching up to 106 − 107 into a mere 2 or 3 dimensions, allowing
2D or 3D plots of the approximated data (van der Maaten and Hinton, 2008). Given
the stochastic nature of t-SNE, after repeating the algorithm, the resulting projection
of the same data points can vary, which weakens the reliability and reproducibility
of the results. To find the point coordinates after reduction, it employs gradient de-
scent to minimize the Kullback–Leibler divergence between the joint probabilities of
the high-dimensional data and the low-dimensional embedding.

Uniform Manifold Approximation and Projection (UMAP), proposed by McInnes
et al. (2018), often considered the Riemmanian t-SNE variant, serves the same pur-
pose. It is theoretically well-founded and uses cross-entropy loss instead of the Kull-
back–Leibler divergence. UMAP is generally considered a more powerful and accurate
technique for dimensionality reduction that better preserves the global structure of the
data. Another advantage of UMAP is that alongside the projection of a set of points
provided at the beginning, it also creates a mapping that can be later used to instantly
project new points into a lower dimensional space.

It is worth noting that both t-SNE and UMAP require a proper configuration of
their hyperparameters, which can drastically influence the resulting point distribution.
Unfortunately, there are no rigorous rules on how to set them, and one needs to use
intuition alongside some general recommendations. Due to this and the fact that the
methods themselves are highly non-linear, even though they are frequently used to
visualize the data, their overall level of explainability remains shallow.
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Chapter 4

Attention mechanisms

In this chapter, we introduce some of the key ideas about incorporating attention into
machine learning systems. Although in this thesis we mainly focus on applications in
computer vision, attention mechanisms in the form that are used in the state-of-the-art
models are primarily rooted in the works on Natural Language Processing (NLP).

4.1 The origins of attention

A biological view of attention is provided in Knudsen (2007), where the author sum-
marizes four fundamental processes of human attention: working memory, top-down
sensitivity control, competitive selection, and bottom-up filtering for salient stimuli.
Each of these processes plays its own role in decision-making executed in the working
memory. First, a signal is perceived, and salience filters are applied to extract only
the most relevant information. Second, a neural representation is formed. Third, the
information is subjected to competitive selection, where only the signals with high in-
tensities are processed. Fourth, the signal arrives in the working memory, ready to
render a decision, albeit not the final one. From the working memory, there is also
a top-down flow of information, altering neural representations and creating a closed
loop, rendering the decision process more informative and reliable.

Just like the human brain model inspired the development of artificial neural net-
works, the idea of incorporating attention mechanisms into artificial systems also orig-
inated from the way humans perceive and process information.

Among the first implementations of attention in neural networks is the work of
Schmidhuber and Huber (1991). The authors focused on the task of analyzing and
extracting predefined details of 2D objects in a pixel plane, which were subjected to
translations and/or rotations. Instead of using a standard feedforward neural network,
which requires hundreds or thousands of tediously labeled data, they designed an arti-
ficial fovea, which adaptively controlled its movements for target detection. Biological
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motivation to model the gaze selection by a neural network was further elaborated on
by Denil et al. (2012), where an attention mechanism was used to track and recognize
data.

Mnih et al. (2014) proposed an encoder–decoder architecture for generating images
in multiple steps. In each step, the network focuses on a different part of an image.
It was argued that thanks to the incorporation of the attention mechanism, image
generation more closely resembled the human drawing process.

Around the same time, an attention mechanism in a form that resembles the cur-
rent techniques was designed for solving hand-written text synthesis using a recurrent
network (Graves, 2014). The authors first demonstrated that RNNs with LSTM units
can generate sentences with complex structures by predicting one data point (a word
or even a single letter) at a time. They followed by tackling the problem of generat-
ing hand-written sentences, providing solid ground in using attention mechanisms for
similar applications.

4.2 Natural language processing

The development of attention mechanisms took a rapid turn, predominantly due to the
interest in effective processing of natural language. As we shall see in this section, the
incorporation of attention in language processing started with the so-called encoder–
decoder architecture designed for translation. These ideas have since been repeatedly
used and modified to specific needs, contributing to models with extraordinary perfor-
mance.

4.2.1 Encoder–decoder

During sentence translation, we do not know the length of the translated sentence be-
forehand. Hence, it is questionable how to approach this task with recurrent networks.
This barrier was overcome simultaneously by Sutskever et al. (2014) and Cho et al.
(2014b), who proposed a jointly trained encoder–decoder pair, each implemented by a
dedicated recurrent network with LSTM or GRU units, respectively.

The encoder is used for creating a fixed-dimensional representation c of the input
sentence (x1, ..., xT ), where xi are the word embeddings. Simply, words of the input
sentence are presented to the encoder, and the hidden activation formed after the last
word is considered as the sentence representation c. Afterwards, the decoder’s hidden
state is initialized using c, and the output words (y1, ..., yT ′) are generated one by one:

p(yt|y1, ..., yt−1, c) = g(yt−1, st, c), (4.1)

where g is a non-linear, potentially multi-layered function (outputting the probability
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of yt) and st is the hidden state of the decoder. The training is fully supervised,
maximizing the conditional probability:

p(y1, ..., yT ′|x1, ..., xT ) =
T ′∏

t=1
p(yt|y1, ..., yt−1, c). (4.2)

As we can see from the equation, in order to find the best translation, exploring
all options is intractable. Instead, Sutskever et al. (2014) proposed beam search, which
keeps in the memory only the top k possible predictions. Experiments also showed that
reversing the order of words of the input sequence when feeding the encoder makes a
significant improvement of the final translation. Instead of mapping the sentence a, b, c

to α, β, γ, the sentence c, b, a is mapped to α, β, γ arguing that, in this case, the input
word a is much closer to its corresponding word α.

The previously mentioned model was further substantially improved upon by Bah-
danau et al. (2015), with incorporating an attention mechanism. In the new model,
the conditional probability is defined as

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci), (4.3)

where the main contribution is the usage of distinct context vector ci to generate
every output word. Another deviation from the old approach is the fact that the
encoder consists of a bidirectional RNN (Schuster and Paliwal, 1997). The authors
defined annotations hi, as concatenations of hidden activations of those stages of the
bidirectional RNN, when the i-th word was presented: hi = [hforw

i , hbackw
T −i ]. Each

annotation carries the information about the whole sentence, but the i-th annotation
hi has seen the i-th word most recently and thus is primed for its corresponding word.

After the annotations are successfully extracted, the context vector ct is computed
as a weighted combination of the annotations hi:

ci =
T∑

j=1
αijhj, αij = exp(eij)∑Tx

k=1 exp(eik)
, (4.4)

where eij = a(si−1, hj) is the alignment model:

a(si−1, hj) = vT
a tanh(W asi−1 + U ahj). (4.5)

Here, W a ∈ Rn×n, U a ∈ Rn×2n and va ∈ Rn are all parameters of the model, jointly
trained with the encoder–decoder pair.

The attention mechanism incorporated in the described architecture not only helps
the model to perform better, but also allows us to visualize the inner representations
in an understandable way, making the model more interpretable. Particularly, by
visualizing the weights of the annotations αij, one can see where the decoder focuses in
order to generate the best translation for each predicted word (example in Fig. 4.1). It
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Figure 4.1: An illustration of learned attention weights αij in encoder–decoder archi-
tecture with attention mechanism for selecting specific context (Bahdanau et al., 2015).

was empirically confirmed that the increased attention weights correspond with human
intuition.

In subsequent work, Luong et al. (2015) proposed and further examined the imple-
mentation of global and local attention into encoder–decoder architecture, where the
underlying model was fairly similar to the model used by Sutskever et al. (2014). Both
global and local attention produce a hidden state h̃t = tanh(W c[ct; st]), which is lin-
early projected and fed through a softmax layer to output the probability distribution
for vocabulary words. The difference between these two incorporations of attention is
the way how the time-specific context ct is produced.

Using the global method, the context vector is computed using all the representa-
tions of the input words (taking their weighted combination). The only question is how
to assign values for the weights αt corresponding to the input word representations.
Three different ways were proposed, where for each hidden representation of the output
st, a score function calculates the values for all possible hidden states hi of the input
sentence, which are then normalized by applying softmax:

score(st, hi) =


sT

t hi dot,

sT
t W ahi general,

vT
a (W a[st; hi]) concat.

(4.6)

As we can see, the individual methods differ mainly in the way of parametrizing
the alignment model. The concatenation method has the highest number of trainable
parameters and an analogy was tested in the previous approach by Sutskever et al.
(2014). On the other hand, the dot method does not use any trainable weights.
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The authors tested an additional way to compute the weights αt, based solely on
the decoder’s state:

αt = softmax(W ast). (4.7)

On the contrary to the global attention, by incorporating local attention, we do
not take into account the representations from the whole input sentence, but only of a
particular subset. The model first generates the aligned position pt and computes the
alignment only using a symmetric interval around pt, [pt −D, ..., pt + D], where D is
chosen empirically. Two approaches of setting pt were tested:

1. monotonic alignment: pt = t, assuming that the source and target sentences are
roughly monotonically aligned,

2. predictive alignment: pt = S · sigmoid(vT
p tanh(W pht)), where S is the length of

the source sentence.

In this case, the alignment weights are calculated as

αt(i) = align(st, hi) exp
(
−(i− pt)2

2σ2

)
, (4.8)

where σ = D
2 is set empirically.

Experimental results showed that the encoder–decoder architecture accompanied
by the alignment model computing the attention weights significantly outperforms
the model without attention in the task of translating between English and German.
The model with the local attention yielded a gain of up to 5.0 BLEU score (Papineni
et al., 2002) improvement. The rest of the attentional models also performed very well,
their ensemble outperforming the previous state-of-the-art models in translating from
English to German and vice versa.

4.2.2 Follow-up work

The encoder–decoder type architecture accompanied with attention proved to be a
useful idea for extracting the information from long recurrent networks without relying
too much on the representation compressed in a fixed-dimensional vector. However,
the concept of extracting information from RNNs using an alignment model is general
enough to be applicable to countless tasks. Here, we describe several models where
attention in this form (not necessarily in encoder–decoder architecture) was used to
improve the state-of-the-art methods.

Hermann et al. (2015) tackled the problem of question answering. Having a query
q based on a context c (usually a sentence or a short paragraph), we seek an answer a

from our vocabulary; thus, we need to estimate the probability P (a|c, q) as accurately
as possible. As an input to a recurrent LSTM, the document is presented word by word.
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Afterwards, a document-related query q follows, which has the form of a sentence with
a missing word in it. The network should correctly fill in the missing word.

The authors suggested an attentive reader to process the input. A bidirectional
LSTM is employed, where the representations of the input words hd(t) are extracted as
the concatenation of the hidden states in opposite directions, similarly to the previous
work. These representations are then used to create a query-specific linear combination
according to the attention function:

m(t) = tanh(W hmhd(t) + wumu),

s(t) = exp(wT
msm(t)),

r = hds,

(4.9)

where u is the concatenation of the first and the last read of the query — representing
the question itself. W and w denote the trainable parameters, tuned for extracting
the attention weights.

The query-specific representation r, along with the representation of the query itself
u, are then used to compute the output:

gAR(d, q) = tanh(W rgr + W ugu), (4.10)

with W , as usually, being trainable parameters.
The authors also experimented with an architecture called the impatient reader,

where the basic mechanisms are similar to the attentive reader but are further en-
hanced, and the network re-calculates the representation r for each of the words in the
query, allowing to re-read the sentence. Both the attentive and the impatient reader
showed promising results and surpassed the methods with no attention mechanism.

Another work in the same spirit was Recognizing Textual Entailment (RTE) by
Rocktaschel et al. (2016). RTE is the task of determining whether two sentences have
nothing in common, contradict each other, or the first sentence (premise) entails the
second (hypothesis).

The representations from reading the hypothesis Y are linearly combined using the
constructed attention weights α. The output of the process is a vector r, manufactured
using the information from the premise and the hidden state when feeding the RNNs
with the last word of the hypothesis hN . The resulting representation of the task h∗

is then computed as follows:

M = tanh(W yY + W hhN ⊗ eL),

α = softmax(wT M),

r = Y αT ,

h∗ = tanh(W pr + W xhN),

(4.11)
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where W and w are trainable parameters, eL is a vector of ones, and ⊗ denotes the
outer product.

This idea was further enhanced by the method called word-by-word attention. In
this case, the attentional vector αt (indicating the premise weights) is calculated for
each word of the hypothesis. This allows us to take into consideration each of the
words of the hypothesis one by one. The equations are similar to those of the previous
system, the main difference being the iterative calculation of M t, αt and rt, using
previous values of rt−1.

Document classification is yet another task, where attention proved to be useful.
Yang et al. (2016) used the idea of attention mechanism in recurrent neural networks
in the context of text classification. The proposed method for document classification
is divided into two parts. First, using an RNN with GRU units, representations of
individual words are calculated. This is done in a similar fashion as usual, and attention
weights are calculated. Second, the representations of individual words are combined
to create the representation of the individual sentences. This process corresponds to
attention at a lower level in the hierarchy.

Third, the sentence representations proceed to the higher level in the hierarchy,
where they are fed into a different RNN with GRU units. As usual, they are linearly
combined with attention weights computed using an alignment model to produce a vec-
tor representing the document. The document representation is fed into an additional
layer, a fully connected classifier, to output the class of the document.

4.2.3 Transformers

The transformer architecture proposed by Vaswani et al. (2017) is one of the most
influential works of recent years. As earlier described, RNNs were dominant in pro-
cessing sequential input data, such as text strings. Here, a feed-forward architecture
was proposed to manage sequential data without the need to use any recurrent pro-
cessing.

The original purpose of the transformer architecture was to handle language trans-
lation better than the previous methods, which is achieved by using only the attention
mechanism to deal with sequential information. Let us have an input sentence X con-
sisting of n words (X = [x1, x2, . . . , xn]). The first step is to apply word embedding
to the words xi of the input sentence X. To ensure that no information about the
position is lost, the so-called positional encoding p(i) is generated and added to the
corresponding word representations. To compute the encodings, alternating sine and
cosine functions are used, changing their frequency according to the index i of the word
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and the dimension d, together creating the positional encoding vectors:

PE(i, 2d) = sin(i/100002d/dmodel),

PE(i, 2d + 1) = cos(i/100002d/dmodel).
(4.12)

The input vectors are created as x̃i = embed(xi) + p(i), compactly represented in the
matrix X̃. This input is further linearly projected using three different transformations,
forming the queries Q, keys K and values V .

The queries and the keys are multiplied to create the weights to combine the values
according to

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V , (4.13)

where dk is the dimensionality of keys. This is an integral part of the computation
that replaces the recurrence, as in this phase, every word attends to every other word,
directly interconnecting the whole sequence in a single operation.

Analogously with multiple convolutional kernels used in CNNs, the attention is also
being applied in parallel multiple times in the Multi-Head Attention (MHA):

MultiHead(Q, K, V ) = Concat(head1, head2, ..., headh)W o,

headi = Attention(QW Q
i , KW K

i , V W V
i ),

(4.14)

where W o, W Q
i , W K

i and W V
i denote trainable parameters.

The output of the MHA is of the same dimensions as the matrix x̃i, so this step
usually does not include dimensionality reduction. For further processing, fully con-
nected feed-forward layers follow. Skip connections are added to the output of both
the fully connected and the attention layers, enabling more fluent gradient flow during
training. This scheme of MHA preceding fully connected layers is stacked several times
to produce better representations of the input.

When the input sentence is processed, a query is no longer obtained from the input
representation, but rather from the output (if some words are already translated). The
formed representation then goes through fully connected layers. As in the first part
(the encoder), the decoder also consists of stacked layers to form a better representation
of the sentence. The last step is to compute the output probabilities with a final fully
connected layer. A clearer and more detailed explanation of the architecture can be
found in Fig. 4.2.

The transformer architecture was a huge step forward, allowing for building the
state-of-the-art models of the current times, for example, the Bidirectional Encoder
Representations from Transformers (BERT), proposed by Devlin et al. (2019). BERT
is a specialized architecture based on the attention mechanism used in the transformer,
designed to solve multiple tasks by a large pre-trained language model. Given a specific
NLP related task, BERT can be fine-tuned without the need to process too much data.
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Figure 4.2: Transformer architecture (Vaswani et al., 2017).

Using this strategy, the authors achieved state-of-the-art performance in all 11 tested
tasks, such as question answering, sentence pair classification, sentence tagging, and
more, demonstrating the supremacy of attention in processing sequences.

4.3 Image processing

Although the rise of attention mechanisms in artificial systems began in the domain
of natural language processing, the interest in using attention in vision models has
also been slowly growing. In this section, we introduce two important vision models
that provided inspiration for our subsequent work, both incorporating attention mech-
anisms, and then we conclude with the state-of-the-art visual attention model — the
vision transformer.

4.3.1 Deep attention selective network

Stollenga et al. (2014) introduced one of the first convolutional architectures modified
to use an attention mechanism, the Deep Attention Selective Network (DASNet). The
model was based on deep CNNs using maxout units (Goodfellow et al., 2013). In this
work, the usual bottom-up architecture was enhanced by top-down connections, as the
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biological processes in the human brain also draw advantage of such connections.
Compared to the previous models, the main modification is the way convolutional

filters are manipulated. Each of them is scaled by a factor of ai (a is set to the vector of
ones in the beginning). Thus, the vector a represents an action, and the concatenation
of specific activation values (channel averages, intermediate activations, and a class
probability vector) from the network for a given input represents an observation. Hence,
to train the network properly, besides the standard training, reinforcement learning is
applied to learn the policy, which maps the observation to an action determining the
filter weights in the next state (when the prediction is repeated with the new state
of a). This mapping is provided by a trained NN, which is learned using Separable
Natural Evolution Strategies (SNES) (Schaul et al., 2011).

After a suitable policy is found, the weight vector a is iteratively modified (given a
fixed number of iterations T ), and the resulting at determines the “selected” attention
that is applied to the individual filters to produce the prediction.

During the testing of DASNet, the author noted that the biggest increase in accu-
racy was provided for the images that were in-between two classes. DASNet managed
to focus its attention on relevant parts of the input, thus yielding higher accuracy and
setting the state-of-art on two benchmark datasets.

4.3.2 Image caption generator

A type of attention-based neural network generating image captions was proposed
by Xu et al. (2015). The authors used the theoretical knowledge about attention in
recurrent models to build a model that can select specific parts of an image to generate
its caption.

First, using the CNN trained in Simonyan et al. (2014) and an input image, the
annotation vectors (a1, ..., aL), ai ∈ RD are extracted from a lower convolutional layer
as a concatenation of channels on a certain pixel position. Thus, each annotation vector
refers to a small region of the input image.

Second, an RNN with LSTM units (encoder) is deployed. The input to the recurrent
network consists of the embedded, previously generated word, the previous hidden
state of the RNN (ht−1), and a vector containing the image data (ẑt). To process the
annotation vector, a weight is calculated for each of them. Those are assigned by the
attention model fatt, conditioned on the previous hidden state ht−1 of the RNN and
implemented by an MLP. Before the output is further processed, softmax is applied:

eti = fatt(ai, ht−1), αti = exp(eti)∑L
k=1 exp(etk)

. (4.15)
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After the weights are calculated, the vector ẑt is computed as:

ẑt = ϕ({ai}, {αi}) =


∑L

i αiai, soft attention,∑L
i st,iai, hard attention.

(4.16)

We see that the function ϕ is split into two branches, corresponding to two methods
of considering the attention: soft and hard. In the case of soft attention, the resulting
representation ẑt is simply a linear combination of annotations, similarly as done in
Bahdanau et al. (2015). On the other hand, the hard attention uses a one-hot vector
st determined by p(st,i = 1|sj<t, a) = αt,i.

The final step is to use an MLP to calculate the word probabilities for time t,
conditioned on the hidden state ht. The soft attention can be trained by BackProp-
agation as all the components are fully differentiable. On the other hand, the hard
attention needs to be trained by the REINFORCE update rule (Williams, 1992) due
to its non-differentiability.

Both methods produce high-quality image captions, resulting in state-of-the-art
performance. In addition to good-quality caption generation, using the calculated
weights at each time step, it is possible to visualize the regions where the network is
focusing when it is generating the caption for a specific word.

4.3.3 Vision Transformers

Motivated by the success of the transformer architecture, many have extended the
intended usage of the attention mechanism for alternative tasks. One of them is the
Vision Transformer (ViT) by Dosovitskiy et al. (2021), who adapted the transformer-
like architecture for the task of image classification.

The idea of ViT is the following. An image I ∈ RH×W ×C is reshaped into a sequence
of non-overlapping flattened 2D patches xi ∈ RN×(P 2·C), the length of the flattened
patches is computed according to the desired patch size P and the number of image
channels C. Altogether, we have N vectors as an input to the network, each containing
information about a small image region. A positional embedding is added to individual
image patches to maintain partial information about the location of individual patches
within the image.

Similarly as in BERT, an extra learnable embedding, the class token, is prepended
and is reserved to accumulate the information about the input as a whole. The class
token plays a crucial role in classification. Due to its non-specificity to any of the
patches, after the inference in the transformer encoder, an MLP head is attached to
it to produce the classification. Another key difference from the transformer proposed
for NLP is that, in this case, we do not need a decoder and only use the encoder
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Figure 4.3: Vision transformer architecture (Dosovitskiy et al., 2021).

part. A graphical illustration of the ViT and the exact encoder architecture is shown
in Fig. 4.3.

Typically, the ViT is first pre-trained on a large dataset and fine-tuned on a smaller
one, much like BERT. The authors provided an extensive study of the proposed ar-
chitecture and showed that this technique matches, or even outperforms the state-of-
the-art image classification networks, with less computational requirements and almost
without using inductive biases, as it is in the traditional convolutional networks.

The authors also examined a hybrid architecture in which parts of a pre-processed
image served as the input to the ViT. In this version, the input to ViT originates from
the feature maps of a convolutional network. This approach yields comparable results
to the pure ViT.

Since the first vision transformer was designed, numerous attempts have been made
to create similar models with different properties. Among the most successful ViT vari-
ants are Data-efficient image Transformers (DeiT) by Touvron et al. (2021), which in-
volve distillation through attention to reduce the large data requirements, Transformer
iN Transformer (TNT), where the authors further subdivide the image patches to cap-
ture the relationships within larger image patches (e.g., 16×16) (Han et al., 2021), and
Swin Transformer proposed by Liu et al. (2021b) that produces hierarchical feature
representations. These, and many more ViT variants, have achieved tremendous suc-
cess in many computer vision tasks, and the number of benchmark datasets where they
achieve state-of-the-art performance is growing (Liu et al., 2021a).
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Explainability of Vision Transformers

An advantage of ViTs over CNNs is their innate ability to visualize the important
parts of the image, leveraging the attention weights for individual layers and heads (see
Fig. 4.4). To this end, the self-attention computation defined in Eq. 4.13 is exploited.
There are still many options for attention visualization. Each patch interacts with
every other, which produces n + 1 attention maps for every head (n is the number of
patches and +1 for the class token). In practice, it is often useful to pick a specific map
(for example, the one contributing to the class token) and merge the overall influence
for every attention head. While this innate attention computation has some flaws, it
allows for an accurate examination of the model, without relying on other explanation
techniques, such as Grad-CAM for CNNs.

Unluckily, the attention scores in ViTs are more distributed towards the end, and do
not always produce reliable attention maps (Kashefi et al., 2023). Therefore, several
upgrades regarding the explanation methods have been proposed, that are tailored
directly to ViT and its variants. Among them are attention rollout and attention flow,
both proposed by Abnar and Zuidema (2020) or Grad-SAM, a gradient-based method
to identify the parts of the input image that influence the decision-making (Barkan
et al., 2021).

Figure 4.4: Visualization of the attention in ViT model for several input images (Doso-
vitskiy et al., 2021).

Robustness of Vision Transformers

Although ViTs represent a relatively recent architecture, their robustness against ad-
versarial attacks has already been studied in several works. Among the first were Shao
et al. (2022), who concluded that ViTs exhibit greater robustness compared to the
more traditional CNNs when evaluated using white-box and transfer attacks.

On the other hand, a similar study of robustness presented a contrasting perspective
(Mahmood et al., 2021). The authors found that ViTs, when properly attacked, do
not possess higher robustness than CNNs. The empirical evaluation also revealed that
AEs generated for CNNs do not effectively transfer to ViTs and vice versa. Leveraging
this insight, a black-box defense strategy using ensemble models was proposed. It was
able to gain robustness and simultaneously cause only a marginal decrease in clean
accuracy.
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Bai et al. (2021) supported the claim that ViTs are not superior in robustness
by their comprehensive robustness analysis. They criticized previous comparisons for
being unfair due to differences in training mechanisms, model sizes, and other factors,
highlighting the need for more standardized evaluation criteria.

To summarize the recent advances, after careful analysis, the robustness of ViTs
does not seem to be inherently increased. There are still many challenges in evaluating
the robustness fairly, mainly when comparing them to other model families. Neverthe-
less, given their unique approach to data processing and the limited amount of work
in this area, many aspects of ViTs are yet to be discovered.
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Chapter 5

Manifold proximity analysis

This chapter is dedicated to our analysis of adversarial examples and their behavior in
trained deep neural network architectures. Our aim is not only to assess the misclassi-
fication rate of the AEs but also to gain deeper insight into the behavior of AEs inside
the neural networks. Apart from generating and analyzing six distinct sets of mislead-
ing input images, we propose means of visualizing the proximity of their activations
to class-specific manifolds. This, along with projections into a low-dimensional space,
helps us better understand the behavior of AEs and their distinction from standard,
in-distribution, samples.

The content of this chapter is the prime focus of our paper “Examining the Prox-
imity of Adversarial Examples to Class Manifolds” published at the 29th International
Conference on Artificial Neural Networks (Pócoš et al., 2022)1. It is also available as
an extended abstract in Bečková et al. (2022).

5.1 Experiment design

5.1.1 Models and datasets

For our analysis, we use two image benchmark datasets, MNIST (LeCun and Cortes,
2010) and CIFAR-10 (Krizhevsky, 2012). The MNIST consists of 28×28 pixel grayscale
images of hand-written digits, whereas the CIFAR-10 contains 32×32 pixel RGB im-
ages, depicting ten classes, each of which is a vehicle or an animal. The complexity of
CIFAR-10 is generally higher than that of MNIST.

We employ two strategies for training neural network classifiers for the MNIST
dataset: a fully connected (FC) network and a convolutional network. The former

1The first and the second author contributed equally to the paper. Both built and maintained
the code base for the experiment, including training the networks, generating AEs, and much more.
Moreover, each suggested, implemented, and tested one of the methods of computing the proximity
to class-specific manifolds.
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contains two hidden layers, each having 128 units, whereas the latter uses two convo-
lutional layers, each having 16 filters. We mostly use Rectified Linear Unit (ReLU) as
an activation function in both cases.

For the classification of CIFAR-10, we use a deep convolutional network comprising
three VGG-type blocks, after which an additional fully connected layer of 256 neurons is
applied. To ensure proper generalization, we also use dropout and batch normalization.

In this analysis, we deliberately do not work with more advanced models and train-
ing regimes. One reason is that having more sophisticated models can unpredictably
influence their inner behavior. Furthermore, given the relatively small complexity of
the tasks, we reach accuracy that meets our requirements, i.e., 98.0% using the fully
connected network, 98.9% for the convolutional network, both trained on MNIST using
SGD, and 87.2% for the network trained on CIFAR-10 using Adam optimizer.

5.1.2 Generating corrupted data

As described in Chapter 2, there is no universal approach when defending against all
types of AEs. Researchers often work with a relatively narrow subset of all possible
AEs, which can result in misleading results. To alleviate similar issues, we opt for as
diverse sets of AEs as possible while keeping the evaluation complexity tractable.

One of the critical distinctions of AEs can be the Lp norm, which limits the per-
turbation magnitude ϵ. We, therefore, employ four types of adversarial attacks, each
computing the AEs such that a specific Lp norm of the perturbation is limited. To
complete our analysis with out-of-distribution data (that are not AEs), we also gen-
erate false-positive images, also called the rubbish class (RC) examples — seemingly
random noise patterns, forcing the network to be confident about its output category
(Goodfellow et al., 2015).

We generate the AEs with the following constraints:

• L∞ constraint: For limiting the maximal change per pixel, we use the PGD
attack, introduced by Madry et al. (2018). After setting a fixed perturbation
magnitude ϵ, PGD finds a fooling image with perturbation no greater than ϵ.
However, in practice, the generated AEs usually lie at the very edge of the ϵ-ball.
Thus, to obtain a greater diversity of AEs while limiting the L∞ norm, we repeat
the process of AE generation for ϵ ∈ {0.01, 0.02, ..., 0.15} for MNIST and ϵ ∈
{0.01, 0.02, ..., 0.05} for CIFAR-10 images.

• L2 constraint: To produce AEs while limiting L2 perturbation, we employ the
CW attack (Carlini and Wagner, 2017). The aim of the CW attack is, in general,
to craft AEs with as small L2 perturbation as possible, even at the cost of having
potentially borderline prediction confidence scores.
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• L1 constraint: A subtle yet non-trivial change in perturbation design is to use
L1 norm instead of L2. Chen et al. (2017) argued that L1 norm accounts for the
total variation of perturbation, thus an attack limiting the L1 norm can generate
AEs with unique properties. For generating these AEs, we use the elastic-net
attack, often seen as a generalization of the CW attack.

• L0 constraint: Since L0 norm restricts the number of changed pixels, AEs con-
strained by this norm contain only a few, usually significantly perturbed pixels,
leaving the rest of the image intact. A common way to generate these examples is
to use one-pixel attack (Su et al., 2019). However, as we showed in Bečková et al.
(2020), when having access to the gradients, we can leverage them to find the
most important pixels to change. To generate AEs, we first compute the gradient
w.r.t. the input, and we pick the pixel having the highest absolute gradient. We
follow by using grid search to find the best adversarial perturbation for the given
pixel. If misclassification occurs, the algorithm is terminated. Otherwise, the
computation is repeated until an AE is found or we exceed the maximal number
of iterations. Our upper bound for the number of perturbed pixels is 50, cor-
responding to maximal overall image changes of 6.4% and 4.9% on MNIST and
CIFAR-10, respectively.

To supplement our AEs, we also include rubbish class examples. We produce them
in two ways, differing only in the initial pixel distribution. In the first method, we
randomly generate pixel values from uniform distribution [0, 255], whereas, in the sec-
ond method, we generate them to match the distribution of pixels in the same position
of the datasets. To make the network classify them with high confidence, we iterate
the input using PGD attack. The resulting groups are denoted as RCrnd and RCdistrib,
respectively.

For generating the AEs, we strictly use untargeted attack, as it provides an easier
optimization problem2. However, when generating the rubbish class examples, we are
forced to use the targeted attack while changing the target class uniformly to every
viable option. We opt for this simple change because, in the case of untargeted attacks
applied to noisy patterns, we end up with a highly uneven distribution of the resulting
classes. In the case of MNIST, the majority of crafted inputs converged to class 8,
whereas most of the optimized noise patterns crafted using the network trained on
CIFAR-10 are classified as frogs. On the other hand, the targeted attack resulted in a
roughly even distribution of predicted classes.

Altogether, we generated ≈12,000 corrupted input (the union of AEs and the RC
examples) per each of the three networks. A sample of generated data for convolutional
networks on MNIST and CIFAR-10 is depicted in Fig. 5.1.

2We use Adversarial Robustness Toolbox (Nicolae et al., 2018) for all attacks except L0.
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Figure 5.1: The first four rows contain tuples of adversarial examples and their cor-
responding originals, and the last two rows contain a pair of random noise patterns
and the corresponding rubbish class examples. The network confidence and the output
class are displayed below the individual images.

5.2 Proximity analysis

Considering the AEs are near the original examples, we presume their latent activations
in the networks might be close, especially in the early stages of the network’s forward
computation. As they are eventually misclassified, we expect the AEs to diverge from
the correct class manifolds in the activation space. Therefore, in this section, we search
for possible methods of taking a closer look at the behavior of the AEs in trained DNNs.

5.2.1 Distance to classes

To find the region where an AE leans towards the incorrect class during the network’s
forward pass, we first test a direct technique — computing the distances to the latent
activations of test-set images. To be more precise, we create triplets (Oi, Ai, Ri), where
Oi denotes the i-th original image, Ai the i-th adversarial image, and Ri stands for
the noisy version of the corresponding original image, where the noise magnitude is
kept the same as for Ai, but is random Gaussian. Having these triplets, we compute
the mean of the differences in activations of these three data categories:

1. Images with the correct label (the same as the target label for Oi),
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Figure 5.2: Mean distances of original vs. adversarial image to three different groups
of data. On the vertical axis, the mean distance of a certain input activation group is
depicted. There are three data categories: original, adversarial, and random modifica-
tion of the original. Their distances are computed towards the correct class, incorrect
class and the rest of the classes averaged.

2. images with the incorrect label (the same as predicted for Ai),

3. the rest of the test-set images.

A sample showcasing the development of these distances in a fully connected network
is shown in Fig. 5.2.

We found that during the early stages of the classification, the distances of AEs
have very similar profiles as the distances of original examples. But as we progress
through the network further, the AEs are slowly pulled towards the incorrect class.
Interestingly, when considering the random inputs, they behave almost identically to
the original examples, meaning that random perturbations indeed do not cause out-of-
distribution activations.

A downside of this method is that due to the constantly varying number of neurons
(i.e., dimensionality), we cannot consistently compare the change of proximity of these
three data groups to manifolds throughout the network. Due to this, the scale of the
calculated distances is not the same for all the layers. Yet another reason why this
method is not the most suitable, is that the distances between high-dimensional data
often tend to be similar, thus it does not faithfully capture the underlying relationships.
We can see an example of this in Fig. 5.2, where the distances of original examples to
the correct class vs. the incorrect class differ only marginally.

5.2.2 Proximity to class-specific manifolds

To overcome the issues with differing numbers of hidden neurons, inspired by Papernot
and McDaniel (2018), we use the idea of counting the nearest neighbors in the space
of hidden layer representations. This presents a transition in our ideology where we
leave out reporting the distances, and rather work with the elements having a certain
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activation in the latent space.
Let us fix a network and an attack that we used to generate the AEs. For the

sake of nomenclature, we denote the transformations used to compute the output as a
series of functions fi, where i = 0, ..., l − 1 and l is the number of all transformations
(including the linear layers, convolutions, activation function, etc.). For example, in
the case of a single-layer perceptron with one activation function, the output vector y

corresponding to x is computed as:

y = f1(f0(x)). (5.1)

With this in mind, we can represent the i-th hidden activation of any input x as the
functional value Fi(x), where F0(x) is the input. The following holds:

F0(x) = x,

F1(x) = f0(x),

F2(x) = f1(f0(x)) = f1(F1(x)),

. . .

Fl(x) = fl−1(fl−2(Fl−2(x))) = fl−1(Fl−1(x)).

(5.2)

Our next step is to split the AEs into m×m = m2 groups, where m is the number
of output classes. Since both datasets we use for testing contain 10 classes, 100 groups
per network are created. We denote the subset of all AEs originally belonging to the
class o, ending up classified as the class p, where p ̸= o, as Advo→p. We also denote
the set of input images belonging to the original class as Xo, and Xp for the predicted
class, given Advo→p.

Now for a chosen adversarial example xadv ∈ Advo→p and a fixed number k, we
compute the class–alignment score on the i-th layer from the nearest neighbors of xadv

as

Zi
o→p = KNNk(Fi(Xo ∪Xp), Fi(xadv)), (5.3)

Zi
o = {z|ztgt = o; z ∈ Zi

o→p}, (5.4)

scorexadv
i = |Z

i
o|

k
. (5.5)

KNNk(A, x) represents the top k nearest neighbors of the point x among all the points
from the set A. Zi

o is a subset of Zi
o→p containing only those points, which belong to

the class o, and |Zi
o| is the magnitude of the particular set.

The results for several AE groups are shown in Fig. 5.3. We observe that even for a
fixed network and method of generating the AEs, we get relatively different behaviors.
But to properly compare multiple attack methods, we fix an (o, p) pair for all the
attacks and plot the scores. Since the AE sets do not have uniform magnitude, we
carefully pick those, which have at least 100 elements for every attack method.
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Figure 5.3: Development of the class–alignment scores (y-axis) throughout the network
layers (x-axis) for three chosen subsets of AEs, using different attacks. For brevity, we
denote the classes of CIFAR-10 with their index numbers. The horizontal line in the
middle serves as an indicator of the “breaking point” — a region in which the number
of nearest neighbors of the correct class equals the number of the nearest neighbors of
the incorrect class.

Looking at the resulting graphs, we can see that the AEs often have common
neighbors from the correct class, mainly in the first layers. In the case of L0, L1,
and L2 attacks, it usually holds for the successive layers as well. On the other hand,
the L∞ attack reveals the highest tendency to approach the incorrect class during the
classification.

The differences are noticeable across the network types as well. When training
on MNIST, the CNN prefers to keep the activations of AEs considerably close to the
correct class, whereas, in the fully connected network, the AEs slowly shift towards
the incorrect class (except for the L∞, where this happens suddenly about halfway
through the network). The network trained on CIFAR-10 demonstrates the highest
level of uncertainty when considering the class alignment. In most cases, the alignment
fluctuates around 0.5 (the half), however, some particular AE groups evoke closer
proximity to the correct class. Additionally, the most drastic shift of the class alignment
scores is triggered for L∞ AEs, which end up surrounded by incorrect class activations.

In Pócoš et al. (2022), we also proposed an alternative method to calculate the
proximity scores to class manifolds, enabling us to compare the scores throughout the
network. Using the second method, we were able to confirm our findings reported
here, as they yield consistent results. For details about the second method, we refer
the reader to the full publication.
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5.3 Entanglement

Our next step in exploring the neural networks is to look at the entanglement of the
AEs with the original examples. It was shown that the manifolds of individual classes
tend to separate (disentangle) during the forward pass in the networks, even though
they are entangled in the earlier layers (Brahma et al., 2016). Now we are mainly
interested in what happens with the activations of AEs and whether they entangle
with the test-set data during the classification. We can empirically verify this theory
by depicting the manifolds in 2D using UMAP (McInnes et al., 2018).

Once we compute the activations for the input points (adversarial, rubbish class,
and clean examples), we use UMAP to nonlinearly project the high-dimensional latent
vectors into two dimensions. To ensure the most accurate representation, we experi-
mentally adjust the internal parameters of UMAP. To highlight the corrupted data in
the two-dimensional depiction, we colorize them while leaving the test-set examples in
grey. Fig. 5.4 provides a demonstration of the MNIST network activations of the clean
vs. the corrupted data.

Figure 5.4: UMAP projection of activations of adversarial, rubbish class examples and
the testing data. High level of entanglement of AEs with the test set can be observed in
the top–left corner, whereas lower entanglement is visible in the bottom–right image.

By analyzing the projections we arrive at the following observations:

1. On the majority of the layers, the AEs are near the test-set activations, as an
evidence of entanglement. This holds for all trained networks.
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2. The main visual differences between the AEs and the test set are noticeable when
approaching the last layers. The PGD attack produces AEs with the highest
deviation from the rest of the distribution. This corresponds to the largest shift
of class attributes, found in the previous section.

3. Rubbish class activations are well separated from everything else, but on the
last layers the group RCrnd is farther from the rest of the data than the group
RCdistrib. Since we generated the rubbish class examples using the targeted attack
where the classes were represented equally, we see the formation of 10 clusters
in each rubbish class set, representing the individual classes. Thus, a specificity
in the seemingly meaningless noise patterns is observed on the level of internal
representations as well.

Although UMAP is stochastic in nature, similarities can be observed with the results
obtained via computing the class-alignments. The key observation here is that once
more, the AEs prove challenging to distinguish in the latent space, as they frequently
evoke activations resembling those from the distribution of clean data. Numerical
verification of the entanglement is described in the paper (Pócoš et al., 2022), in which
we used soft nearest neighbor loss (Frosst et al., 2019) to quantify disentanglement.

5.4 Summary

The study of AEs and their behavior in deep network architectures exposed various
causes of misclassification. We showed that their rate of convergence to the incorrect
class manifold can vary a lot, and it does not depend only on the attack method we
use but often even on the specific classes we compare. In many cases, an AE does not
leave the vicinity of the correct class manifold, yet is misclassified due to an incorrect
decision boundary at the very end of the network. This strange behavior can be an
effect of complex structures formed by high-dimensional data manifolds.

By using UMAP, we found cases in which the AEs entangle with activations of
the test data, rendering the detection methods based on seeking out-of-distribution
activations unreliable. The opposite holds for the rubbish class examples, as they
exhibit expected behavior. They start far from the input images and tend to get closer
to the activations of the clean examples.

Further research in this line of work could be focused on the investigation of ad-
versarially trained networks, as they can already possess a certain level of robustness.
Their inner dynamics might help us to take a better approach when detecting out-of-
distribution samples. To conclude this topic, we hope this work can be used for the
evaluation of novel attacks, or it can provide a way to see how the manifolds of different
input types are intertwined.
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Chapter 6

Recurrent Vision Transformer

In this chapter, we introduce Recurrent Vision Transformer (RecViT), a novel deep
learning architecture designed to address the challenge of adversarial robustness. Through
extensive analysis, we demonstrate how RecViT offers valuable insights into this prob-
lem. Our findings also highlight the benefits of incorporating top-down information
flow into the classification process.

The majority of the analysis described in this chapter constitutes the fundamental
focus of our paper, published at the 19th International Conference on Computer Vision
Theory and Applications — VISAPP 20241 (Pócoš et al., 2024b). The follow-up exper-
iments, designed to find the differences in AE activations when processed by RecViT,
can be found as an extended abstract in Pócoš et al. (2024a).

6.1 Related work

Vision transformers are integral concepts of advanced machine learning algorithms. As
described in Chapter 4, various versions of ViTs have been proposed, each with unique
advantages. Here, we build upon the idea of extending the vision transformer using
a biologically motivated top-down connection. The top-down connection, in addition
to the predominant bottom-up approach, allows the network to incorporate a different
point of view into the classification process.

The greatest source of inspiration for our architectural design is provided by Stol-
lenga et al. (2014), where the authors created Deep Attention Selective Network (DAS-
Net). The core idea of DASNet is to combine the power of CNNs with iterative process-
ing. During the forward pass, a vector comprising hidden activations is constructed,
which is fed to a reinforcement-learning-based policy. The output is a weight vector,

1The authors’ contributions are complementary. The first author (65%) originated with the idea of
incorporating a top-down connection into the vision transformer and implemented most of the exper-
iments. The second author (30%) provided essential remarks about the validity of the experiments,
facilitated the design of a proper training regime, and generated AEs for the CIFAR-10 dataset.
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determining the strength of the convolutional kernels used in the CNN in the subse-
quent iteration. This results in an iterative classification process, and in each iteration,
the network narrows down its focus, being able to make a finer distinction between
certain details.

This is, however, not the only similar architecture. There is a number of publica-
tions, which in certain ways resemble our work, yet there are fundamental differences
between them. The Perceiver (Jaegle et al., 2021) is a transformer-based architecture
created to be able to scale to a very large input by progressively transforming the rep-
resentation by a bottleneck, with potentially shared weights. Gehrig and Scaramuzza
(2023) applied recurrence for object detection, but their architecture is composed of
multiple parts, such as convolutions, attention modules, LSTM, and more. Presum-
ably, the closest to our work is the modified vision transformer published by Messina
et al. (2022). They augment vision transformers with recurrence; however, in their
case, the recurrence is also present in the patch tokens. Also, they do not explore the
robustness of the proposed model, nor extend the inference with data augmentation.

To the best of our knowledge, RecViT is the first architecture to repeatedly feed the
class token into the next iteration phase, omitting the creation of additional weights
and keeping the memory complexity stable. We are also unaware of another similar
work on a ViT version where the input modification during the inference resembles
ours.

6.2 Model design

To use a vision transformer for image classification, we first need to split the image
into equally sized patches, which are later embedded to form vector representations. In
addition to patch embeddings, to collect the cumulative information about the entire
image during the classification, class token can be employed (and we pick this option in
our design). It is technically a vector of the same length as the image patch embedding.
During the learning phase, its initial values are optimized so that it contains generally
neutral information about the given dataset.

After the forward pass, the activation of the class token is inserted into an MLP,
producing the network’s final decision. In RecViT, however, this is the step where we
diverge from the standard output computation. Instead of computing the output class
(which, in our case, is optional), we proceed to the second iteration, in which the whole
classification process is repeated, but the class token is initialized with its activation
from the previous computation. This step results in an initialization of the patch token
biased towards the most likely output classes. During the subsequent inference, the
self-attention computation can potentially focus on more relevant features, emphasizing
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Figure 6.1: Illustration of the first two iterations of the RecViT architecture using an
input image from the Oxford-IIIT PET dataset (Parkhi et al., 2012). The large patch
size serves solely for visualization purposes, and in practice, it is much smaller.

a subset of particularly relevant classes for the current input.

Overall, we have a fixed number of iterations, using the last one to compute the
final output. During this process, all of the used weights are shared, so we do not need
to use any additional parameters. Fig. 6.1 shows a detailed scheme of the first two
iterations of the architecture.

6.3 Input

6.3.1 Benchmark datasets

To evaluate RecViT’s performance, we opt for two benchmark image classification
datasets, CIFAR-10 (Krizhevsky, 2012) and Oxford-IIIT Pet (Parkhi et al., 2012),
further referred to as the PET dataset. While the former provides a reliable comparison
with the state-of-the-art models, by using the latter, we gain insight into the model’s
operation for more complex and realistic data. The PET dataset comprises 37 classes
of dog and cat breeds, where the images have diverse but much higher resolution than
CIFAR-10 images. To achieve consistency during training and evaluations, we pad the
PET images to a square shape, then we resize them to have the shape of 224×224
pixels.

The major advantage of the PET dataset (to be demonstrated in section 6.6) is the
presence of the segmentation masks, i.e., annotations for each input pixel, determining
whether it is a part of an object of interest, its boundary, or the background.
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6.3.2 Adversarial examples

Since our primary goal is to verify whether the RecViT model possesses more robust
behavior against out-of-distribution samples, we need some data to experiment on. For
this, we use adversarial examples, as they are often viewed as an approximation of the
worst-case noise (Madry et al., 2018). Generating AEs is a trivial task nowadays, yet
evaluating the robustness of various networks in an unbiased manner is still a challenge.
Therefore, we devise a way of crafting AEs while considering the many logical fallacies
researchers are often unable to avoid.

Since the computational graph of RecViT is, in general, deeper than that of a
vanilla ViT, we cannot rely on pure white-box attacks, as they would be influenced by
the quality and the magnitude of the computed gradients. Therefore, in this case, we
opt to build a substitute model on which we will generate the AEs and then transfer
them to ViT and RecViT. The choice of the substitute model is, again, non-trivial
and should not be arbitrary. It has been shown that networks tend to transfer their
AEs to similar architectures with higher success rates (Mahmood et al., 2021). Due
to this, the substitute model should not resemble any of the two networks. Hence,
a convolutional network could be as impartial to both networks (ViT and RecViT).
CNNs, even though they do not transfer to transformer-like architectures so well, meet
our criteria.

Training one substitute model and crafting high-confidence AEs is a valid method,
but to obtain even stronger and more transferable AEs, we can train multiple dissimilar
models (Liu et al., 2017). We thus fine-tune three CNNs pre-trained on ImageNet (Deng
et al., 2009), namely AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2016) and
VGG (Simonyan and Zisserman, 2015) for each of the two datasets. After achieving
a reasonable classification accuracy (85.03%, 91.52% and 90.75% on CIFAR-10, and
74.27%, 87.22% and 89.15% on PET dataset), we generate adversarial examples using
the PGD attack (Madry et al., 2018). To produce AEs with differing perturbation
magnitude, we limit the ϵ-ball for these values: ϵ ∈ {0.01, 0.02, ..., 0.2} for CIFAR-10,
and ϵ ∈ {0.007, 0.022, ..., 0.202} for PET. After this step is completed, we create a
set of particularly strong AEs (in theory), which not only fool the network on which
they were generated but also the other two trained networks on the same dataset. We
denote this category as Cross-Validated (C-V) AEs. A small sample of generated AEs
with their corresponding original images is shown in Fig. 6.2. We can notice that the
AEs are often misclassified with 100% confidence.
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Figure 6.2: Sample of adversarial examples with high potential to transfer to an un-
known network trained on CIFAR-10 (left triples) or the PET (right triples) datasets,
evaluated on AlexNet.

6.4 Training

To classify the images with great accuracy, we fine-tune a fairly small vision trans-
former ViT-tiny (Steiner et al., 2022), which was earlier pre-trained on the ImageNet
dataset. The training is carried out using standard backpropagation through time, but
we distinguish two variants, depending on the time steps used for error minimization.

6.4.1 Error propagation

During the training, after each input, we can get multiple outputs (one per iteration).
Therefore, we can distinguish how exactly the error propagates.

In the method 1 (M1), we only optimize the last prediction. This emphasizes the
fact that the last prediction is the most important, while the rest can serve for a more
general computation of the class token. The loss definition is the following:

lossM1 = LCE(fθ2(ck−1), l; θ1), (6.1)

where LCE is the cross-entropy loss, θ1 denotes the model parameters, l is the target
class label and fθ2 is the multi-layer perceptron used to classify the class token ck−1 in
the final iteration.

In contrast with the previous loss computation, in the method 2 (M2), we optimize
the predictions in every time step. This promotes the idea that all of the time steps
are equally important. Practically, during the BPTT, we optimize two parallel aspects:
the prediction’s correctness and the class token usefulness for the following iteration.
The optimization procedure is thus defined as follows (using the same nomenclature as
in the method 1):

lossM2 =
k−1∑
t=0

LCE(fθ2(ct), l; θ1). (6.2)
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6.4.2 Input augmentation

To fully facilitate the power of iterative computation, we do not necessarily need to
keep the image unchanged. Instead, we suggest three alternatives for input modification
during the inference. An illustration of the non-trivial data augmentation is shown in
Fig. 6.3.

• Vanilla: No data augmentation. In each iteration, the same image is presented
to the network.

• Random Transform (RandT): At the start of each forward pass, random
values of translation, rotation, and scale are generated. These values are used to
progressively modify the input image in each iteration. Thus, the network has
more information and can hopefully adapt to a slightly different view.

• Blur: To extract different levels of details during the inference, we progressively
blur the image. We start out with a clear image, and after each iteration, we
apply Gaussian blurring to the previous input.

• Invblur: Here, we use identical inputs as in the “Blur” method, but in reversed
order. When using recurrence for data processing, the inputs from different
time steps are weighted unevenly. Therefore, this variant should prevent a clean
accuracy drop.

Figure 6.3: Illustration of the three input modification strategies (rows) when feeding
them into RecViT consisting of four iterations.
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Table 6.1: Accuracy and standard deviation (in %) of RecViT networks using various
input augmentation strategies on PET dataset.

Test set AlexNet AEs ResNet AEs VGG AEs C-V AEs
RecViT variant Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

Baseline ViT 88.80±0.57 9.26±1.37 14.67±1.90 8.96±1.87 10.66±1.42
Vanilla M1, k=3 89.60±0.54 9.52±1.14 17.19±1.66 10.10±0.97 11.83±1.02
Vanilla M2, k=2 88.67±0.31 9.68±0.90 19.62±1.21 11.49±0.97 13.06±0.81
RandT M1, k=2 89.02±0.24 11.24±0.89 17.58±2.35 12.65±1.56 13.58±1.22
RandT M2, k=2 88.05±0.99 11.17±0.98 18.18±3.94 12.22±0.57 13.28±1.49

Blur M1, k=3 85.23±5.66 12.75±3.34 16.89±3.79 11.36±3.75 13.43±3.56
Blur M2, k=4 87.42±1.56 13.43±2.81 18.83±3.58 12.54±3.14 14.62±3.09

InvBlur M1, k=2 86.99±0.98 15.57±3.60 24.91±10.70 17.83±6.95 18.93±6.63
InvBlur M2, k=2 85.27±1.28 17.04±1.21 28.65±3.79 17.87±2.03 20.54±2.15

6.5 Results

We train all the possible combinations of loss computation and input modification
strategies, with varying numbers of iterations k ∈ {2, 3, 4}, resulting in 24 models. To
also report their deviations, each configuration is trained five times.

6.5.1 Robustness

The training of our models is followed by their accuracy and robustness evaluation,
found in Table 6.1. The table contains the best picks among all the possible values of
k. The results show that RecViT’s Vanilla variant yields a slight increase in robustness,
mainly for ResNet and VGG AEs. After training using M1, there is even an increase in
accuracy on clean data. The accuracy and robustness profile of RecViT after feeding
with randomly transformed input is comparable with the Vanilla variant. Interestingly,
the clean accuracy drops when feeding the network with blurred data while the robust-
ness increases. Nonetheless, in the best configuration (i.e., InvBlur variant using M1,
k=2), a 2% drop in clean accuracy causes ≈ 8% robustness increase.

The results of the networks trained on CIFAR-10 are aligned with those described
for the PET dataset. More concretely, the Vanilla variant achieves matching robustness
and accuracy as the baseline ViT. In this case, using blurring as augmentation, the
robustness increases from≈ 46% to≈ 68% with a minor drop of≈ 1% in clean accuracy
(see the upper three blocks of Table 6.2).

6.5.2 RecViT vs. ViT

The robustness increase detected after showing blurred versions of the image (along
with the clear image) might be a simple effect of the image quality deterioration. When
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the image is distorted, we can expect a decline in the classification accuracy, while the
robustness can increase due to the partial elimination of adversarial noise. To under-
stand whether the robustness increase is caused exclusively by the input modification
or the recurrent architecture plays an important role, we aim to reconstruct the same
blurring conditions in an ordinary ViT.

After some experimentation, we quickly found that using a fixed input, we only
achieve a little. Even after a single blurring step (the same as in RecViT for k = 2),
the accuracy quickly drops, rendering it unreasonable to draw any conclusions and
to compare the robustness of the networks. Thus, in Alg. 1, we propose a tailored
inference of ViT, further denoted as ViT Blur, in which the network is presented
with input images of the same levels of details as for the corresponding RecViT using
InvBlur inputs. For a given k, we start with feeding the clean input into the network.
We continue with a progressive blurring of the image altogether k − 1 times, whereas
after each blurring, we feed the image into the network. After inserting all k images, we
use the cumulative output scores to pick the class with the highest value. The blurred
inputs are also integrated into the optimization during the training phase.

Algorithm 1 Inference of ViT using variously blurred input
Require: k ≥ 1 ▷ Number of iterations (k = 1 for no blurring)
Require: model, data ▷ ViT and an input image
Require: blur ▷ Blurring function

i← 1 ▷ Initializing the counter
logits = 0⃗ ▷ Vector of zeros
while i ≤ k do

i← i + 1 ▷ Increasing the counter
logits← logits + model(data) ▷ Accumulating the probability scores
data←blur(data) ▷ Blurring the data

end while
output← argmax(logits) ▷ Returning the result

From the results provided in Table. 6.2, we see that, in general, the distortion of
the images does not increase the robustness as much as in the case of RecViT. More
specifically, on CIFAR-10 we achieved the best robustness of 54.61% for ViT (setting
k = 3), while a similarly accurate RecViT network (M2, k = 2) has robustness of
67.67%. On the other hand, the analysis of the PET dataset at first glance does
not yield positive results. The robustness for the best RecViT model of 18.93% (M1,
k = 2) is within the standard deviation of the robustness of a similarly performing ViT
Blur model. In further analysis described in the next section, we take a closer look at
RecViT’s behavior on the PET dataset.
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Table 6.2: Comparison of accuracy and robustness (in %) of RecViT InvBlur models
with ViT models using the same input modification during training and testing.

PET CIFAR-10
Test set C-V AEs Test set C-V AEs

RecViT variant Mean±Std Mean±Std Mean±Std Mean±Std
Baseline ViT 88.80±0.57 10.66±1.42 97.64±0.11 45.78±1.92

InvBlur M1, k=2 86.99±0.98 18.93±6.63 97.44±0.09 43.89±2.98
InvBlur M1, k=3 86.32±1.25 14.83±5.48 97.43±0.12 44.85±2.12
InvBlur M1, k=4 85.33±2.74 10.58±2.16 97.44±0.04 45.09±2.04

InvBlur M2, k=2 85.27±1.28 20.54±2.15 96.46±0.14 67.67±1.67
InvBlur M2, k=3 78.09±7.14 21.83±4.91 95.12±0.25 69.88±1.95
InvBlur M2, k=4 74.31±5.54 22.36±2.26 94.97±0.15 68.32±1.01

ViT Blur k=2 86.21±0.83 18.20±1.25 97.53±0.05 50.96±3.13
ViT Blur k=3 79.19±1.50 15.33±2.03 96.04±1.25 54.61±2.04
ViT Blur k=4 68.45±3.37 12.71±2.21 93.51±1.47 53.11±2.91

Table 6.3: Accuracy and robustness (in %) of the top 3 runs of RecViT models trained
on PET dataset using InvBlur as augmentation.

Test set C-V AEs
InvBlur M1, k=2 88.13 28.44
InvBlur M1, k=3 87.68 21.11
InvBlur M1, k=4 88.15 12.47
InvBlur M2, k=2 87.14 24.02
InvBlur M2, k=3 85.59 24.28
InvBlur M2, k=4 84.01 26.53

6.5.3 Robustness–accuracy trade-off

We previously pointed out that in the case of CIFAR-10, RecViT offers significant
robustness gains at the cost of a marginal drop in clean accuracy. Even though RecViT
trained on the PET dataset does not exhibit the same behavior, it demonstrates some
curious properties. After a more careful look at the results (see Table. 6.2), we notice
an atypically high standard deviation of accuracy and robustness reported for RecViT
using InvBlur, mainly when k = 3. In this case, the training does not properly converge.
Since a broad hyperparameter search was conducted for the Vanilla RecViT, a thorough
approach would be to perform a finer hyperparameter search for this particular network.
Since we extensively optimized mainly the baseline, comparisons with other variants
would be unfair. To be consistent, we would be forced to provide the same optimization
for all the tested network versions. Due to time constraints, we omit this step, and we
further explore the high variance by training 10 additional runs of the RecViT InvBlur
networks, for all the other choices of k and error propagation.
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Table 6.3 reports statistics for the top three performing runs of the selected mod-
els. The best network (M1, k = 2) achieves substantially higher robustness than the
adjusted ViT, described in the previous section (28.44% vs. 18.20%), while also per-
forming better on the clean data (88.13% vs. 86.21%).

Further investigation shows that robustness and accuracy are not contradictory
goals in our case. The plot of robustness and accuracy of the model version having
the biggest deviation (Fig. 6.4) indicates a positive correlation between robustness
and accuracy, which is often contradictory in the literature. The calculated average
correlation coefficients of 0.57 and 0.81 for RecViT InvBlur networks (trained with M1
and M2, respectively) mean that further enhancing the accuracy via more exhaustive
optimization might also heighten the robustness levels of RecViT networks.

6.6 Heatmap visualization

An integral concept when using vision transformers is the inherent self-attention mech-
anism and the possibility of visualizing the weights for individual image patches. We
can peek inside the network directly by extracting its internal components without
the need to rely on visualization methods such as Grad-CAM (Selvaraju et al., 2017).
This prevents any external influence on the produced attention maps invoked by the
hyperparameter choices of the potential visualization method.

6.6.1 Extracting the attention

As described in Chapter 4, the innate self-attention mechanism in vision transformers
can be exploited to produce maps of image regions, from which the information is

Figure 6.4: The plot of robustness vs. accuracy trade-off for individual RecViT (In-
vBlur) networks trained with M2 and k=3, compared to ViT Blur models trained on
the same data augmentation with various k.
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further propagated. Therefore, the intermediary computation of self-attention can
provide us with saliency maps.

Our networks consist of 12 layers and 6 attention heads on each of them. After
focusing only on the attention scores of the class token, we end up with 78 attention
maps per output calculation. To make matters worse, due to RecViT’s iterative nature,
the total number of attention maps per input image is multiplied by the number of
iterations k. Therefore, we merge the attention scores for all the used heads, resulting
in k × 12 attention maps in the RecViT. Their quality depends on two main factors:
the patch size and the image resolution. Since in this phase, none of those can be
tweaked, the network on the PET dataset should yield nicer attention maps.

Upon retrieving the importance scores, we can plot the individual patch positions
in the input space with the color taken from a chosen color map. For visually more
appealing heatmaps, it is sometimes beneficial to use the Gaussian blur to produce a
smoother version of the map in the input space. Fig. 6.5 depicts the original and the
smooth attention map for two layers of RecViT after inserting a random image from the
PET dataset. We also visualize the overlap with the original image by darkening the
unused image parts. According to our expectations, the attention maps for CIFAR-10
(see Fig. 6.6) have seemingly worse quality, yet in many cases, they clearly match the
object’s position and shape.

Input

Attention 1 Overlap 1 Attention 5 Overlap 5

Figure 6.5: Comparison of the original (top) and blurred (bottom) version of RecViT’s
attention maps, with their overlaps for the images on the first (left) and the fifth (right)
layer.

6.6.2 Adversarial examples and attention

In a previous study by Kotyan and Vargas (2021), it was pointed out that deep con-
volutional neural networks lose their focus of attention when an AE is inserted. To
test whether similar behavior holds in our RecViT network, we seek differences in the
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Figure 6.6: Development of the attention maps for a CIFAR-10 input on the first five
layers of RecViT.

heatmaps triggered by clean and adversarial inputs. When plotting the activations of
AEs and their corresponding clean examples (see Fig. 6.7), we frequently observe that
the network does indeed lose focus on AEs. On the other hand, upon processing a
clear image, the network generates consistent heatmaps. Our observations, however,
are pretty difficult to analyze, and it is hard to draw justifiable conclusions. To alleviate
this issue and to produce a numerical assessment of the attention map’s “correctness”,
we use the information encoded in the segmentation map provided for the PET dataset.
Therefore, we calculate the overlap of the attention map with the segmentation mask.

There are several possibilities for the overlap computation. Cosine similarity, dot
product, or a simple distance measure in Lp norm are usually apt techniques for such
purposes. However, these techniques are unsuitable for building statistics across mul-
tiple inputs. The varying percentage of pixels tagged as “inside” the object, causes a
scaling problem. The same perceived overlap gets mapped to different values, rendering
the collection of overlap statistics not comparable.

To mitigate the scaling problem, we propose the following similarity computation.
First, we use the segmentation map to construct two binary matrices, S+ containing
ones inside of the object and S− marking with ones the background pixels of the
image. Second, to obtain vectors instead of matrices (s+ and s−), we flatten the
matrix representations. Similarly, we flatten the merged representation of attention
scores to get a vector a. Third, we compute the overlap score of the attention map a
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Figure 6.7: Comparison of attention maps in early layers of RecViT, after presenting
a clean image of a cat (top row) and its corrupted version (bottom row).
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with the positive and the negative part separately, as

score+ =
∑

i ais
+
i

∥s+∥1
, score− =

∑
i ais

−
i

∥s−∥1
. (6.3)

The final step is to compute the overall similarity score as the difference between the
positive and the negative components: score = score+ − score−.

Having a clearly defined similarity score, we tested the attention of various RecViT
versions. In Fig. 6.8, we compare the least robust RecViT versions (Vanilla) with the
most robust versions (InvBlur), where the number of iterations was set to k = 3. We
have several main observations:

1. The similarity score peaks three times in all networks (except Vanilla M1). In our
opinion, this corresponds to the network’s highest focus on the relevant image
regions prior to the prediction.

2. RecViT Vanilla networks have, in general, smaller similarity scores than their
more robust counterpart (InvBlur).

3. The Vanilla M1 network does seem to extract relevant information only during
the first iteration. Afterwards, it just retains the produced information (as the
attention is spread across the whole image).

4. The Vanilla M2 network evidently loses attention when an AE is presented. The
similarity score here is lower than for the original examples throughout the whole
network.

5. During the first two iterations of the InvBlur models, the scores for AEs copy the
scores of clean examples. We judge that the effect of blurring the image forces
the model to focus on the same parts for the AE as for its clean counterpart.

6. The similarity score of the most robust model (InvBlur, M2) uniformly increases
in each iteration.

6.7 Summary

Based on the vision transformers, we designed RecViT, a model that incorporates top-
down attention flow for image classification. While there is no memory overload in
our design, the inference time grows linearly with the number of used iterations. Even
though RecViT, at first, demonstrated only marginal robustness gains by using tailored
input augmentations, we were able to train the model to become more resistant against
the tested adversarial attack. The cost of the heightened robustness is only 1% drop
in clean accuracy, verified on two datasets.
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Figure 6.8: Development of heatmap similarity to the segmentation maps of the PET
clean examples vs. corresponding corrupted images, computed using 100 samples.

Our analysis shows that the RecViT network possesses the capability to resist AEs
better than an unprotected network. We also found a positive correlation between
robustness and clean accuracy. In our opinion, improvements can be achieved by a
more sophisticated input transformation to incorporate multiple levels of details in the
network’s decision process. To verify whether a similar level of robustness holds for
more tailored AEs, further work should also include testing on adaptive attacks.

Robustness improvement is only one part of our study. We also analyzed the atten-
tion of the network. For heatmap visualization, we utilized the inherently available raw
attention scores. In our models, we detected and numerically assessed the differences
in attention when the network is processing clean vs. adversarial images. Even though
the attention maps provide a certain level of feedback, the amount of interpretability
remains unclear due to many non-linear transformations preceding the self-attention
computation. For future research, it would be beneficial to explore the effects of more
sophisticated extraction methods of self-attention explanations.
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Chapter 7

Explainable addressee estimation

This chapter introduces a novel approach to addressee estimation in Multi-Party Con-
versations (MPCs). By building upon the previous work and incorporating various
attention mechanisms, we design an architecture that surpasses the former state-of-
the-art technique in terms of predictive accuracy, and allows the user to generate
real-time explanations of its actions.

The work described in this chapter constitutes a major part of a paper “A Multi-
Modal Explainability Approach For Human-Aware Robots in Multi-Party Conversa-
tion”, which is at the time of writing this thesis under consideration in the Computer
Vision and Image Understanding1 journal. The key concepts, along with some prelim-
inary results, are available as an extended abstract in Bečková and Pócoš (2024).

7.1 Motivation and related work

In a multi-party conversation, the ability to correctly recognize the addressee is vital,
as it contributes to smooth conversation. For a machine learning system to fully grasp
a particular MPC, the question “Who says what to whom?” should be answered (Gu
et al., 2022). In our study, we focus only on the third part of the question (to whom?).
People are accustomed to leading complex conversations and, in general, thrive in this
task. However, deploying a humanoid robot in real world to lead a smooth conversation
is anything but trivial. In order to be successful in an MPC scenario, it needs a well-
designed algorithm and proper data to train on.

Earlier approaches for addressee estimation focused on rule-based systems (Traum
et al., 2004). In subsequent works, these were substituted for more advanced methods,
such as Bayesian networks (Jovanovic, 2007) or support vector machines (Baba et al.,
2011). After deep learning gained popularity, various forms of neural networks have
been used to analyze multi-party interactions. An example is Minh et al. (2018), who

1https://www.sciencedirect.com/journal/computer-vision-and-image-understanding
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were the first to train end-to-end deep learning to estimate the addressee, provided
the utterance and the gaze information. A similar approach was examined by Tesema
et al. (2023), who, along with the proposal of a novel dataset allowing a fine-grained
audiovisual analysis (E- MuMMER), used CNNs to estimate the addressee. Building on
these advances, Mazzola et al. (2023) proposed and examined an addressee estimation
pipeline that combines facial and pose information on the Vernissage dataset (Jayagopi
et al., 2013).

7.2 Preparations

7.2.1 Vernissage corpus

Training a model to estimate the addressee requires a solid data corpus. In our work,
we make use of the Vernissage dataset (Jayagopi et al., 2013) due to its perfect fit to our
needs and the possibility of comparing it with the benchmark accuracy set by Mazzola
et al. (2023). The dataset contains video recordings of 13 triadic interactions between
two participants and a stationary robot NAO (Shamsuddin et al., 2011), placed in a
realistic environment where the participants discuss paintings at an art exhibition.

The dataset is extensively annotated, allowing supervised training algorithms to be
employed for a wide range of perception tasks. These include pose estimation, speech
recognition, speaker localization, nodding, and many more. For the sake of this study,
we only focus on the addressee estimation.

Each video segment is labeled with one of the following tags, according to the
addressee’s position: ROBOT, RIGHT, LEFT, GROUP, and NO-LABEL. To consis-
tently compare our approach with the baseline model (Mazzola et al., 2023), we limit
the possible output values, and we only use the interaction segments in which ROBOT,
RIGHT, or LEFT are addressed. We also employ identical data pre-processing, where
the data from the robot’s cameras are processed into two parallel streams, carrying
information about the speaker in two ways: 1) face images and 2) body pose vec-
tors. These serve as inputs to our ML model. The input is further divided into
non-overlapping sequences of 10 frames, which we use for training. A sample sequence
is shown in Fig. 7.1.

7.2.2 Improving the state-of-the-art

Prior to a detailed description of our explainable model, we seek to improve the state-
of-the-art accuracy through subtle changes in the architecture, followed by a thorough
hyperparameter search. The previous model (Mazzola et al., 2023) consists of three
main steps:
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Figure 7.1: A sample sequence from the Vernissage dataset (top) and two data streams
created from it (bottom) during the data pre-processing (Mazzola et al., 2023).

1. Parallel processing of the face image and the body pose data for a fixed time step
t. In both cases, a convolutional network is employed to produce the face and
the pose representation, f t and pt, respectively.

2. Fusion of face and pose embeddings, producing a single vector representation
rt of the inputs at the given time t. To mitigate the weak influence of the pose
vector (compared to the longer face vector), the pose vector is appended 29 times
instead of a simple concatenation.

3. Gradual insertion of the fused embeddings rt into an LSTM network, to integrate
the information about all time frames. Finally, a simple MLP is employed to
produce the final addressee estimate.

We alter the architecture of Mazzola et al. (2023) by three subtle yet essential
tweaks. First, we replace the pose network with a simple MLP. As the body pose data
are made of triplets of key points extracted using OpenPose (Cao et al., 2021) (2D
coordinates along with their confidence scores), we argue that a shallow MLP does an
equally good job, if not better, than a CNN. Second, we revert to a plain concatenation
of the face and the pose embeddings. To prevent neglecting the influence of the pose
vector, while optimizing the embedding dimensions, we avoid large mismatch in size
between the two representations. Third, we replace the LSTM network with a GRU.
Based on the complexity of the dataset, the choice of a simpler recurrent network can
be beneficial.

To evaluate our model, we train it on all interactions except one, which is kept for
testing. This step is repeated, but in each repetition we exclude data from a different
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interaction. To also compute the statistical validity of our testing results, we train five
runs of every configuration. Table 7.1 contains information about the search range
of the number of neurons used and the activation functions. Table 7.2 refers to the
parameters relating to the optimization process, and Table 7.3 lists the possible data
augmentation strategies, their ranges and chosen values for the best performing model.
Bayesian optimization was applied to find the parameters for the best performing
model, leveraging the online tool WandB (Biewald, 2020).

Using our approach, we achieve an average absolute improvement of 4.5% F1 score
compared to the state-of-the-art (79.51% instead of 75.01%). Moreover, our model
requires a substantially lower number (≈ 0.74%) of trainable weights (677,623 instead
of 91,706,749). By eliminating the huge memory and computational overload, the
deployment of our model in physical robots to provide real-time addressee estimation
is much more feasible.

Table 7.1: List of hyperparameters defining the size of the addressee estimation archi-
tecture and the activation functions, their ranges and the selected values.

Parameter name Considered values Chosen value

normalization {data stats, ImageNet stats} data stats
dropout probability {0, 0.1, 0.2, 0.3} 0.2
hidden neurons face {128, 129, . . . , 400} 256
hidden neurons pose {16, 17, . . . , 40} 32
hidden neurons GRU {16, 17, . . . , 40} 32
output neurons face {10, 11, . . . , 64} 32
output neurons pose {10, 11, . . . , 32} 20
output neurons GRU {8, 9, . . . , 32} 20

activation function face {ReLU, tanh} tanh
activation function pose {ReLU, tanh} tanh
activation function GRU {ReLU, tanh} tanh

CNN {small, medium, large} large

7.3 Attentional model of addressee estimation

Having designed and trained a model for estimation of addressees’ location in the
Vernissage dataset, we now strive to introduce several modifications, so that the model
would be inherently capable of producing various kinds of explanations of its decisions.
To achieve this, we take advantage of the existence of multiple types of attention
mechanisms often used in ML systems (Brauwers and Frasincar, 2023).

To be more specific, we propose three additional changes of our previous model,
each bringing its own way of extracting some form of explanations. The overall scheme
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Table 7.2: List of optimization-related hyperparameters of the addressee estimation
model, their ranges and the selected values.

Parameter name Considered values Chosen value

optimizer face {SGD, Adam, RMSprop} RMSprop
optimizer pose {SGD, Adam, RMSprop} RMSprop
optimizer GRU {SGD, Adam, RMSprop} Adam
LR decay pose [0.5, 1] 0.75
LR decay face [0.5, 1] 0.9725
LR decay GRU [0.3, 1] 0.5

learning rate pose [e−10, e−7] 0.00018
learning rate face [e−10, e−2] 0.01
learning rate GRU [e−10, e−7] 0.00009

batch size {10, 11, . . . , 350} 16
number of epochs {5, 6, . . . , 50} 15

Table 7.3: List of hyperparameters of the addressee estimation model used during data
augmentation, their ranges and the selected values. The parameters describe various
transformations of the input image.

Parameter name Considered values Chosen value

brightness [0, 0.5] 0.2
contrast [0, 0.5] 0.4

saturation [0, 0.5] 0.45
hue [0, 0.25] 0.135

angle [0, 45] 25
crop [40, 50] 44

kernel size {1, 3, 5, 7, 9} 7
sigma [0.1, 3] 0.8

is shown in Fig. 7.2, in which, using the models M1, M2 and M3, elaborately described
in this section, we are able to generate the explanations.

7.3.1 Incorporating attention

Face representation We replace the convolutional network processing the face with
a vision transformer. The main contribution of ViT is the ability to extract heatmaps,
signifying the real-time pixel-wise importance. Its drawback is, in general, poor per-
formance without pre-training on a massive data corpus. However, in this case, we did
not observe any performance decrease compared to the CNN approach.

Pose vs. face After calculating the face embedding (f t ∈ Rdface) via a vision trans-
former and the pose embedding (pt ∈ Rdpose) using an MLP, we devise a way to combine
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Figure 7.2: Addressee estimation workflow for the explainable model. The network M1
(ViT) computes the face representation, M2 serves to fuse the two data streams, and
M3 merges information across the entire sequence.

these representations in a manner that also produces a numerical assessment of their
relative contributions. To do this, we leverage the query-less variant of the additive
scoring function (Brauwers and Frasincar, 2023), which outputs a single score for a
given input vector v:

score(v) = wT
D ReLU(W v + b), (7.1)

where wD ∈ Rdin , W ∈ Rdin×dv , b ∈ Rdin are trainable weights, din is a tunable
hyperparameter, and dv is the length of the input vector v. To be capable of using
the same weights for scoring both the face and the pose embeddings, we ensure that
dface = dpose = dv. Next, we apply softmax to the scores to compute the relative
contributions (sf t

, spt
) of each of the two vectors as:

sf t
, spt

= softmax(score(f t), score(pt)). (7.2)

The final step is the element-wise addition of the two embeddings, given their corre-
sponding weights, to produce a fused embedding rt for a given time step t:

rt = sf t
f t + spt

pt. (7.3)

Gated Recurrent Unit with attention To fully combine the information about
the entire sequence (r1, ..., rn) in the baseline architecture, we employ a GRU network.
However, to develop an “explainable” alternative, we go beyond the ordinary GRU and
include a variation of attention mechanism, in which we use the hidden state of the
RNN as a query (Brauwers and Frasincar, 2023). Thanks to the added attention, along
with the inference computation, we can extract time-frame-wise importance scores.

Let us denote the stacked representation of the processed inputs through all time
frames as R = [r1, r2, ..., rn]. These are linearly projected to form keys, queries, and
values:

Qr = W QR, Kr = W KR, V r = W V R, (7.4)
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Figure 7.3: Processing of sequential data using the GRU network combined with an
attention mechanism. The input sequence (left) is projected into keys, queries, and
values. The queries are fed into the GRU, and the final hidden representation is used
to extract the importance scores applied to the values.

where the W Q, W K and W V are trainable weights. The query vectors are then gradu-
ally fed into the GRU to construct the embedding q, integrating information about all
time frames. Using q, we compute its similarities with the keys encoded in the matrix
K, providing the significance of each time frame contribution (c = Kq). Finally, the
sequence representation u is formed after an element-wise addition of the values V ,
using the weights contained in c:

u =
n∑

i=1
ciV i. (7.5)

A fully connected layer taking u as an input produces the final addressee estimation.
Fig. 7.3 provides a graphic illustration of our recurrent block.

7.3.2 Performance

Even though we focused our model design mainly on improving the inherent explain-
ability, after training the network, we achieved comparable accuracy with the pre-
viously created, non-explainable model. In the confusion matrices (see Fig. 7.4) of
the explainable and the non-explainable models, we see very similar misclassification
rates. Both models have slightly higher accuracy when the addressee is not the robot.
The average F1 score of the model after implementing all the explanations decreased
only marginally, and is roughly on par with the basic version (79.40% and 79.51%,
respectively).
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Figure 7.4: Confusion matrices for the non-explainable (left) and the explainable (right)
model.

7.3.3 Extracting explanations

Vision Here, we exploit the nature of the self-attention computation and simply
visualize the raw attention scores. Due to the modest image resolution of 50×50 pixels,
the quality of the heatmaps is limited; nonetheless, they provide real-time feedback
about the important regions of the input image. A sample visualization of the heatmaps
using two frames of the Vernissage dataset can be found in Fig. 7.5.

0

1
input a�en�on map input a�en�on map

Figure 7.5: Visualization of the attention maps extracted from the penultimate layer
of the vision transformer.

Merging modalities To compare the relative importance of face and pose infor-
mation, we simply extract the weights used to combine the two embeddings. The
knowledge of the significance of each of the factors can provide the speaker cues about
what the classification is based on. In case the model makes an incorrect estimate,
the speaker can potentially re-adjust their position to improve the accuracy of the
subsequent or even the current estimate.

To determine whether our model is capable of producing informative explanations,
we analyzed the score distribution for the best trained model. We discovered that the
face and the pose in the Vernissage dataset are equally important. The average score
for the pose is 0.5 with a standard deviation 0.008. The face vector gets an equal
contribution since the softmax function is employed to determine the relative scores.
This practically means that no valuable feedback is provided.
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To explore our possibilities, we tested the effect of having various sizes of pose
and face embedding dimensions. We hypothesized that if the embedding dimension is
low enough, in order for the network to make the best possible classification, it needs
to treat the two modalities unequally. Especially in cases when some information is
corrupted (e.g., partially occluded face or erroneous extraction of body pose keypoints).
After training the network with various lengths of pose and face vectors, we noticed a
strong negative correlation of −0.87 (p = 0.001) between the dimensionality used for
the vector embeddings and the logarithm of the deviations of the score. This translates
to a higher expressiveness of the network when the dimensions are lower. It also means
that when optimizing the model, keeping the dimensions of the pose and face vectors
low is beneficial for explainability.

We also found that the expressiveness of the network heavily relies on other com-
ponents integrated into the architecture. For example, after replacing the ViT with
a CNN and using GRU without the attention, the explanation capability increases.
The pose information is in this case slightly prevalent, having a score of ≈ 0.62 with
a standard deviation of 0.15. Whereas for a comparable embedding dimensionality in
the whole combined architecture, the pose has an average score of 0.5 and a deviation
of 0.04.

Verbal explanations The attention weights provided in the recurrent network offer
an ideal way of retrieving information about those time frames, that have the highest
impact on the classification.

Using these activations, we design a method to automatically generate a verbal cue
about the time of the most important part of the input sequence. To capture this,
we use the average of the attention weights after computing the similarities of the
query from the GRU with the keys. The average of a sliding window is compared to a
threshold value θ, and if it exceeds the number 1/k + θ, where k is the length of the
sequence, an output sentence is generated based on the sliding window’s location. As
a proof of concept, in this experiment we distinguish between three possible regions of
importance: the beginning, the middle, and the end of the interaction.

Given sequences of length 10, two sample verbal cues are shown in Fig. 7.6. We
can see the weights of the individual time frames distinguished by the color and size
of the red dots. Even though these explanations are particularly easy to interpret, we
must be aware that mixed information about the face and pose is used. This means
that the visualization of the faces alongside the attention scores is merely a feature to
exploit and cannot fully serve to assess the credibility of the explanations.

To further explore the properties of our explainable model, we analyze the scores,
given 10-frame-long sequences of the Vernissage dataset. When considering only the
stack of the score values for all the input sequences independently, they precisely follow
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Based on the end of the interaction, the addressee is on the right (94.29%).

Based on the start of the interaction, the addressee is on the right (92.80%).

Figure 7.6: Two sequences with their corresponding attention scores (dots) generated
by the GRU network. The color and size of the dots correspond to the magnitude
of the attention score for each time frame. In both cases, the network generated an
explanation for its correct estimation “right”.

a Gaussian distribution with a mean of ≈ 0.1 and a standard deviation of ≈ 0.0055.
This means that the network has properly learned to consider all the time frames
equally. The deviation, although subtle, allows us to detect the irregularities, verbalize
them, and provide to the user.

However, a question arises. What threshold value should we use? It clearly influ-
ences the rate at which the verbal cue is generated. In Fig. 7.7 we see the probabilities
of triggering a verbal response for differing threshold values collected on the sequences
of the Vernissage dataset. We empirically verified that threshold values around 0.02
yield verbal cues aligning with our expectations. They are not too overwhelming,
and mostly trigger when the speaker is rapidly moving (in cases of higher ambiguity).
By choosing a lower value, the noise patterns can overrule the valuable information,
yielding responses that are difficult to interpret or verify.

7.4 Implementation in iCub robot

To showcase our model’s functionality in a real-world application, we implemented it
into the humanoid robot iCub (Metta et al., 2010). Since iCub’s perception differs from
the NAO’s (which was used to collect the Vernissage dataset), we fine-tuned our model
on the data provided in Saade (2023). These data are analogous to those from the
Vernissage dataset, at least when it comes to the addressee estimation. They contain
five interactions altogether, where the addressee is always labeled. Using this dataset,
we can prepare the model for real-life interaction, after which a Large Language Model
(LLM) is employed to enable smooth conversation with the participants while also
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Figure 7.7: The influence of threshold value (x-axis) on the probability (y-axis) of a
verbal explanation triggered at the end of a sequence.

providing explanations.
All three forms of explanations are integrated into the robot. The face saliency

and the relative importance of the two data streams are visualized on an external
screen during the conversation. Meanwhile, the output sentence is being played using
the iCub’s built-in microphone. To test the likeability and the overall usefulness of
the explanations, a pilot user study was conducted. However, for a more complex
understanding of the robot’s usefulness and the influence of individual explanation
methods, more thorough evaluations are necessary.

7.5 Summary

The explainable addressee estimation model we designed in this work offers verbal and
visual explanations alongside the addressee estimation. Even though explainability
seems to come at no cost of accuracy, it is important to address its limitations. Given
the surprisingly high sensitivity of the frequency and quality of the explanations on
the hyperparameter setup used during training, a classical error optimization might
not guarantee the model’s production of meaningful explanations. Thus, it would be
useful to devise a training method that aligns with achieving remarkable accuracy while
generating valuable and discriminating explanations.

Apart from the human-grounded evaluations provided by various user studies, eval-
uating the level of explainability presents perhaps one of the greatest challenges, due
to the unavailability of standard evaluation metrics for explanations in this task. Also,
during the training of a model for addressee estimation, the performance heavily relies
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on the quality and representativeness of the dataset, which may not always align with
real-world scenarios. Thus, to continue in this line of research, a data-centric approach
might yield further substantial improvements both in the quality of the explanations
and in the model accuracy. For example, it can involve capturing more interactions in
varying light conditions to make the model more applicable to real-life scenarios.
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