
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Planning smooth and safe arm
movements using reinforcement

learning
Master’s Thesis

2023
Bc. Tomáš Janeta

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Planning smooth and safe arm
movements using reinforcement

learning
Master’s Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2023
Bc. Tomáš Janeta

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Tomáš Janeta
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Planning smooth and safe arm movements using reinforcement learning
Plánovanie hladkých a bezpečných pohybov ramena pomocou učenia
posilňovaním

Anotácia: Učenie posilňovaním (RL) je najbežnejším (zvyčajne) bezmodelovým
prístupom pri učení sa sekvenčného správania, napr. v robotických systémoch.
RL možno porovnať s klasickými algoritmami plánovania pohybu, ktoré sú
založené na tvorbe grafov a hľadaní cesty. Medzi pretrvávajúce výzvy v RL patrí
plynulé a bezpečné (bezkolízne) správanie, najmä v prípade viacerých stupňov
voľnosti, ktoré je potrebné ovládať.

Cieľ: 1. Oboznámte sa s robotickým simulátorom CoppeliaSim a implementujte
prispôsobené prostredie RL pre robotické rameno.
2. Porovnajte vybrané klasické algoritmy s prístupmi založenými na RL
na vybranej úlohe dosiahnutia cieľa (aj s uvažovaním prekážok) pomocou
robotického ramena.
3. Vyhodnoťte výsledky všetkých experimentov s následnou diskusiou.

Literatúra: Kim M.S. et al. (2019). Motion planning of robot manipulators for a smoother
path using a twin delayed Deep Deterministic Policy Gradient with Hindsight
Experience Replay. Applied Sciences, 10, 575; doi:10.3390/app10020575
Busoniu L. et al. (2018). Reinforcement learning for control: Performance,
stability, and deep approximators. Annual Reviews in Control, 46, https://
doi.org/10.1016/j.arcontrol.2018.09.005

Vedúci: prof. Ing. Igor Farkaš, Dr.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 14.12.2021

Dátum schválenia: 18.12.2021 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Tomáš Janeta
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Planning smooth and safe arm movements using reinforcement learning

Annotation: Reinforcement learning (RL) is a most common (typically) model-free approach
in learning sequential behavior, e.g. in robotic systems. RL can be contrasted
with classical motion planning algorithms that are based on graph formation and
path finding. Among remaining challenges in RL is smooth and safe (collision-
free) behavior, especially in case of more degrees of freedom to be controlled.

Aim: 1. Get hands-on experience with a robotic simulator CoppeliaSim and
implement the customized RL environment for a robotic arm.
2. Compare selected classical motion algorithms with RL-based approaches on
a selected reaching task (also considering obstacles) using a robotic arm.
3. Evaluate and discuss the results of all experiments.

Literature: Kim M.S. et al. (2019). Motion planning of robot manipulators for a smoother
path using a twin delayed Deep Deterministic Policy Gradient with Hindsight
Experience Replay. Applied Sciences, 10, 575; doi:10.3390/app10020575
Busoniu L. et al. (2018). Reinforcement learning for control: Performance,
stability, and deep approximators. Annual Reviews in Control, 46, https://
doi.org/10.1016/j.arcontrol.2018.09.005

Supervisor: prof. Ing. Igor Farkaš, Dr.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. RNDr. Tatiana Jajcayová, PhD.

Assigned: 14.12.2021

Approved: 18.12.2021 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Acknowledgments: I would like to thank my supervisor prof. Ing. Igor Farkaš,
Dr. for his help and guidance. I would like to also thank my family and friends, who
were always there for me.

iv

Abstrakt

Učenie s posilňovaním je oblasť strojového učenia, zaoberajúca sa optimálnou straté-
giou pre agenta nachádzajúceho sa v prostredí s možnosťou vykonávania rôznych akcií.
Plánovanie trasy robota je známy problém, pri ktorom sa snažíme pre robota nájsť
čo najefektívnejšiu cestu, ktorá sa vyhne všetkým prekážkam. Klasické algoritmy pre
plánovanie trasy robota sú založené na grafovom prístupe, a nie sú dostatočne efek-
tívne v zložitom a dynamickom prostedí s mnohými stupňami voľnosti. V práci im-
plementujeme prostredie pre simulovanú robotickú ruku. Pomocou tohto prostredia a
algoritmov učenia s odmenou trénujeme agenta na rôznych úlohách plánovania trasy,
pričom sme sa snažili dosiahnuť čo najväčšiu efektívnosť a bezpečnosť. Najlepšie na-
trénované modely sú porovnateľné z hľadiska efektívnosti s klasickými algoritmami na
plánovanie trasy.

Kľúčové slová: robotická ruka, učenie s posilňovaním, neurónová sieť, plánovanie
trasy robota

v

Abstract

Reinforcement learning is a machine learning area, studying optimal strategy for an
agent in an environment with the possibility of taking various actions. Robotic path
planning is a well-known problem in which we are trying to find an effective path for
a robot that avoids all the obstacles. Classical algorithms for robotic path planning
rely on graph algorithms and are not effective enough in complex and dynamic envi-
ronments with many degrees of freedom. In the thesis, we implement a reinforcement
learning environment for a simulated robotic arm. We train the agent using reinforce-
ment learning algorithms on various path planning tasks, while trying to reach optimal
smoothness and safety. The best models are comparable in terms of smoothness and
effectiveness with classical motion planning algorithms.

Keywords: robotic arm, reinforcement learning, neural network, path planning

vi

Contents

Introduction 1

1 Background 2
1.1 Motion planning . 2
1.2 Related work . 2
1.3 Technical details . 3

2 Motion planning algorithms 4
2.1 Probabilistic Roadmaps (PRM) . 5
2.2 Rapid-exploring random trees (RRT) 7
2.3 Complications . 9

3 Reinforcement learning 10
3.1 Basic concepts . 10
3.2 Deep Deterministic Policy Gradient . 14
3.3 Twin Delayed DDPG . 15
3.4 Proximal Policy Optimization . 17
3.5 Soft Actor–Critic . 18

4 Implementation 20
4.1 Reinforcement learning tools . 20
4.2 Evaluation . 23
4.3 Installation and deployment . 24

5 Results 26
5.1 Evaluating smoothness and effectiveness 26
5.2 Evaluating safety . 31

Conclusion 35

Príloha A 40

vii

List of Figures

1.1 Physical Panda robotic arm (left) and its model in the CoppeliaSim
simulator (right) [Emika, 2023]. 3

2.1 Output of the PRM and Lazy PRM algorithm [Garg, 2023] in 2D space.
In the second image, created collisions can be seen. 7

2.2 Output of the RRT algorithm [Garg, 2023]. 8

3.1 One of the possible inputs for the Frozen Lake problem 14

4.1 Atari games environments from the gym package [OpenAI, a]: Atlantis
and bank heist environment. 20

4.2 MuJoCo robotic environments from the gym package [OpenAI, b]: hu-
manoid and half cheetah environment. 21

5.1 Averaged reward after 10000 steps from training with Rjoint and Rconst

reward functions using max_speed=0.2 27
5.2 Averaged reward after 10000 steps from training with Rcartes and Rquatern

reward functions using max_speed=0.2 27
5.3 Averaged reward after 10000 steps from training with Rjoint and Rconst

reward functions using max_speed=1.0 29
5.4 Averaged reward after 10000 steps from training with Rcartes and Rquatern

reward functions using max_speed=1.0 29
5.5 Dependence of ρjoint, ρcartesian, ρfind metrics on max_speed parameter . 30
5.6 Averaged reward after 10000 steps with max_speed=0.1 31
5.7 Visualization of the simulated Panda robot traversing a path found by

the TD3 model. The red ball represents the target. 32
5.8 Visualization of the experiments with non-variable obstacles. The ob-

stacles are highlighted in blue color. 32
5.9 Visualization of the experiments with non-variable obstacles. The ob-

stacles are highlighted in blue color. 34

viii

max_speed=0.2
max_speed=0.2
max_speed=1.0
max_speed=1.0
max_speed
max_speed=0.1

List of Algorithms

1 The first phase of the PRM algorithm 6
2 The RRT algorithm . 8
3 The Q-learning algorithm . 13
4 DDPG . 16
5 PPO . 18
6 Pseudocode for step and reset methods 22

ix

Introduction

Reinforcement learning (RL) is an area of machine learning concerned with finding
optimal behavior for an intelligent agent placed in an environment. It has experi-
enced massive growth in recent years and is now applied to many tasks like games,
autonomous driving, and trading systems while achieving or even passing human-level
precision.

Robotics has drawn enormous attention lately, as robots have been becoming able
to take on more and more functions formerly considered only for humans. With the
dawn of intelligent factories and Industry 4.0 technologies, the need for automation is
increasing rapidly. The need of effective robotic path planning algorithms has grown
with the increasing effort to automate as many industrial tasks as possible.

Classical path planning methods use graph algorithms to find the shortest path in a
tree structure created from nodes sampled from the joint space. The problem with this
approach is that generating a dense enough graph may require sampling many points,
especially in the case of a robot with a high number of degrees of freedom. Moreover,
as the sampling process needs to be repeated every time the environment changes, time
complexity becomes an issue.

In this thesis, we applied reinforcement learning on a robotic arm and compared
the results with classical algorithms. Our hypothesis is that RL methods can compete
in performance with classical motion planning algorithms. We implemented a RL envi-
ronment for a simulated robotic arm and tested it using multiple training algorithms.

In Chapter 1, we explain the background of the thesis. In Chapter 2, we present
classical methods for path planning and their drawbacks. In Chapter 3, we explain the
basic theory behind reinforcement learning. In Chapter 4, we describe our implemen-
tation and technical challenges. In Chapter 5, we present our results.

1

Chapter 1

Background

1.1 Motion planning

As technology evolves, the importance and impact of autonomous robotic systems in ev-
eryday life increases. Many industrial tasks have been successfully automated, achiev-
ing higher precision and productivity. While performing common industrial tasks,
robots must move in an environment containing various obstacles, such as boxes, ma-
chines, or other robots. Therefore, the robot needs to be capable of finding a path
that is both smooth and safe. Safety of the path ensures that the robot will not collide
with any of the obstacles and cause damage to itself or the environment. Smoothness
is essential for effectiveness since we want to find the shortest path possible. Solving
this problem is called motion planning. The input of the motion planning algorithm
is the robot’s initial state, the target’s position in the 3D space, and a description of
obstacles, if there are any. Desired output is a path that has described qualities.

Robots can be divided into various classes. In the thesis, we focus solely on robotic
arms. A robotic arm is a type of robot with functions similar to a human arm. A typical
robotic arm comprises joints, motors, grippers, and manipulators. Robotic arms are
often used in factories, performing tasks like box picking, assembling, and packing.

1.2 Related work

Motion planning is a well-known problem with many applications in the industry. In
this thesis, we present a motion planning algorithm that uses deep neural networks and
reinforcement learning and its application to the problem with many degrees of freedom.
Classical motion planning algorithms, which do not use reinforcement learning, rely on
generating random graphs and graph algorithms for shortest path finding. Two of
the most common algorithms are Probabilistic Roadmaps [Kavraki et al., 1996] and
Rapid-exploring Random Trees [LaValle, 1998].

2

CHAPTER 1. BACKGROUND 3

Figure 1.1: Physical Panda robotic arm (left) and its model in the CoppeliaSim simu-
lator (right) [Emika, 2023].

Reinforcement learning is a machine learning paradigm, alongside supervised and
unsupervised learning, studying how to choose optimal actions for an agent placed in
an environment so that the agent receives the maximum reward. Reinforcement learn-
ing is a closely studied area that has utilization in many areas, such as chess engines
[Silver et al., 2017], chatbots [Haristiani, 2019], and autonomous cars [Fayjie et al., 2018].
Reinforcement learning models provide good results when applied to robots with 2 or
3 degrees of freedom [Raajan et al., 2020, Kim et al., 2020, Yu et al., 2020].

1.3 Technical details

To control and manipulate the robots, we decided to use CoppeliaSim robotic simula-
tor. CoppeliaSim [Rohmer et al., 2013, James et al., 2019] is a robotic simulator, the
successor of V-REP, developed by Swiss company Coppelia Robotic. The core of the
simulator uses mainly the programming language C++, but APIs from languages like
Java, Python, or Lua are available along with good documentation and many helpful
tutorials. The simulator is very widely utilized in industry, education, and research.

One of the many robots CoppeliaSim supports out of the box is Franka Emika
Panda1 [Gaz et al., 2019]. It is a robotic arm with seven joints and a gripper. It can
be operated via a programming interface directly from a computer.

1from now on, we will refer to it as only Panda

Chapter 2

Motion planning algorithms

Suppose we have a robotic arm with n joints and a gripper. Assume the following
notation

• S is a fixed cartesian system

• θj is the vector of joint angles after timestep j.

• gj = (xg,j, yg,j, zg,j) is the vector of coordinates of the gripper in S after timestep
j

• qj = (qx,j, qy,j, qz,j, qw,j) is the quaternion of the gripper in the coordinate system
S in time j

• t = (xt, yt, zt) is the position of the static target in S

Further, denote Q, the set of all possible values of the θj , which in robotics is called
a joint space. Q can be divided into two disjoint subsets Q = Qfree ∪ Qcollide. Qfree

represents the set of all states of the robotic arm that it can enter without causing a
collision with obstacles or itself. On the other hand, Qcollide represents the set of states
the arm cannot enter without colliding.

For now, suppose there are no obstacles in the environment. Then input of a motion
planning algorithm is (θstart, t, d), where θstart is a vector of initial joint angles. The
position of the gripper is not included in the input, as the joint angle vector determines
it. d is a distance threshold. The output of the algorithm is a sequence of configurations
θ1, ...θm, such that

• θ1 = θstart

• |gm − t| ≤ d

• ∀j, 1 ≤ j ≤ m : θj ∈ Qfree

4

CHAPTER 2. MOTION PLANNING ALGORITHMS 5

The first condition means that the path will start from the initial state. The second
condition means that at the end of the path, the gripper will be close enough to the
target. The third condition ensures safety, as all states along the path must be from
the collision-free space. Assume we have already found a path p = (θ1, ...θm) satisfying
the conditions above. Define the following functions from the set of all possible paths
to R.

JD(p) =
m−1∑
i=1

∥θi − θi+1∥ (2.1)

CD(p) =
m−1∑
i=1

∥gi − gi+1∥ (2.2)

OC(p) =
m−1∑
i=1

cos−1(qi
T .qi+1) (2.3)

These are the metrics most often used for measuring the effectiveness and smooth-
ness of the path. The first one measures joint distance - the sum of all angles all joints
had to turn at. The second one measures the Euclidean distance the gripper had to
pass. The third one measures how much the orientation of the gripper changed along
the path. A path found by the motion planning algorithm should minimize one of these
measures to be effective.

This chapter explains a few most common methods for the presented problem.
Explained methods use graph algorithms on a graph of nodes randomly generated
from the joint space.

2.1 Probabilistic Roadmaps (PRM)

PRM [Kavraki et al., 1996, Dale and Amato, 2001] is a well-known motion planning
algorithm. It has two additional parameters n, h. The first represents the number
of vertices of the generated graph, and the second is the maximal distance of two
connected nodes. The algorithm consists of 2 phases. The first phase generates a graph
of random nodes from Qfree. Edges between two nodes represent the path between the
corresponding configurations. This phase can be described by the Algorithm 1.

In the second phase, the algorithm tries to find a path in the generated graph from
θstart using any graph algorithm for the shortest path finding. It is important to notice
that the goal node is not known. Therefore, the graph must also save information about
the distance of the gripper to the target for each node. The algorithm is very popular
because of its straightforward implementation, but it is not guaranteed to find the
optimal solution.

CHAPTER 2. MOTION PLANNING ALGORITHMS 6

Algorithm 1 The first phase of the PRM algorithm
1: function GenerateGraph(θstart, n, h)
2: G← empty graph
3: add node θstart to G

4: for i from 1 to n do
5: θnew ← randomly generated node
6: while θnew ̸∈ Qfree do
7: θnew ← randomly generated node
8: end while
9: add θnew to G

10: for every vertex θ ∈ G do
11: if θ ̸= θnew then
12: if |θnew,θ| ≤ h then
13: if segment (θnew,θ) lies in Qfree then
14: add edge (θnew,θ) to G

15: end if
16: end if
17: end if
18: end for
19: end for

20: return G

21: end function

CHAPTER 2. MOTION PLANNING ALGORITHMS 7

Figure 2.1: Output of the PRM and Lazy PRM algorithm [Garg, 2023] in 2D space.
In the second image, created collisions can be seen.

Lazy PRM [Bohlin and Kavraki, 2000] is a variant of the basic algorithm that does
not check for collisions in the first phase. Instead, it generates a graph, tries to find
the path in the graph, assuming all nodes and edges are collision-free, and removes
respective nodes and edges from the graph if it finds a collision. This variant has been
shown to be faster in most cases than the classic PRM. Other variants of the PRM al-
gorithm are available, offering smoother paths in exchange for increased computational
complexity.

2.2 Rapid-exploring random trees (RRT)

RRT [LaValle, 1998, Lavalle and Kuffner, 2000] is the second sampling algorithm pre-
sented in this chapter. In contrast with PRM, RRT has only one phase. The algorithm
takes two additional parameters n, h - the maximal number of nodes in the resulting
graph and step.

We used a few special functions in Algorithm 2 of the RRT procedure. The function
nearest takes a node θ and a graph G as an input and returns a node from the G closest
to the θ. The newnode function has two configurations θ1,θ2, and step h as an input
and returns configuration, created by moving distance h from θ2 in the direction of
θ1. The function path finds the path between two nodes in a tree structure. The
algorithm is very popular and has many variants. In some implementations, θrand is
used instead of the θnew. A version of the algorithm called RRT*, which creates a
very dense graph, has been shown to converge to the optimal solution, creating a very
smooth path. However, this variant is potentially computationally costly.

CHAPTER 2. MOTION PLANNING ALGORITHMS 8

Algorithm 2 The RRT algorithm
1: function RRT(θstart, d, n)
2: G← empty graph
3: add node θstart to G

4: for i from 1 to n do
5: θrand ← randomly generated node
6: θnear ← nearest(θrand, G)

7: θnew ← newnode(θrand,θnew, h)

8: if θnew ∈ Qfree and segment (θnew,θnear) lies in Qfree then
9: if θnew is close enough to the target then return path(θstart,θnew, G)

10: end if
11: add node θnew to G

12: add edge (θnew,θnear) to G

13: end if
14: end for
15: end function

Figure 2.2: Output of the RRT algorithm [Garg, 2023].

CHAPTER 2. MOTION PLANNING ALGORITHMS 9

2.3 Complications

Motion planning algorithms relying on sampling are handy in an environment with
static obstacles. But if the obstacles change, configurations from the previous sampling
are useless, and we need to generate a new graph. That can be very computationally
expensive, especially when the robot has many degrees of freedom. Also, for a path to
be relatively smooth, the searched graph must be dense, which increases computational
cost.

Chapter 3

Reinforcement learning

3.1 Basic concepts

Reinforcement learning (RL) is an area of machine learning that studies how intel-
ligent agents ought to take actions in an environment to maximize cumulative re-
ward. RL can be applied to a wide range of tasks, starting with games such as
chess [Silver et al., 2017] and Go [Silver et al., 2016] and ending with self-driving cars
[Fayjie et al., 2018].

Suppose an agent is placed in an environment. We will be using the following
notation.

• S is the set of all possible states of the agent, also called the observation space,
and sT the terminal state we want to reach (in general, there can be multiple
terminal states)

• sj is the state of the agent at time step j

• A is the set of all possible actions, called the action space

• P : S × A × S −→ [0, 1] is a probabilistic distribution function determining how
likely the agent is to make a transition from state s to s′ using action a

• R : S × A× S −→ R is the reward function, meaning after making the transition
from state s to s using action a, the agent will receive reward R(s, a, s′)

Assume the agent uses a policy π to find the next action and the reward the agent
receives while following policy π after the step i is Ri. The probability of choosing
an action a in the state s while following policy π is denoted π(a|s). The state-action
value function Qπ : S×A −→ R determines the value of a particular state-action tuple.
Analogically, V π : S −→ R is a state value function evaluating how good a particular
state is.

10

CHAPTER 3. REINFORCEMENT LEARNING 11

Qπ(s, a) = E
[∞∑

k=0

γkRk|sk = s, ak = a

]
(3.1)

V π(s) = E
[∞∑

i=0

γkRk|sk = s

]
(3.2)

where γ ∈ (0, 1). The motivation for introducing this constant is that we want the
agent to focus less on the rewards that are far in the future and more on the rewards
achievable in a few steps. Also, the constant T can be chosen instead of the infinite
sum. In such a case, the learning happens in episodes of at most T steps.

The relationship between these two functions can be expressed as

V π(s) = E
a∈A

[
Q(s, a)

]
. (3.3)

The optimal policy is usually marked as π∗. Optimal value functions are then

Q∗(s, a) = Qπ∗
(s, a) = max

π
Qπ(s, a) (3.4)

V ∗(s) = Qπ∗
(s) = max

π
V π(s) (3.5)

The following equation, the Bellman equation, can be derived for the state-action
value and value-value functions

Qπ(s, a) = E
s′∈S

[
R(s, a, s′) + γmax

a′∈A
Qπ(s′, a′)

]
(3.6)

V π(s) = E
a∈A,s′∈S

[
R(s, a, s′) + γV π(s′)P (s, a, s′)

]
(3.7)

The Bellman equation is one of the key formulas in RL theory. It is clear that if Q∗

was known, the problem would be solved. In each state s, we would simply choose the
best possible action argmax

a∈A
Q∗(s, a). If the observation and action spaces are finite,

the task to find the optimal policy is much more simple. The well-known algorithm for
this type of problem is called Q-learning [Watkins and Dayan, 1992] and is extremely
straightforward. Suppose πk is our learned policy after step k, ε ∈ (0, 1) and T is the
episode length. In each step, the algorithm learns from the experience obtained from
the environment, and updates the policy accordingly. The details of the algorithm are
explained in procedure 3. The purpose of the ε constant is to decide whether the agent
should explore new actions or use the current policy to determine the best possible ac-
tion. This is called the exploration vs exploitation trade-off [Wang et al., 2019] because
the agent has to choose between exploiting an immediate certain reward, achievable
using the current policy, or exploring new actions, which can bring even greater reward.
Finally, α is the learning rate, determining how fast the agent should converge to the
optimal policy.

CHAPTER 3. REINFORCEMENT LEARNING 12

RL algorithms can be classified in two ways. The first classification is between
model-based algorithms, which assume a mathematical model behind the environment,
and model-free algorithms, which work without such an assumption. The second clas-
sification is between on-policy and off-policy algorithms. The off-policy algorithms do
not use the learned policy to find the best action. The opposite are the algorithms
from the on-policy class. Q-learning belongs to the off-policy class of algorithms be-
cause, during each step, it uses the new updated policy. It is also from the model-free
class of algorithms because it makes no assumptions about the environment besides
the finiteness of both action and state space. The Markov chain [Yang, 2020] is an
example of a model-based algorithm since it assumes probabilistic distribution behind
the environment. SARSA [van Seijen et al., 2009] is an example of an algorithm from
the on-policy class.

All modern reinforcement learning algorithms make use of a technique called replay
buffer. For example, when the agent performs a transition from the state s to s′ using
action a and achieving reward r, the tuple (s, a, r, s′, d) will be stored in the buffer,
where d = 1 if s′ is a terminal state, and 0 otherwise. Experience from the buffer is
later replayed and used for learning the policy.

Now we illustrate the Q-learning algorithm on a simple example called The Frozen
Lake problem. Suppose the agent is a person on a frozen lake. The lake is represented
by a n×n grid, with the agent starting at the field marked with S and trying to reach
the goal field marked with G while avoiding holes in the ice marked with H. The input
of the algorithm is a map of the lake. The task is to find a policy that will safely lead
the agent from the starting state to the goal state. This task has two parts. In the
first part, we have to choose a reward function that will punish the agent for falling in
the holes and reward him for reaching the goal state, preferring the shortest possible
path. The second part includes training a policy using the chosen reward function.
The order of the field agent represents the state of the agent is currently standing in.
Possible actions are 0, 1, 2, 3 representing step left, down, right, and up respectively. A
version of this problem exists, in which after taking a step in a specific direction, the
agent is not guaranteed to move in that direction due to the slippery surface of the
lake and can move in any direction with probability p. One possible input is in Figure
3.1. The possible reward function is

R(s, a, s′) =


1 s ∈ Sgoal

−10 s′ ∈ Shole

−1 s′ ̸∈ Sgoal ∪ Shole

where Sgoal is a the set of states marked with G, and Shole is a set of states with
character H. This kind of reward function is called a sparse reward since the agent
only receives a positive reward when he reaches the goal state. Q-learning has been

CHAPTER 3. REINFORCEMENT LEARNING 13

Algorithm 3 The Q-learning algorithm
1: function QLearning

2: ∀s ∈ S, a ∈ A : Qπ0(s, a) = 0

3: for each episode do
4: observe the initial state s0

5: for k from 1 to T do
6: if sk is terminal then
7: reset the environment
8: break
9: end if

10: x ∼ R(0, 1)

11: if x < ε then
12: choose action ak randomly
13: else
14: choose action ak according to the current policy πk

15: end if
16: play the action ak

17: observe the next state sk+1

18: update the policy as

Qπk+1(sk, ak) = Qπk(sk, ak)+α(R(ak, sk)+γmax
a∈A

Qπk(sk+1, a)−Qπk(sk, ak)) (3.8)

19: end for
20: end for
21: end function

CHAPTER 3. REINFORCEMENT LEARNING 14

Figure 3.1: One of the possible inputs for the Frozen Lake problem

shown to provide good results when applied to this problem. Although it performs
well on simple problems, the Q-learning algorithm is unsuitable for complex problems,
as it cannot handle a problem where action or observation space is continuous. In the
following sections, we present two algorithms that deal with this problem.

3.2 Deep Deterministic Policy Gradient

Deep Deterministic Policy gradient (DDPG) [Silver et al., 2014, Lillicrap et al., 2019]
algorithm is from the class off-policy model-free algorithms. It can be used on the
type of problems where the action space is continuous. Its approach is similar to the
Q-learning algorithm. Using the Bellman equation, the algorithm concurrently learns
a Q function and a policy. The Bellman equation for the optimal policy π∗ is

Q∗(s, a) = E
s′∈S

[
R(s, a) + γmax

a′∈A
Q∗(s, a′)

]
(3.9)

Suppose the optimal value function Q∗ is approximated by a neural network Qθ

with parameters θ, and in the replay buffer B we have a set of transitions (s, a, s′, r, d).
For training the Qθ network, the Mean Squared Bellman Error function (MSBE) is
used. The equation for the MSBE function is

L(θ, B) = E
(s,a,s′,r,d)∈B

[(
Qθ(s, a)− (r + γ(1− d)max

a′∈A
Qθ(s

′, a′))
)2]

. (3.10)

The term (r + γ(1 − d)maxa′∈A Qθ(s
′, a′) is called the target since we want to

minimize the difference between Qθ(s, a) and the target. However, the MSBE function
can not directly train Qθ, as both Qθ and the target depend on the parameter θ, and
this would destabilize the training. Therefore, another neural network Qθtgt , called the
target network, is used for computing the error function. However, when computing
maxa′∈AQθtgt(s

′, a′) in equation 3.11, another problem arises. As the action space is
not a finite set, we cannot simply iterate through all possible actions, and since this

CHAPTER 3. REINFORCEMENT LEARNING 15

subroutine is used every time we are looking for the optimal action, it needs to be fast,
so grid search is not suitable. Since the action space is infinite, it is possible to use
another neural network µ as a function approximator for the function argmax

a′∈A
Q(s′, a′).

Also, for similar reasons as with the Qθtgt network, the target policy network µtgt is
used. The target networks are then updated using parameters from the main networks
by Polyak averaging formula. In RL terminology, the policy network is often called the
actor since it finds the best possible action, and the Q network is called the critic since
it evaluates the actions taken in each state.

The error function 3.10 rewritten using µtgt and Qθtgt is

L(θ, B) = E
(s,a,s′,r,d)∈B

[(
Qθ(s, a)− (r + γ(1− d)max

a′∈A
Qθtgt(s

′, µtgt(s
′)))

)2] (3.11)

The loss function for the policy network is

Lp(µ,B) =
1

|B|
∑
s∼B

Qθ(s, µ(s). (3.12)

Denote as clip(x, u, v) the function that returns a vector x clipped into interval
(u, v), and ε is a random variable with normal distribution. ε is added to the chosen
action, as it helps the algorithm explore a much bigger space of actions. The pseudocode
is available as Algorithm 4. Hyperparameters n0, n1, ρ represent the maximal size of
the replay buffer, maximal number of executed steps, and update rate from Polyak
averaging.

3.3 Twin Delayed DDPG

The Twin Delayed DDPG (TD3) algorithm [Fujimoto et al., 2018] is a direct successor
of DDPG. While DDPG achieves great performance in most cases, on some types
of problems, it fails to learn the optimal policy due to overestimating Q values and
exploiting these errors. The TD3 algorithm addresses this issue by implementing a few
critical improvements. Firstly, the action is selected using the formula

a(s) = clip(µtgt(s) + clip(c,−c, ε) + alow, ahigh)

where ε is a random variable with normal distribution and c is a hyperparameter. This
technique, called target policy smoothing, helps the algorithm avoid exploiting sharp
peaks in the approximated Q function. The second improvement is called double Q-
learning [van Hasselt et al., 2015]. The algorithm learns two Q functions concurrently
instead of one and chooses the smaller one to compute the target term in the Bellman
equation. Again, this helps to circumvent overestimation. The TD3 algorithm contains
two main Q networks Qθ0 , Qθ1 and two target Q networks Qθtgt,0 , Qθtgt,1 .

CHAPTER 3. REINFORCEMENT LEARNING 16

Algorithm 4 DDPG
1: function DDPG

2: initialize target network parameters θtgt ← θ, µtgt ← µ

3: n← 0

4: while don < n0

5: n← n+ 1

6: observe state s, select action a = clip(µ(s) + ε, alow, ahigh)

7: execute a in the environment
8: observe new state s′, reward r, and flag d signalling whether s′ is terminal
9: store the transition (s, a, r, s′, d) in the replay buffer

10: if s′ is terminal, reset the environment
11: if the replay buffer has sufficient size then
12: for i from 1 to n1 do
13: sample a batch of transition B1 from B

14: update Qθ network by gradient descent and error function from 3.11
15: update µ network using gradient ascent and loss function from 3.12
16: update target networks

θtgt ← ρθtgt + (1− ρ)θ, µtgt ← ρµtgt + (1− ρ)µ

17: end for
18: end if
19: end while
20: end function

CHAPTER 3. REINFORCEMENT LEARNING 17

The target term is computed as

y(r, s′, d) = r + γ(1− d) min
i∈{0,1}

Qθtgt,i(s
′, µtgt(s

′))

and both networks are trained by gradient descent toward this target. The error
functions are

L(θi), D) = E
(s,a,s′,r,d)∈B

[(
Qθi(s, a)− y(r, s′, d))

)2]
. (3.13)

Then the policy is updated using learned by maximizing Qθ1 , using the loss function

Lp(µ,B) =
1

|B|
∑
s∼B

Qθ1(s, µ(s)). (3.14)

The last technique used in TD3 is delayed policy updates. While in DDPG, the tar-
get networks are updated every time the main networks are updated, in TD3, the
target networks are updated less frequently, leading to better performance. The pa-
per [Fujimoto et al., 2018] recommends one update for every two Q-function updates.
Other than that, the algorithm is the same as DDPG.

3.4 Proximal Policy Optimization

The Proximal policy optimization algorithm (PPO) belongs to the class of on-policy
algorithms. Instead of using a replay buffer, it explores by sampling actions using the
latest version of the stochastic policy πθ, where θ is a neural network approximator.
Define as Aπ(s, a) = Qπ(s, a)−V π(s) the advantage function computed using policy π

and
L(s, a, θ′, θ) = min

(
πθ(a |s)
πθ′(a|s)

Aπθ′ (s,a), g(ε, Aπθ′ (s, a),

)
(3.15)

where

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1− ε)A A < 0

and ε is a hyperparameter.
PPO updates the policy via

θk+1 = argmax
θ

E
s,a∼θk

[
L(a, s, θk, θ)

]
(3.16)

By means of the stochastic gradient ascent, PPO also uses a second approximator
ϕ to learn the V function, which is then used to compute the advantage function. The
pseudocode is provided as Algorithm 5.

CHAPTER 3. REINFORCEMENT LEARNING 18

Algorithm 5 PPO
1: function PPO

2: initialize parameters of the neural networks θ0, ϕ0

3: for i in 1...n0 do
4: collect set of trajectories Dk by running policy πθk in the environment
5: compute expected reward estimates R̂t

6: compute advantage estimates based on the current value function Vϕk

7: update the policy using the rule 3.16
8: update the value function network by gradient descent using the loss function

Lloss(ϕ,Dk) =
1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vϕ

(
s)− R̂t

)2
where T is the episode length

9: end for
10: end function

3.5 Soft Actor–Critic

The Soft Actor–Critic algorithm (SAC) [Haarnoja et al., 2018, Haarnoja et al., 2019]
uses a rather different approach than DDPG and TD3, although it incorporates some
techniques from these algorithms. The distinction is that SAC employs the entropy
regularization idea. While trying to find the optimal policy, it also considers how much
information will reaching a specific state provide. This helps the agent to explore the
state space more and can give better results in the long-term horizon. The amount of
information is measured by a quantity called entropy. For a random variable x with
probability density function P , the entropy H of x is defined as

H(x) = −E
[
logP (x)

]
.

After each step, the agent gets a bonus reward proportional to the entropy of the policy
at that timestep. The optimal policy is then defined as

π∗ = argmax
π

E
[∞∑

t=0

γt

(
R(st, at, st+1) + β H

a∈A
(a|st)

)]
where β is a hyperparameter called the trade-off coefficient. Increasing β means the
agent will try to explore more. In the case of episodic learning, the infinity would be
replaced by the episode length.

The equations for value functions become

V π(s) = E
[∞∑

t=0

γt

(
R(st, at, st+1) + β H

a′∈A
(a′|st)

)∣∣∣∣s0 = s

]

CHAPTER 3. REINFORCEMENT LEARNING 19

Qπ(s, a) = E
[∞∑

t=0

γt

(
R(st, at, st+1) + βγ H

a′∈A
(a′|st)

)∣∣∣∣s0 = s, a0 = a

]
.

The Bellman equation for the state-action value function is

Qπ(s, a) = E
[
R(s, a, s′) + γV π(s′)

]
.

SAC employs the double Q-learning trick from TD3 and updates the target networks
using Polyak averaging. The error function is MSBE, with the target term expressed
as

y(r, s′, d) = r + γ(1− d)(min
i∈0,1

Qtgt,i(s, a
′)− β log π(a′|s′))

where π is the current learned policy and a′ ∼ π. While optimizing the policy, the SAC
algorithm makes use of the reparametrization trick, meaning the action is computed
by the formula

a′ = f(ε, s)

where f is a deterministic function, and ε is a random noise with normal distribution.
For f , authors of the algorithm recommend the hyperbolic tangent. The loss function
optimized by the policy network is

Lp(µ,B) =
1

|B|
∑
s∼B

(
min

i∈{0,1}
Qθtgt,i(s, a

′)− β log πµ(a
′, s)

)
. (3.17)

Chapter 4

Implementation

4.1 Reinforcement learning tools

For the implementation, we chose the programming language Python because of its
broad ecosystem of libraries and well-documented API for controlling the CoppeliaSim
simulator. All the details regarding versions of the libraries, the programming language
and the simulator are available in the appendix with source code and data.

The reinforcement learning environments we implemented inherit from the Env
class from the gym package. Gym [Brockman et al., 2016] is a library for creating and
implementing various RL environments containing many environments ready to use out
of the box. The team maintaining the gym package has moved all future development
into Gymnasium, an even more extensible framework that supports features like multi-
agent environments. Examples of environments from the gym package can be seen in
Figures 4.1 and 4.2.

We used the implementation of RL algorithms from the library stable-baselines3
[Raffin et al., 2021]. The library offers a wide variety of highly parameterized training

Figure 4.1: Atari games environments from the gym package [OpenAI, a]: Atlantis and
bank heist environment.

20

CHAPTER 4. IMPLEMENTATION 21

Figure 4.2: MuJoCo robotic environments from the gym package [OpenAI, b]: hu-
manoid and half cheetah environment.

algorithms. Extensive documentation and tutorials are also very helpful. For neural
network management, the library employs PyTorch [Paszke et al., 2019], a deep learn-
ing library founded by Facebook. PyTorch is written almost entirely in C++ but has
Python bindings, ensuring great performance and convenience.

All environments derived from the Env class must implement step, reset, render,
and close methods and define observation and action space, both derived from the
Space class from the gym package.

We created an environment that contains obstacles to train a safe path planning
model. All obstacles we used in training are cuboids and can be represented by a
vector of 6 numbers - position and lengths of edges. We implemented two types of
obstacles - non-variable and variable. Non-variable obstacles do not change during
the training procedure and are not included in the state of the environment. Variable
obstacles change state after each episode. The new state for each obstacle is randomly
chosen from a uniform distribution passed as a parameter. Then, the state of variable
obstacles is incorporated into the state of the environment. State of the environment
in the timestep j is then expressed as

sj = (t,θj,v)

where t is the target position in the 3D space, θj is a vector of joint values and v is
vector representing state of all variable obstacles during the current episode.

Step method takes action as a parameter, executes the action in the environment,
and returns the tuple (s, r, d, i) where s is the next state, r is the respective reward, d is
a boolean variable signaling whether the episode has ended, and i is a dictionary with
debugging information. The episode may end in two ways - the maximum number of
steps has been exceeded, or the target has been reached. An action in our environment
represents a vector of joint velocities during the next timestep. In case of a collision,
punishment constant collision_reward is added to the classical reward function.
The reset method resets the environment to a random configuration and returns the

collision_reward

CHAPTER 4. IMPLEMENTATION 22

new state. It was not useful to implement the render method, as the rendering update
happens in the step function in this case. The close method should release any resources
owned by the environment, such as buffers, file descriptors, or child processes. In our
case, it means closing the simulator. The pseudocode for the step and reset methods is
available here 6. The number of generated random actions and the maximum number
of steps per episode are parameters provided to the environment constructor.

Algorithm 6 Pseudocode for step and reset methods
1: function step(a)
2: increase number of steps
3: set the joint velocities from a

4: execute timestep in the simulator
5: observe a new state s, and a reward r

6: observe d

7: observe info i (no debugging information is provided)
8: return (s, r, d, i)

9: end function
10: function reset

11: set the number of steps to 0

12: reset joint values to initial position
13: generate p random actions
14: reset the position of the target
15: reset the position of the obstacles
16: execute the generated actions
17: return the current state
18: end function

We implemented 4 reward functions, all based on the idea of a sparse reward, which
means the agent receives small punishment for every step, that does not lead to a goal
state, and a higher reward f(p) after reaching the goal state, where f is a function and
p is the current path of the robot. The shape of the f function may help the agent to
learn better and choose more effective paths. We will call f the boost function.

The boost functions that we proposed are

fconst(p) = c (4.1)

fjoint(p) = c− JD(p) (4.2)

fcartes(p) = c− CD(p) (4.3)

forient(p) = c−OC(p) (4.4)

where c is a hyperparameter.

CHAPTER 4. IMPLEMENTATION 23

We will denote the sparse reward function created using boost function fconst as
Rconst, analogically for fjoint, fcartes, forient.

The implemented environment is extensible and generic, so for any robotic arm
supported by PyRep, it is possible to create an RL environment. All that is needed is
to derive from the ArmEnv class and pass the desired robotic arm class as a parameter
to the parent constructor.

4.2 Evaluation

Suppose our RL model has found a path. To determine this path’s effectiveness, we
need to know another, preferably optimal path, which could serve as a baseline. The
Pyrep package, used for controlling the simulator, incorporates several motion planning
algorithms, including PRM and RRT, described earlier. The problem is that algorithms
from this package have another parameter, determining the final rotation of the gripper.
Euler angles can represent this parameter. Thus, functionality from the PyRep package
cannot be directly used for finding the shortest path.

Suppose getpath is a function with parameters (v, t, e), where v is a vector of joint
angles, t = (tx, ty, tz) is the position of the target, and e is a vector of Euler angles,
that finds a path to the target using the chosen algorithm. Suppose we want to find the
path that minimizes the cartesian distance function 2.1. Then it is possible to perform

a grid search on a space of Euler angles. Define E =

{
2kπ
m
| 1 ≤ k ≤ m

}
,m ∈ N, where

2kπ
m

is a search step. Then the shortest path found via grid search is

getpath(v, t, emin)

where
emin = argmin

e∈E
CD(getpath(v, t, e)).

The complexity of the search grows with the term m3. Another problem is that
after a certain number of calls getpath, the CoppeliaSim simulator gets stuck. We have
been unable to resolve this issue. Therefore we implemented a script that restarts the
search if it has been more than 10 seconds from the last call getpath.

We generated Ncfg = 500 random configurations and, for each, found the shortest
path using the approach described above and both PRM and RRT. For possible values
of m, we chose m = 12, and m = 24. This increase in the grid density brought 10%

improvement in the path length on average. Paths found using this approach were
used to evaluate the effectiveness of trained models.

Assume a trained model. For each of the Ncfg random configurations, the model
is used to find a path for the robotic arm. We repeated this process 10 times for each
configuration.

CHAPTER 4. IMPLEMENTATION 24

Suppose pi, ri are the shortest path the PRM and RRT algorithms find, respectively,
for the random configuration number i. Further, suppose M is the trained model and
mi is the mean length of the paths found by the model for the random configuration
number i. Analogically, m′

i is the mean length of the paths of the gripper for the
random configuration number i. Then, define the following measures for measuring
smoothness.

ρjoint =
1

2Ncfg

(Ncfg∑
i=1

JD(pi)

mi

+

Ncfg∑
i=1

JD(ri)

mi

)
(4.5)

ρcartesian =
1

2Ncfg

(Ncfg∑
i=1

CD(pi)

m′
i

+

Ncfg∑
i=1

CD(ri)

m′
i

)
(4.6)

Greater values of these measures signalize the model is better at finding effective
paths. Moreover, define

ρfind =
n

m
(4.7)

where n is the number of successful attempts and m is the number of all attempts.
This value tells how often the model is able to find a path. The optimal value for this
metric is 1.

For measuring safety, we will generate 1000 random configurations and use a trained
model to find a path for these configurations. We define a measure

ρcollide =
ncollide

nall

(4.8)

where nall is the number of epidsodes and ncollide is the number of collisions.

4.3 Installation and deployment

To run training on a desktop computer, install necessary dependencies from the file
requirements/dev.txt in the current Python environment, download CoppeliasSim,
and add lines

export COPPELIASIM_ROOT=PATH/TO/COPPELIASIM/INSTALL/DIR
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$COPPELIASIM_ROOT
export QT_QPA_PLATFORM_PLUGIN_PATH=$COPPELIASIM_ROOT

to your bash profile, and reload bash. After that, you can simply run src/main.py

script.
For deployment to be as straightforward as possible, we decided to use Docker.

Docker is a platform designed to help build, share, and deploy all kinds of applications.
It is available on all major platforms. Many software tools use Docker to run painlessly
because of its scalability and flexibility. In addition, Docker is completely open-source.

requirements/dev.txt
src/main.py

CHAPTER 4. IMPLEMENTATION 25

Key concepts are image and container. Image can be thought of as a read-only
template containing instructions on how to run containers. Image can contain any op-
erating system supported by the host platform. All build instructions are written in the
file called Dockerfile. Docker allows developers to create custom images, save and share
them via a Docker repository service. A container is an instance of a particular image
while ensuring virtualization, which means faults inside the container cannot harm the
host. Docker also offers port mapping, directory mapping, and communication between
containers.

To run the training and evaluation process, we chose Ubuntu 22.04 operating sys-
tem. The Dockerfile to build the image for training the Panda robot is supplied with
the source code. The CoppeliaSim simulator runs a graphical user interface, which
means it cannot be run directly from the server command line. Instead, we used a
software tool called xvfb, X virtual frame buffer, a display server implementing X11
protocol in virtual memory. Xvfb can run a GUI program without display.

To deploy on a server, create a Python virtual environment and install packages
from the file requirements/production.txt. Then run

$ bash s c r i p t s / s ta r t −docker . sh

.

requirements/production.txt

Chapter 5

Results

We tested the implemented environment using 4 training algorithms from the stable-
baselines3 library, namely DDPG, TD3, SAC, and PPO. Results were compared in
terms of effectiveness with the results of RRT and PRM methods using the defined
metrics. We also trained models to optimize safety. Trained models with the best
performance are available in the source code repository along with the test datasets.
All used neural networks share the same internal architecture. Specifically, each has
two hidden layers with 100 neurons. In addition, we used hyperbolic tangent as an
activation function.

5.1 Evaluating smoothness and effectiveness

We used 4 training algorithms from the stable-baselines3 library, namely DDPG, TD3,
PPO, and SAC. We have used all implemented reward functions and trained every
combination of an algorithm and a reward function. All models were trained using
500000 training steps. The maximum episode length value was set to 50 steps. Initially,
the parameter max_speed, representing the maximal joint velocity of a robot, was set
to 0.2. In figures 5.1 and 5.2 are plotted averaged rewards from the training. DDPG,
TD3, and SAC algorithms converged to approximately similar results. The PPO model
failed to explore enough and achieve a positive reward. The probable cause of this is
the fact that PPO is an on-policy algorithm, and more steps are needed to achieve
positive reward with setting max_speed=0.2.

Table 5.1 shows all results of the training with setting max_speed=0.2. The PPO
algorithm performed consistently the worst with every reward function. TD3 and SAC
performed the best, achieving value ρfind = 1 while finding relatively effective paths. It
can also be observed that ρjoint < ρcartesian is true for all models. The probable cause of
this is that ρjoint incorporates accumulated loss from all joints, while ρcartesian contains
only loss from the gripper. The best model was trained using the SAC algorithm and

26

max_speed
max_speed=0.2
max_speed=0.2

CHAPTER 5. RESULTS 27

Figure 5.1: Averaged reward after 10000 steps from training with Rjoint and Rconst

reward functions using max_speed=0.2

Figure 5.2: Averaged reward after 10000 steps from training with Rcartes and Rquatern

reward functions using max_speed=0.2

max_speed=0.2
max_speed=0.2

CHAPTER 5. RESULTS 28

Algorithm reward function ρjoint ρcartesian ρfind

DDPG Rconst 0.325 0.742 0.995

TD3 Rconst 0.366 0.744 1.0

SAC Rconst 0.449 0.787 1.0

PPO Rconst 0.212 0.659 0.513

DDPG Rjoint 0.397 0.771 0.965

TD3 Rjoint 0.419 0.755 1.0

SAC Rjoint 0.394 0.743 0.999

PPO Rjoint 0.121 0.447 0.359

DDPG Rquatern 0.320 0.747 0.998

TD3 Rquatern 0.333 0.731 1.0

SAC Rquatern 0.414 0.752 0.997

PPO Rquatern 0.159 0.622 0.266

DDPG Rcartes 0.341 0.766 0.996

TD3 Rcartes 0.374 0.764 1.0

SAC Rcartes 0.448 0.757 1.0

PPO Rcartes 0.100 0.292 0.002

Table 5.1: Obtained measures of smoothness from training with max_speed=0.2

Rconst reward function.
We also researched the possibility of achieving better performance by tuning the

value of the max_speed parameter. Values of metrics of models trained with the setting
max_speed=1 are in Table 5.2. Averaged rewards from this experiment are in Figures
5.4 and 5.3.

As we can see, higher speed helped the PPO algorithm to learn to reach the target.
However, models trained with this setting have significantly worse values of the ρcartesian
metric. We also explored the dependence of ρjoint, ρcartesian values on max_speed when
trained with 300000 training steps. Results are shown in Figure 5.5.

As the choice of a reward function had little effect on performance, we will use only
the Rjoint reward function from now on. Since PPO performed badly, we decided to
continue further training only with DDPG, TD3, and SAC. All algorithms achieved
low values of metrics near max_speed=0. One of our hypotheses was this could be
improved by increasing the episode length and the number of training steps. We trained
DDPG, TD3, and SAC algorithms using 1500000 training steps with max_speed=0.1

and episode length 200 steps. As can be seen from Table 5.3, the SAC model reached
optimal ρfind value while achieving ρcartesian = 0.91. On the other hand, DDPG and
TD3 models did not improve so significantly. The probable reason for this is the
exploration encouragement in the SAC algorithm. Results of this experiment are in

max_speed=0.2
max_speed
max_speed=1
max_speed
max_speed=0
max_speed=0.1

CHAPTER 5. RESULTS 29

Figure 5.3: Averaged reward after 10000 steps from training with Rjoint and Rconst

reward functions using max_speed=1.0

Figure 5.4: Averaged reward after 10000 steps from training with Rcartes and Rquatern

reward functions using max_speed=1.0

max_speed=1.0
max_speed=1.0

CHAPTER 5. RESULTS 30

Figure 5.5: Dependence of ρjoint, ρcartesian, ρfind metrics on max_speed parameter

Algorithm reward function ρjoint ρcartesian ρfind

DDPG Rconst 0.321 0.4914 0.9878

TD3 Rconst 0.216 0.617 1.0

SAC Rconst 0.281 0.562 0.994

PPO Rconst 0.143 0.462 0.9972

DDPG Rjoint 0.255 0.478 0.1.0

TD3 Rjoint 0.271 0.524 1.0

SAC Rjoint 0.285 0.476 0.985

PPO Rjoint 0.163 0.622 0.999

DDPG Rquatern 0.274 0.524 0.1.0

TD3 Rquatern 0.298 0.486 1.0

SAC Rquatern 0.277 0.483 1.0

PPO Rquatern 0.120 0.371 0.83

DDPG Rcartes 0.284 0.494 0.997

TD3 Rcartes 0.269 0.529 1.0

SAC Rcartes 0.295 0.489 1.0

PPO Rcartes 0.168 0.678 1.0

Table 5.2: Obtained measures of smoothness from training with max_speed=1.0

max_speed
max_speed=1.0

CHAPTER 5. RESULTS 31

Algorithm reward function ρjoint ρcartesian ρfind

DDPG Rjoint 0.338 0.821 0.8246

TD3 Rjoint 0.349 0.846 0.998

SAC Rjoint 0.379 0.912 1.0

Table 5.3: Obtained measures of smoothness from training with max_speed=0.1

Figure 5.6: Averaged reward after 10000 steps with max_speed=0.1

Table 5.3. Averaged rewards from this experiment are plotted in Figure 5.6.

5.2 Evaluating safety

We implemented four experiments with non-variable obstacles and two with variable
obstacles. In each experiment, we tried to train the robot to reach the target while
avoiding obstacles using DDPG, TD3, and SAC training algorithms. In the first ex-
periment is one non-variable obstacle, representing a cuboid. In the second example,
there is a non-variable obstacle representing a pole. In the third example, there is
an obstacle representing a wall. The target is located behind the wall. Visualiza-
tion of these experiments can be seen in figure 5.2. During all experiments, we used
collision_reward=-1000.

Results of the experiments are in Table 5.4. As can be seen from the results, all
three algorithms were able to learn policy in the first experiment but failed in the
second and the third one. This may be caused by wrong hyperparameter values, such
as the wall being too high, which would make the agent unable to reach the target.
This hypothesis is supported by the fact that whenever a model has a poor value of
ρcollide, it also has a bad value of ρfind.

In the first experiment with variable obstacles, the was one obstacle representing a
dynamic stick. The stick is located in the space between the target and the robot with a

max_speed=0.1
max_speed=0.1
collision_reward=-1000

CHAPTER 5. RESULTS 32

Figure 5.7: Visualization of the simulated Panda robot traversing a path found by the
TD3 model. The red ball represents the target.

Figure 5.8: Visualization of the experiments with non-variable obstacles. The obstacles
are highlighted in blue color.

CHAPTER 5. RESULTS 33

Algorithm experiment ρfind ρcollide

DDPG cuboid 1.0 0.119

TD3 cuboid 1.0 0.178

SAC cuboid 1.0 0.236

DDPG pole 0.291 5.837

TD3 pole 0.279 5.578

SAC pole 0.016 6.902

DDPG wall 0.251 14.654

TD3 wall 0.035 14.592

SAC wall 0.287 12.473

Table 5.4: Table containing values of metrics from the experiments with non-variable
obstacles

Algorithm experiment ρfind ρcollide

DDPG variable stick 0.073 7.795

TD3 2 variable stick 0.077 6.435

SAC variable stick 0.213 11.192

DDPG 2 variable poles 0.045 21.144

TD3 2 variable poles 24.784 0.141

SAC 2 variable poles 26.491 0.085

Table 5.5: Table containing values of metrics from the experiments with variable ob-
stacles

variable z axis. In the fourth experiment, there were two poles again, but their position
was changing during the training process. Visualization of these two experiments can
be seen in Figure 5.2.

Results of these experiments are in Table 5.5. As can be seen, all three algorithms
failed in both experiments.

CHAPTER 5. RESULTS 34

Figure 5.9: Visualization of the experiments with non-variable obstacles. The obstacles
are highlighted in blue color.

Conclusion

In the thesis, we implemented a reinforcement learning environment for a robotic arm
using the robotic simulator CoppeliaSim. The source code is generic and parameterized
and enables anybody to create a custom RL environment for any robot supported by
CoppeliaSim. We also implemented a pipeline to easily deploy training and evaluation
procedures on a server.

We trained the environment with four RL algorithms. Trained models were evalu-
ated in terms of performance and safety and compared against classical motion planning
algorithms. We also researched the tuning of performance against various parameters.
For example, we found out that models trained with lower maximal joint velocity re-
quire more training steps and longer episodes but find much smoother paths. However,
it is impossible to directly compare our models with classical algorithms built into Cop-
peliaSim, as these algorithms also consider the final orientation of the gripper. Still,
some of the trained models performed very well and are capable of finding smooth and
effective paths.

As for the safety part, although we were able to train models capable of avoiding
non-variable obstacles in some cases, in general success of the training is not guaranteed.
One of the complications is that the learning process is very sensitive to changes in the
state of obstacles, which means it is very difficult to find a position for obstacles in the
critical area that also enables reaching a positive experience.

Future work
There are many gaps in the area of robotic reinforcement learning, and the space for

improvement is extensive. The key places where the future research should be directed
are

• Implementation of a vision-based agent. Implementing an agent whose input
comes from a camera could significantly improve safety results

• Implementation of an RL environment for different types of robots from Cop-
peliaSim.

• Using the knowledge from the classical motion planning algorithms to try and
improve the smoothness and safety results of the trained models. The experience

35

Conclusion 36

from optimal paths found by the RRT and PRM algorithms might be useful, if
utilized in the right way.

Bibliography

[Bohlin and Kavraki, 2000] Bohlin, R. and Kavraki, L. (2000). Path planning us-
ing lazy prm. In Proceedings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 1, pages 521–528 vol.1.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym.

[Dale and Amato, 2001] Dale, L. and Amato, N. (2001). Probabilistic roadmaps -
putting it all together. volume 2, pages 1940 – 1947 vol.2.

[Emika, 2023] Emika, F. (2023). Franka emika.

[Fayjie et al., 2018] Fayjie, A. R., Hossain, S., Oualid, D., and Lee, D.-J. (2018).
Driverless car: Autonomous driving using deep reinforcement learning in urban en-
vironment. In 2018 15th International Conference on Ubiquitous Robots (UR), pages
896–901.

[Fujimoto et al., 2018] Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing
function approximation error in actor-critic methods.

[Garg, 2023] Garg, S. (2023). Motion planning algorithms for robots.

[Gaz et al., 2019] Gaz, C., Cognetti, M., Oliva, A., Robuffo Giordano, P., and De Luca,
A. (2019). Dynamic identification of the franka emika panda robot with retrieval of
feasible parameters using penalty-based optimization. IEEE Robotics and Automa-
tion Letters, 4(4):4147–4154.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor.

[Haarnoja et al., 2019] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S. (2019). Soft
actor-critic algorithms and applications.

37

BIBLIOGRAPHY 38

[Haristiani, 2019] Haristiani, N. (2019). Artificial intelligence (ai) chatbot as lan-
guage learning medium: An inquiry. Journal of Physics: Conference Series,
1387(1):012020.

[James et al., 2019] James, S., Freese, M., and Davison, A. J. (2019). Pyrep: Bringing
v-rep to deep robot learning. arXiv preprint arXiv:1906.11176.

[Kavraki et al., 1996] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M.
(1996). Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580.

[Kim et al., 2020] Kim, M., Han, D.-K., Park, J.-H., and Kim, J.-S. (2020). Motion
planning of robot manipulators for a smoother path using a twin delayed deep deter-
ministic policy gradient with hindsight experience replay. Applied Sciences, 10(2).

[Lavalle and Kuffner, 2000] Lavalle, S. and Kuffner, J. (2000). Rapidly-exploring ran-
dom trees: Progress and prospects. Algorithmic and computational robotics: New
directions.

[LaValle, 1998] LaValle, S. M. (1998). Rapidly-exploring random trees : a new tool for
path planning. The annual research report.

[Lillicrap et al., 2019] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2019). Continuous control with deep rein-
forcement learning.

[OpenAI, a] OpenAI. Openai atari environments.

[OpenAI, b] OpenAI. Openai mujoco environments.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang,
E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep
learning library.

[Raajan et al., 2020] Raajan, J., Srihari, P. V., Satya, J. P., Bhikkaji, B., and Pa-
sumarthy, R. (2020). Real time path planning of robot using deep reinforcement
learning. IFAC-PapersOnLine, 53(2):15602–15607. 21st IFAC World Congress.

[Raffin et al., 2021] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and
Dormann, N. (2021). Stable-baselines3: Reliable reinforcement learning implemen-
tations. Journal of Machine Learning Research, 22(268):1–8.

BIBLIOGRAPHY 39

[Rohmer et al., 2013] Rohmer, E., Singh, S. P. N., and Freese, M. (2013). Coppeliasim
(formerly v-rep): a versatile and scalable robot simulation framework. In Proc. of
The International Conference on Intelligent Robots and Systems (IROS).

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

[Silver et al., 2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Si-
monyan, K., and Hassabis, D. (2017). Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. CoRR, abs/1712.01815.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Ried-
miller, M. (2014). Deterministic policy gradient algorithms. In Proceedings of the
31st International Conference on International Conference on Machine Learning -
Volume 32, ICML’14, page I–387–I–395. JMLR.org.

[van Hasselt et al., 2015] van Hasselt, H., Guez, A., and Silver, D. (2015). Deep rein-
forcement learning with double q-learning.

[van Seijen et al., 2009] van Seijen, H., Van Hasselt, H., Whiteson, S., and Wiering,
M. (2009). A theoretical and empirical analysis of expected sarsa. pages 177 – 184.

[Wang et al., 2019] Wang, H., Zariphopoulou, T., and Zhou, X. (2019). Exploration
versus exploitation in reinforcement learning: a stochastic control approach.

[Watkins and Dayan, 1992] Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8(3):279–292.

[Yang, 2020] Yang, X. (2020). Markov Chain and Its Applications. PhD thesis.

[Yu et al., 2020] Yu, J., Su, Y., and Liao, Y. (2020). The path planning of mobile
robot by neural networks and hierarchical reinforcement learning. Frontiers in Neu-
rorobotics, 14.

Príloha A

The appendix contains the source code, trained models and the the testing datasets.
Source code is also available in the Github repository.

40

https://github.com/janetatomas1/robotics-rl

	Introduction
	Background
	Motion planning
	Related work
	Technical details

	Motion planning algorithms
	Probabilistic Roadmaps (PRM)
	Rapid-exploring random trees (RRT)
	Complications

	Reinforcement learning
	Basic concepts
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG
	Proximal Policy Optimization
	Soft Actor–Critic

	Implementation
	Reinforcement learning tools
	Evaluation
	Installation and deployment

	Results
	Evaluating smoothness and effectiveness
	Evaluating safety

	Conclusion
	Príloha A

