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Abstract—Transfer learning is a well known technique to
circumvent the problem of small datasets in deep machine
learning. It has been successfully used in the field of camera
surveillance image processing which suffers from poor data
quality and quantity. We focused on the task of wearable object
detection, namely distinguishing if a person is or is not wearing
a backpack. We created new annotations for the DukeMTMC-
attribute dataset to overcome the discrepancies among the at-
tributes. We explored transfer learning with a frozen feature
extractor as well as the model fine-tuning, which turned out
to perform much better. In both setups we found that the
Densenet161 is the best from tested architectures. Our best model
achieved about 92% balanced accuracy on the testing set.

Index Terms—Image classification, Camera surveillance, Deep
learning, Transfer learning

I. INTRODUCTION

Our project, called the Smart Camera, is widely focused on
an improvement of monitoring centers. The aim is to improve
mainly the automatic evaluation of video from the large
numbers of surveillance cameras. Observing and recognition
of persons and situations in video from many different cameras
is both exhausting and difficult task for operators. Considering
information presented to an operator, we would like to reduce
it in quantity to make things less exhausting and to add quality
to make decision making easier.

Both on-line video processing and off-line forensic ex-
ploration of video records are in our focus. An important
task is to describe the observed persons by visual attributes
(the kind and the color of clothes, carried baggage, ..) and
be able to search for them quickly. Our approach is to
define appropriate attributes classes, to prepare corresponding
automated classifiers, and to establish a process of training the
classifiers to be able to generalize over new, unseen data.

Detecting the objects carried by people is a difficult task
even in the good quality images. The surveillance systems are
often heterogenous. They use cameras with different resolution
and positioning. The cameras usually have a quite low resolu-
tion and lighting conditions are changing during the recording.
Thus the image quality may vary significantly. Further, the
field of view recorded by the cameras is not continuous in
general.

Our motivation is to overcome these difficulties and be
able to process videos from individual cameras and detect the
characteristic wearable objects and clothes. Resulting high-
level information may be used for finding correspondences in

the multiple-camera images. Having a system detecting such
attributes might be utilized in forensic search.

In this paper, we present a research on the path towards
automated camera surveillance. Due to the legal issues with
the actual surveillance data, we restrict our research to freely
available datasets and focus on the methodology. As many
other state-of-the art computer vision systems, we focus on
the deep neural networks (DNN). The main benefit of DNN
over other solutions is their generalization capability. Here,
we present our approach using existing well-known deep
architectures and the methodology of transfer learning in the
task of detecting people wearing backpacks from images.

II. RELATED WORK

Our work is based on the transfer learning paradigm which
is currently very popular in the field of deep machine learning.
Supervised learning of deep neural networks requires large
number of labeled examples. However for some tasks, a large
number of labeled examples is not easily obtainable or simply
not available at all. The transfer learning [1] makes use of
an existing model, usually trained to perform a more general
task, and a freely available big dataset, such as the ImageNet
[2]. The general model with trained weights is adapted and
tuned up to perform another task on smaller amount of more
specific data. Transfer learning has successfully been applied
to many tasks including categorization of images, semantic
segmentation, but also on the person re-identification task.

A. Transfer learning

Transfer learning can be defined as a process of adapting
the source predictive function (neural classifier) to the target
domain using the target domain data and labels [3]. The
neccessary assumption is that the target and source domain
share common low level structure that enables us to reuse
certain parts of the source predictive function. In practice,
this is usually achieved by first training a source domain
predictor (classifier) on the data from the source domain.
Subsequently, a target domain predictor is trained using limited
data from target domain using the parameters from source
domain predictor as an initial parameters. The source domain
predictor is either trained as a whole or only certain parts
of source domain predictor are trained, usually the fully
connected layers responsible for the final prediction, while
making use of low-level features extracted from the source



domain that are common for both the source or target domains.
The best example are convolutional neural networks trained on
large dataset of natural images (such as ImageNet) that develop
features such as edge detectors that are useful for all natural
image classification tasks. Parameters of networks trained on
the ImageNet dataset are used nowadays as a starting point
for training of models for many natural image classification
tasks.

B. Feature extractors

In the case of image processing, transfer is usually made
from a very big domain, such as the ImageNet classification
[2], to a smaller domain, such as a classification of more
specific features or objects. The ImageNet benchmark is one
of the biggest databases of assorted images and due to its
diversity, it is very useful for low-level feature extraction
in the bottom-most convolutional layer of the embedding
architectures. The most prominent architectures in current state
of the art of image processing are the VGG, the ResNet, and
the DenseNet.

VGG network architecture was introduced by Simonyan and
Zisserman in 2014 [4]. Their main idea was to replace one
convolutional layer with large receptive field with several con-
volutional layers that use smaller receptive field. This enabled
a significant increase of the number of convolutional layers
(depth) in the network. Authors showed that this increase
of depth leads to major increase of performance on image
classification problems. This architecture, namely its variant
with 16 convolutional layers is still considered a benchmark
in image classification.

Residual network (ResNet) by He et al. from 2015 [5] is
another key architectural innovation that enabled the training
of much deeper neural network models. Resnet architecture
addresses the key problem of constructing very deep architec-
tures, namely the vanishing gradients, by introducing the so
called residual blocks. A residual block contains a number of
convolutional layers and a skip connection which copies the
input to the block and adds it to its output. A skip connection
enables the gradient from the layer above to bypass the layers
in the residual block during backpropagation. This mechanism
leads to better propagation of gradients through the network
allowing much deeper network architectures. The authors
empirically demonstrated that this increased depth leads to a
superior performance across various image classification tasks.

DenseNet from 2017 proposed by Huang et al. [6] expands
upon the idea of residual connections by introducing blocks of
convolutional layers connected by dense connections. Dense
connections are used to make an input to the next block from
the outputs of all preceding blocks. Unlike ResNet, where
the output of preceding block is added to the output of next
block using summation, in DenseNet, the outputs of preceding
blocks are simply concatenated and used as an input to the next
block. These blocks encapsulating multiple layers connected
by dense connections are called dense blocks. Such blocks can
contain tens of convolutional layers. DenseNet alleviates the
vanishing gradient problem as well as it enables the individual

convolutional layers to exploit information from different parts
of the model, not just from the input of preceding layer, which
increases the parameter efficiency of the model. On several
image classification tasks, DenseNets exhibit accuracy similar
to ResNets, but using a fraction of parameters.

C. Re-identification and attribute recognition

The transfer learning paradigm has been successfully ap-
plied in the domain of human re-identification. Pioneers in
this work, Li et al. [7], proposed a metric-transfer approach
and outperformed former methods based on the visual features
extraction and matching. In the following work, a multi-task
paradigm has been employed. Geng et al. [8] enhanced the
performance of the transferred model by employing person-
identification and person-classification (distinguishing one per-
son from others). Chen et al. [9] proposed joint training of the
identification subnet with an additional network performing a
ranking task.

Lin et al. [10] came with an idea to include feature recog-
nition to enhance the performance of the neural model in the
re-identification task. Within their work, they re-annotated two
re-identification benchmarks: DukeMTMC-reID and Market-
1501. Their results show that learning through optimizing a
composite loss of both re-identification and attribute classi-
fication leads to better performance in re-identification task.
A further step in this line was made by Wang et al. [11],
who made use of the attribute annotations in case of semi-
supervised learning problem, where labels are sparse. Their
assumption was that attributes might serve for as defining
features for learning person identities in the unlabeled data.

Yu et al. [12] showed that if using a deep architecture with
special detector layers, weakly-supervised learning suffices to
classify pedestrian attributes without the need of bounding
box annotations. This approach, which does not use any form
of transfer learning, would indeed require a large dataset,
which is usually a problem for real-world camera surveillance
applications. Latest work by Xiang et al. [13] shows how
incremental few-shot learning can overcome the problems with
the amount of labeled data and rigidly predefined feature
sets needed for majority of the classification systems. An
interesting example of deep learning in attribute recognition
task is the deep hierarchical contexts model by Li et al.
[14]. It is a precisely engineered architecture which builds up
pose-based deep representations of humans, compares them,
and provides a scene-level feature description, from which it
derives attributes. For example it detects the activity people are
doing (such as skiining) and estimates the wearable attributes
semantically related to the activity (sunglasses) in all people
from the group. Thus it can detect attributes that might, in
some cases, not be detectable by a human observer. Another
very novel model was proposed by Ji et al. [15], who combined
the standard CNN approach with recurrent neural networks
for representing attributes as some kinds of sentences with
recurrent context capturing the relations among the attributes.



III. DATASET

Our primary motivation is to build a system for feature
recognition for automatic camera surveillance. Such a system
must work robustly with different camera types, resolutions,
view-points, etc. Since there is a limited number of suitable
datasets for our task, we finally chose to work with the avail-
able DukeMTMC-attribute dataset [10], which adds additional
annotations to the DukeMTMC-reID dataset [16].

DukeMTMC-reID is a subset of DukeMTMC [17], a
re-identification dataset created from 85-minute long high-
resolution footage from 8 different cameras. Images are cap-
tured every 120 frames and they are cropped to bounding
boxes containing people. DukeMTMC-attribute consists of
702 training and 1100 testing entities (individual people)
from DukeMTMC-reID annotated with 24 additional features
related to visible properties, such as the gender (male/female),
the properties of outfit (upper-part-black) or whether they are
carrying items such as bags or backpacks. For the purposes
of our work, we chose just the backpack attribute. Note that,
despite particular visual similarity among backpacks and bags,
we focused only on regular backpacks and consider people
wearing (only) bags as negatives.

Our first experiments with original DukeMTMC-attribute
dataset showed that the annotations are not fully suitable for
our purpose, because the original attributes are assigned based
on the entities, rather than visual assessment of the attribute
in the individual images. Such annotations are beneficial for
enhancing the performance in the re-identification task as
shown by the authors [10], but the attribute relevance might
be restricted when we use it for recognition of carrying
backpack on separate images. There are some mismatches in
annotation relevant to our task. Figure 1 shows examples of
the mismatches as: occlusion by objects, occlusion by person
with different attribute value, visibility of backpack, and few
real annotation errors.

Image:

Attrib.: No Yes No No Yes Yes
Fig. 1: Example of images and corresponding original annotation for
backpack attribute, which are not correct in our task. You can see
wrong annotation, bad cropping, object occlusion, multiple occluded
persons, and front view which can not be decided.

The mismatches can dramatically influence the process
of learning and evaluation of our classifiers. Therefore, we
decided to re-annotate the dataset. Based on our observation,
we re-annotated the images into three classes: with backpack,
without backpack, and uncertain. We put the image to uncer-
tain class either when there were more than one person in an
image or when the backpack might not be observed.

We re-annotated each image separately. Our annotation
tool was designed to show the images in random order, so
the operator could classify samples based only on a single
image of an entity, rather than from multiple images of the
same entity. From the total of 34183 original annotations:
61.8% were unchanged, 37.0% were marked as uncertain,
and 1.2% were changed to the opposite category. It means
that 13045 annotations were modified, of which 3.0% was
changed into opposite category and 97% was marked as
uncertain. We published the resulting annotations with pointers
to the DukeMTMC-attribute data items as text files1. Examples
of images with our annotations for the three categories are
displayed in Fig. 2. Note that, the original images in dataset
are already cropped out of the camera footage and thus have
different sizes and resolutions.

Persons with backpack:

Persons without backpack:

Uncertain cases:

Fig. 2: Example of images from re-annotated dataset divided into
three sets according to our manual annotation.

For the purposes of our work, we put the uncertain class
aside. We keep the original data split by different entities, not
by samples, so all images of one person originally present in
the training set remain in the training set and the same applies
to the testing set. Even though our re-annotations disqualified
some samples, the ratio of the training and testing samples
remains similar to the original dataset.

Further on, as our task is a binary classification problem, the
positive class means that the person is wearing the backpack
and negative class means the opposite. We display the numbers
of training and testing images in the dataset after our re-
annotation in Table I. The same statistics on the entity level is
shown in in Table II. As outlined above, some small portion

1https://github.com/pers-attrib/DukeMTMC-backpack



of images of the entities that were attributed as wearing a
backpack were transferred to the opposite category (and vice
versa). Since the attributes in the original dataset were known
and assigned for all images of one entity, not per particular
image of the entity, they were indeed labeled as wearing the
backpack even if it was not visible in some of them.

TABLE I: Statistics of the dataset classes by image.
Positive Negative All

Train 6540 3593 10133

Test 6911 4491 11402

All 13451 8084 21535

TABLE II: Statistics of the dataset classes by entity.
Positive Negative Both All

Train 402 180 115 697

Test 737 331 31 1099

All 1139 511 146 1796

In our re-annotated data there is a noticeable imbalance
between the positive and the negative examples. In this stage
of our research, we decided not to compensate for it neither
in terms of data augmentation nor in designing special loss
function in our models. However, we take this imbalance
into account and use the balanced accuracy (BACC) as a
performance measure for our experiments. Mathematically,
balanced accuracy can be expressed as:

BACC = (TP/P + TN/N)/2, (1)

where TP stands for classified true positives, P for all positive
examples, and TN for classified true negatives and N for all
negative class samples. Interestingly, our models were quite
robust and the imbalance did not influence the classification
results as we demonstrate in the following section.

Note that, our split between training and testing sets is
about 50-to-50% ratio, with training set even a bit smaller
than testing one. This is not usual, since mostly 80-to-20%
or similar splits are used in the deep network training and
evaluation. Thus, our task is harder and worse classifica-
tion accuracy would be expected compared to other similar
tasks. Nevertheless, we wanted to keep the closest ratio to
the original split done by Lin et al. [10]. Additionally, the
particular dataset split per entities and train-to-test ratio makes
the generalization more challenging and reveals more of the
models’ capacity.

IV. EXPERIMENTS AND RESULTS

In first experiments with our re-annotated dataset for a
binary classification of people wearing backpacks, we worked
with three widely-used neural networks architectures for clas-
sification of images: the VGG, the ResNet, and the DenseNet.
We provided basic information on these architectures in
Sec. II. Their implementations are freely available in Py-
Torch [18] also with pre-trained ImageNet weights. We eval-
uated two different depths of each architecture. That brings

us diverse sizes of feature vectors as well as a possibility to
make decision about generalization capacity based on depth of
the model. The complete list of the 6 architectures with some
basic information is displayed in Table III.

TABLE III: Deep architectures used in our experiments.
Architecture Layers all Fully conn. Parameters Feature size

VGG16 16 4 134,264,641 4,096

VGG19 19 4 139,574,337 4,096

ResNet34 34 1 21,285,185 512

ResNet50 50 1 23,510,081 2,048

DenseNet121 121 1 6,954,881 1,024

DenseNet161 161 1 26,474,209 2,208

We chose to experimentally evaluate two different
paradigms in transfer learning [19]. In the first case, we used
a feature extractor with frozen weights, where the weights
of the convolutional part of the original network trained on
the ImageNet dataset are left intact, while the topmost fully
connected layer of the model was replaced by a new classifier
network tailored for the new task. We gathered the features
of the images from our dataset using the feature extractor.
Subsequently, we trained a new classifier from the scratch to
perform the binary classification. This approach was proven
to bring good results in various tasks [20]. We are referring
to it as setup A.

In the case of transfer learning with model fine-tuning, we
also started with a network trained on the ImageNet, but unlike
the first setup, the whole model was further trained to perform
the new task on the target dataset. The architecture of the
feature extractor part of the pre-trained network remained the
same and only the topmost layer of the classifier was adapted
to fit the new task. In the case of model fine-tuning, we used
only a small learning rate to prevent losing the feature structure
from the rich ImageNet dataset. Nevertheless, we expected that
the network would quite soon converge in the new task. We
labeled this learning as setup B.

A. Data analysis and preparation

1) Data split and augmentation: For the requirements of
setup A and to speed up the network convergence in setup
B, we normalized our dataset according to PyTorch setting
used for pre-training of the models. Given the fact that the
dimensionality of images in the ImageNet dataset is 224×224
pixels and the dimensionality of images in our dataset varies
between approximately 100×240 pixels, we also needed to
adjust the size of the images.

We experimentally evaluated several techniques, for exam-
ple positioning the image in one corner of the 224×224 square
and filling the remainder with the mean value, so the network
would ignore it. Finally, we decided to use the same method
as Lin et al. [10], which was just to stretch the image to the
desired size as illustrated in Fig. 3. Albeit the stretched images
did not look very natural for a human, there were no significant
differences in the network performance.



Fig. 3: Two examples of images before and after resizing. The original
images are displayed on the left of the resized ones, the first is
97×245px and the second is 97×231px.

To compensate for the relatively small size of our dataset,
we decided to augment our data by flipping each image
horizontally as suggested by [21]. We consider horizontal
flipping as not harmful to the plausibility of our dataset. We
used the same operation on both training and testing sets to
keep similar data distribution.

B. Model selection

1) Experimental setup and hyperparameters: In both setups
of our experiments, we compared all six architectures from Ta-
ble III pre-trained on the ImageNet dataset. We used the same
data pre-processing pipeline in all experiments. In setup A,
we evaluated several classification architectures as described
below, while in setup B only the last fully connected layer
was replaced with a layer connected to one output neuron
with sigmoid activation function.

In setup A, we initialized weights using He Normal initial-
ization [22] which limits the range of the random initialization
of weights based on the size of the previous layer, and thus
speeds up the convergence of the model. This is useful for us,
since hidden layer sizes in our tested classifiers vary. In setup
B, we used standard Xavier weight initialization [23].

For all experiments, we used Binary Cross Entropy (BCE)
cost function:

BCE = −
N∑
n

[tnk ln y
n
k + (1− tnk ) ln(1− ynk )] , (2)

where tnk stands for the desired value and ynk for the network
output. We trained all our networks using well established
ADAM optimizer algorithm [24] with the same parameters
across all experiments. These parameters were β1 = 0.9, β2 =
0.999, ε = 108. We did not use any weight decay.

Due to the class imbalance in our dataset, we chose to
use the balanced accuracy (BACC, Eq. 1) as the performance
measure. Nevertheless, in order to compare our models with
the related work, we computed also the standard accuracy
(ACC) of our best models.

We determined the optimal combination of learning rate
and minibatch size using grid search. For every combination
of selected minibatch sizes and learning rates, we repeated
the experiment 10 times in setup A and 5 times in setup
B, and averaged the results across runs for the particular
combination of hyperparameters. We show our results on the
DenseNet161 architecture in setup A in Table IV and for
ResNet50 architecture in setup B in Table V.

TABLE IV: Setup A: BACC for hyperparameter search on
DenseNet161 and Linear2d classifier.

Batch size

Learning rate 4 16 64

0.01 79.12 ± 0.36 79.31 ± 0.31 79.31 ± 0.26

0.001 79.34 ± 0.40 79.54 ± 0.29 79.89 ± 0.31

0.0001 80.04 ± 0.22 80.21 ± 0.22 80.20 ± 0.21

0.00001 80.04 ± 0.15 79.91 ± 0.11 79.71 ± 0.03

TABLE V: Setup B: BACC for hyperparameter search on ResNet50.
Batch size

Learning rate 4 16 64

0.001 81.68 ± 0.53 84.98 ± 0.62 87.73 ± 0.76

0.0001 90.25 ± 0.61 91.36 ± 0.22 91.24 ± 0.25

0.00001 91.57 ± 0.25 90.17 ± 0.24 88.45 ± 0.28

We identified different combinations of learning rates and
minibatch sizes that performed the best on the test set. Sur-
prisingly, we were able to find a combination that performs
reasonably well in both setup A and setup B, which was
learning rate 0.0001 and minibatch size 16. We used these
hyperparameters in all subsequent experiments. Even though
that this combination was not the best in setup B (the best
result was achieved with learning rate 0.00001 and minibatch
size 4), we chose minibatch size 16 because of larger mini-
batches lead to faster training (wall clock time), especially
when computing on the GPUs.

2) Classifier architectures: In the A setup, we experimented
with the architecture of the trained classifiers. We used only
fully connected feedforward networks with different number
of hidden layers and their sizes. As well as in setup B, the
output of all classifiers is one neuron with sigmoidal activa-
tion function, while for hidden layers we used RELU. We
experimented with different size of the hidden layer derived
from the size of the input layer which varies with particular
feature extractor architecture. The names and parameters of
tested classifiers are displayed in Table VI, where N denotes
the number of neurons in the input layer. We summarize the
best results in terms of balanced accuracy for all six feature
extractors and all five classifiers in Table VII.

TABLE VI: Setup A: classifiers
Classifier name layers hidden

Linear1 2 -

Linear2a 3 N/4

Linear2b 3 N/2

Linear2c 3 3N/4

Linear2d 3 N

3) Training progress: During the training of our models the
networks usually converged to 100% BACC on the training set
in less than 20 epochs. Fig. 4 displays the training progress in
terms of BACC on the training and testing set and the training
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(a) Setup A - DenseNet161 with Linear2d classifier
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(b) Setup B - DenseNet161
Fig. 4: Training progress for setup A and setup B with DenseNet161 feature extractor.

TABLE VII: Setup A: BACC for all feature extractors and classifiers.
Feature extractor

Classifier Res34 Res50 VGG16 VGG19 Dense121 Dense161

Linear1 75.58 77.27 75.42 73.55 77.85 79.53

Linear2a 77.42 78.64 74.54 73.05 79.03 80.09

Linear2b 77.66 78.58 74.35 73.12 79.25 80.07

Linear2c 77.73 78.39 74.32 73.15 79.18 80.25

Linear2d 77.71 78.35 74.18 72.91 79.01 80.21

loss for setup A (4a) and setup B (4b) with DenseNet161
architecture.

C. Best models and results

In order to find the optimal model, we compared the above
mentioned architectures using previously determined learning
rate and minibatch size. The highest ACC and BACC on the
testing data for every network architecture was averaged across
10 runs in setup A and 5 runs in setup B. We show the
results in Table VIII and Table IX. The network architecture
with highest accuracy on test data was DenseNet161. This is
consistent with the performance of deep neural networks on
other image based datasets, where increased depth of neural
network architecture generally leads to better generalization.

TABLE VIII: Setup A: best testing BACC and ACC.
Architecture Classfier BACC ACC

ResNet34 Linear2c 77.73 ± 0.19 79.03 ± 0.14

ResNet50 Linear2a 78.64 ± 0.16 80.01 ± 0.16

VGG16 Linear1 75.42 ± 0.08 76.88 ± 0.09

VGG19 Linear1 73.55 ± 0.12 75.29 ± 0.09

DenseNet121 Linear2b 79.25 ± 0.20 80.56 ± 0.15

DenseNet161 Linear2c 80.25 ± 0.22 81.47 ± 0.15

D. Analysis of feature vectors

To take a closer look at the extracted features that we use
for classification we used the well known t-SNE algortihm

TABLE IX: Setup B: best testing BACC and ACC.
Architecture BACC ACC

ResNet34 90.99 ± 0.31 91.88 ± 0.28

ResNet50 90.43 ± 0.16 91.30 ± 0.27

VGG16 88.80 ± 0.52 89.61 ± 0.39

VGG19 87.52 ± 0.99 88.40 ± 1.16

DenseNet121 91.55 ± 0.31 92.34 ± 0.25

DenseNet161 91.88 ± 0.22 92.65 ± 0.14

[25]. We used freely available t-SNE implementation from
the Python-based Scikit-learn library [26] with the default
parameters.

We randomly selected 1000 samples from each class,
i.e. images of people with backpacks and without backpacks
separately from the testing set. Note that, our choice to use
a fixed number of random samples from each class does not
respect the real distribution of the classes in the dataset which
is actually slightly imbalanced.

Fig. 5 illustrates the t-SNE for the DenseNet161 feature
vectors from setup A (5a–5b) and setup B (5c–5d). In the
figures, it is clearly visible that the features from the feature
extractor with frozen weights are very different from the fine-
tuned ones and that it is obviously a harder task in setup
A, which explains the noticeably worse performance of the
models.

V. DISCUSSION AND FUTURE WORK

Our chosen deep image classification architectures are trac-
ing the evolution of CNNs and how the state of the art can
be improved by models with smaller size and still bigger
depth. While the VGG16 has 16 layers and more than 130
milion parameters, the Densenet161 has 161 layers and about
5-times less parameters (Table III). In setup A, we were testing
how well this deep architectures generalize using features
extracted only from the ImageNet. In setup B, we tuned
up the features with the target data, which turned out to
be crucial for successful transfer learning in the pedestrian
attribute recognition domain.



(a) Setup A - training set (b) Setup A - testing set (c) Setup B - training set (d) Setup B - testing set
Fig. 5: t-SNE for 1000 randomly chosen DenseNet161 features with frozen weights (setup A) and fine-tuning (setup B).

For each of the tested architectures, we evaluated two
variants with different depths, which got us quite different
feature vector sizes for tested models. The VGG models got
the worst results in both setups among others, even though
their feature vectors are the biggest ones. Such results could
be expected as it is the oldest architecture from the tested ones
and batch normalization layers are not included in the design.
There are 4 fully connected layers used as a classifier at the top
of the model which could transform the general convolutional
features into specific ones more than in other architectures. We
replaced only the last fully connected layer by our classifiers
to be in line with other architectures. As shown in Table VIII,
the best classifier is Linear1 for both variant the VGG16 and
the VGG19. We assume that our more complex classifiers tend
to overfit more in this case when there are some original fully
connected layers left in the tested model.

The batch normalization layers in the ResNet led to better
generalization, while the best classifiers were Linear2c for
the ResNet34 and Linear2a for the Resnet50. It looks that
the model with smaller depth needs a classifier with bigger
capacity as the features are not as good as in the case of
the deeper variant. The DenseNet models got the best results
among others. It might be expected as both normalization
layers are included in the design and the dense connections
bring features from bottom layers to the top ones. The best
classifiers were Linear2b for the DensetNet121 and Linear2c
for the DensetNet161.

The differences in performance among the three architec-
tures are consistent within both setups. Apparently, the newer
and deeper architectures perform better, which is in line with
the findings from other image recognition studies. As we
intuitively expected, setup B with fine-tuning achieved much
better performance (cca 10% increase in accuracy) on the
testing dataset compared to setup A.

It is most likely due to the fact that the distribution of
the data in our dataset is substantially different from the
distribution of data in the ImageNet dataset, that was used for
the pre-training of the tested feature extractors. Apart from
the actual content, images in our dataset have different aspect
ratio, lower resolution, and lower visual quality. This is evident
from the differences in the BACC as well as from the feature
visualizations using the t-SNE method (Fig. 5). Obviously,
features from the fixed feature extractor are very difficult to
separate, which explains the performance gap between the

setups.
Since our re-annotated dataset is unique, we cannot make

a full comparison with the related work. There was a small
portion (1.2%) of images for which the annotation actually
changed from positive to negative and vice versa. Addition-
ally, the majority of the altered annotations belonged to the
uncertain category which we did not use in our experiments.
Nevertheless, we kept the same split to training and testing
data as was in the original DukeMTMC-attribute dataset which
left us with slightly bigger size of the testing set compared
to the training set. We can say that this way the omission
of the uncertain samples made both our task easier in some
respects (data validation) and harder in other (bigger testing
set). Since no entity present on testing images was presented
to the models during the training, we can assume our models
really learned to generalize well.

The accuracy for the backpack attribute reported by Lin et
al. [10] for DukeMTMC-attribute was 77.28%. Our best model
in setup B reached much higher accuracy, namely 92.65%,
which is 15.37% more. Even our best model from setup A with
frozen weights outperformed it by 4.19%. Li et al. [27] report
about 77% of accuracy in backpack recognition on the RAP
benchmark dataset. Deng et al. [28] were able to reach about
70% maximum accuracy on their PETA benchmark dataset.
All of the above-mentioned results were obtained via multi-
attribute classification. The apparent difference in the single-
class versus multi-class models leads us to think that some
kind of ensembling might be considered for reaching a better
performance in the task of pedestrian attribute recognition.

The bag attribute was one of the other attributes annotated
in original image dataset. There are many images with such
attribute in the dataset. From some viewpoints, it’s hard to
distinguish between the backpack and bag attribute even for
human. It seems that our models deal with that quite well.

We did not use any technique to deal with the issue of the
unbalance between positive and negative classes. Instead, we
used balanced accuracy to evaluate performance of the models.
This suggests, that there is still room to improve results, for
instance through the cost function. Additionally, insight from
setup A suggests that setup B may benefit from more fully
connected layers.

In the future work we would like to expand our dataset and
apply our method to other attributes besides the backpack. We
would also like to explore the methods of semi-supervised



learning that would enable us to improve the performance of
our models using a large unlabeled dataset in conjunction with
our existing re-labeled dataset.

VI. CONCLUSION

We explored the deep transfer learning paradigm in the task
of pedestrian attribute recognition, which is one of the hall-
marks of automated camera surveillance. In our current work
we focused solely on the backpack attribute, i.e. classifying
people in the images based on whether they were carrying
a backpack. For our purposes we re-annotated and slightly
pruned the DukeMTMC-attribute dataset.

We used transfer learning to train three image classifica-
tion architectures, the VGG, the ResNet and the DenseNet
to perform our binary classification task. We explored the
frozen feature weight approach (setup A) and the model fine-
tuning (setup B). DenseNet161 architecture reached the best
performance in both tested setups, namely about 80% BACC
in setup A and about 92% BACC in setup B.

The results from both setups reached quite good perfor-
mance taking into account the apparent differences among
the source and the target dataset. The ImageNet dataset used
for pre-training is neither destined for attributes recognition,
nor similar in terms of image quality and feature distribution.
Images in our dataset were taken from various viewpoints, in
various distances, and by different cameras and are mostly
narrow rectangle-shaped croppings from surveillance videos.
Moreover, keeping the original data split by DukeMTMC-
attribute rendered the size of our training set rather small and
testing size rather large compared to the usual deep learning
setups making the task harder, but proved that our best models
generalize well because the actual people observed in the
testing set were never present in the training set.

In conclusion, our results suggest that transfer learning is
a good approach to tackle the lack of quality and quantity of
data in the single-attribute recognition task in the domain of
video surveillance.
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