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Abstract. UBAL is a novel bidirectional neural network model with
bio-inspired learning. It enhances contrastive Hebbian learning rule with
an internal echo mechanism enabling self-supervised learning. UBAL ap-
proaches any problem as a bidirectional heteroassociation, which gives
rise to emergent properties, such as generation of patterns while trained
for classification. We briefly discuss and illustrate these properties using
the MNIST dataset and conclude that with a slight trade-off in accuracy
we can achieve feasible image generation without explicitly setting up
the objective to do so.
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1 Towards more brain-like learning

Well-known error-backpropagation (BP) algorithm is traditionally argued to lack
biological plausibility [2][7]. Learning in the brain is based on local interactions
between presynaptic and postsynaptic neurons. The brain makes a great use of
bidirectional flow of information in order to classify and reconstruct patterns
[7], but the activation never propagates back via the same synaptic weights. Our
Universal Bidirectional Activation-based Learning (UBAL) model [6] is mainly
inspired by the canonical recirculation algorithm proposed by Hinton [3] conceiv-
ing the autoencoder, and by the Generalized Recirculation which is an adapta-
tion of Contrastive Hebbian Learning (CHL) [7].

UBAL shares the features with other models of this new wave of biologi-
cally inspired neural models. Random synaptic weights are proposed to avoid
backpropagating via the same neural pathway in the Feedback Alignment model
[5].The Equilibrium propagation [9] as well as the whole family of Target propa-
gation models [8] make use of the target clamping which is essential in contrastive
learning1.

1 The target (ground truth) is directly inserted (clamped) into the output layer of a
model as a neural activation which can be propagated backwards in the network.
Instead of using error derivatives, the weights are adapted based on local differences
between forward (estimated) and backward (clamped) activation variables.



2 Krist́ına Malinovská and Igor Farkaš

2 UBAL model

UBAL is a heteroencoder model that maintains separate weight matrices for
two different activation propagation directions between the visible layers. In
the context of classification the propagation of input activation would be called
the prediction in the forward direction and propagation of the clamped targets
would be called the prediction in the backward direction. Inpired by [3] we also
propagate the network’s immediate prediction in the opposite direction which
we call the echo.

Since the same learning rule applies for any two consecutive bidirectionally
connected layers, hidden or visible, we define the model here for just two con-
nected layers p and q and their synaptic weights W pq for the forward direction
and M qp for the backward direction (1). As listed in Tab. 1, the activation of
propagation is expressed as the product of the presynaptic activation and the
bias and the synaptic weight with the activation function f applied. The biases
are added in both directions and labeled b or d. Their synaptic connections are
already assumed in the weight matrices.

The resulting activation variables are combined using the hyperparameters
β and γ defined for each direction of activation propagation (F and B) into
learning rule terms (Tab. 2). The learning rule in Eq. 1 - 2 is formed by these
intermediate terms with the aim to emphasize its relationship to the contrastive
Hebbian learning.

∆W pq = λ tBp (tFq − eFq ) (1)

∆M qp = λ tFq (tBp − eBp ) (2)

Table 1: Activation propagation.

Activation Phase Note Computation

Forward Prediction qFP f(W pqpFP + bp)

Forward Echo pFE f(MqpqFP + dq)

Backward Prediction pBP f(MqpqBP + dq)

Backward Echo qBE f(W pqpBP + bp)

Table 2: Learning rule terms.

Learning Rule Term Note Computation

Forward Target tFq βF
q q

FP + (1− βF
q )q

BP

Forward Estimate eFq γFq q
FP + (1− γFq )q

BE

Backward Target tBp βB
p pBP + (1− βB

p )pFP

Backward Estimate eBp γBp pBP + (1− γBp )pFE

Fig. 1: UBAL connectivity of two
connected layers p and q.

The hyperparameters β mediate the clamping and trade-off the predicted and
the clamped activation contributing to the weight change. The hyperparameters
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γ trade-off the prediction and the echo activation variables. The values of βs and
γs differ across the tasks that the network has to learn and are under continuous
examination. Our general observation so far is that, setting all γs to 0.5 works
well for associative tasks (encode-retrieve) and values around 0.0 and 1.0 enable
UBAL to master classification.

3 Classification and generative properties

With the hyperparameter setups in Tab. 3 (input–hidden–output) and large-
enough hidden layer (1500 neurons), the performance of UBAL in the MNIST
[4] benchmark is comparable to the related models. UBAL can reaches up to
96% accuracy on the testing set, without any kind of image augmentation or any
supplementary regularization techniques. We use a 3-layer network with standard
sigmoidal units (softmax for output layer) and Gaussian weight initialization
N (0.0, 0.5) and learning rate 0.05. MNIST digit targets are encoded as one-hot
vectors and images are normalized to (0, 1).

Table 3: Two setups of UBAL
hyperparameters for MNIST.

Setup A Setup B

βF 0.0 - 1.0 - 0.0 1.0 - 1.0 - 0.9

γF 1.0 - 1.0 1.0 - 1.0

γB 1.0 - 1.0 0.9 - 1.0

βB 1.0 - 0.0 - 1.0 0.0 - 0.0 - 0.1

Fig. 2: Example of projected
digit 3 with Setup A (left) and
Setup B (right).

Hence UBAL is a heteroencoder, apart from classifying the digits, it also
naturally makes projections of those digits in its input layer, which could be
understood as the network’s imagination as shown in Fig 3. Our preliminary
results suggest that these images differ among network initializations and they
are different from the computed averages of all images in the dataset. Decreasing
the hidden layer βF from 1.0 to a smaller value (0.995− 0.999999) yields slight
decrease in accuracy, but more variable and graded images with soft edges.

A natural step in exploration of generative properties is to introduce noise
into the network. Currently, we are adding small Gaussian noise to the labels.
Our experiments show that the generalization ability of UBAL is not much
impeded by a very low-variance noise, yet it yields more diverse backward pro-
jections in case the noise is added to the targets when gathering the backward
projections. The ability of UBAL to generate patterns in the backward direction
while trained for the classification task is mostly influenced by the β and γ hy-
perparameter setup. There are setups that do work well in terms of classification
accuracy, but do not allow generation of legible numbers (Fig. 2). We will further
explore the properties of the projected images and how they are classified by a
UBAL and by other models. This relates to explainable AI, where there is a
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Fig. 3: MNIST digits generated by UBAL.

prospect of using UBAL for generating noise for adversarial examples [1]. In this
line we plan to investigate the robustness of UBAL against adversarial attacks.
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