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Abstract. Action understanding is a vital cognitive capacity for robots
interacting with humans. The role of mirror neurons in action under-
standing has been widely discussed and modeled in the field of cognitive
robotics. A mirror neuron system (MNS)-based neural machinery allows
the robot to link the high-level representation of the observed action with
a high-level representation of the same or similar action within its own
motor repertoire and thus facilitate the understanding of the observed
scene. We present a novel version of a multi-layer connectionist model of
MNS for a cognitive robot that connects visual and motor modalities in
a hierarchical fashion. It is based on an existing model for a humanoid
iCub robot that learns to perform and understand grasping actions. We
adapted our MNS model for the humanoid NICO robot. Our preliminary
results indicate that our model is able to form mutual representation for
perception and action and show us a promising perspective of developing
action understanding and imitation in the future.

Keywords: cognitive robotics, mirror neurons, action understanding,
iCub, NICO, bio-inspired modeling

1 Introduction

Cognitive robotics aims at studying cognition of humans through the method of
understanding by building [16]. Typically this involves connectionist bio-inspired
models for perception and action employed in humanoid robots performing tasks
in multimodal environments in interaction with humans. While building the
cognitive capacities in such robots we can get inspiration from the hierarchical
organization of processing in the brain, from low-level feature detection or motor
control up to high-level association areas.

According to the common coding theory [7] there is a common high-level
representational base for perception and action, i.e. the motor component of
the action is tightly linked to it perceptual consequences. Further on, it has
been shown, that perception of action automatically activates the motor areas,
which is referred to as motor resonance measured in terms of the EEG µ-rhythm
desynchronization [17]. This motor response to a perceived action was discovered
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in monkeys also via direct cell recording and coined as the theory of mirror
neurons [20]. The neurons in macaque F5 area typically active when executing
goal-directed hand and mouth movements were discovered to also fire when the
monkey observed the same actions executed by the experimenter. The mirror
neurons were also later discovered in humans [13]. The mirror neuron system
(MNS) [20] is assumed to give us the possibility to ,,step into the shoes” of the
observed agents and thus provide us with deeper understanding of the observed
actions, which are typically processed by the visual STS area. Additionally, the
mirror neuron area F5 is linked with the STS area bidirectionally and is assumed
to ease up the exhaustive processing of the visual input via the insight from one’s
own motor experience [24].

In this paper we revisit an existing modular neural architecture of mirror
neuron circuitry for a cognitive robot. The contributions of this papers are: the
novel adaptation of the existing MNS system with a new bidirectional biologi-
cally motivated neural model UBAL and the extension of the new model to a
different robotic platform, corroborated by our preliminary results.

2 Related Work

There have been many attempt at modeling the mirror neuron circuitry for
robots. A majority of these models are mimicking the actual neural circuitry in a
modular fashion, where the modules or components directly represent particular
parts of the monkey’s brain, for instance the FARS model [2], MNS1 [15] or
MNS2 [1]. Along the most classical works also the forward and inverse model
paradigm [27] could be interpreted as a kind of mirror neuron function in action
recognition and imitation.

Within the most recent works, attention has been shifted from modular to the
currently most popular end-to-end architectures. One of such models or mirror
neurons utilizes a multi-modal variational autoencoder (VAE) for the humanoid
iCub robot, which build a multi-modal common representations of perception
and action and allows the robot to imitate an observed movement [28]. In a follow
up work the VAE has been outperformed by the new deep modality blending
networks (DMBN) [22] which also allowed the robot to retrieve the missing
information of the associated modal information, including different perspectives
in the visual data. The classical problem of the association of the viewpoint of
the observed action and the self-view that is typical for the stage of acquisition
of the motor knowledge has also been addressed using a VAE [4].

2.1 Robotic MNS for iCub

The robotic MNS model that we built upon is a hierarchical neural architecture
for a simulated iCub robot [25] that learns and observes grasping actions. It
maintains bidirectional connection between high-level association areas connect-
ing the motor and visual representations and implements the motor facilitation
theory [24] in the domain of cognitive robotics. The aim of the model was to use
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the visuomotor connection account for the problem of translating between the
different viewpoints from which the actions are observed.

At each level of the architecture there is a different neural bio-inspired mech-
anism. The motor execution module is trained via reinforcement learning and
produces the robot’s grasping actions in terms of joint angles (Fig. 1). Simi-
larly the vision module maintains the positions of the joints observed from four
different viewpoints (self - 0◦, 90◦, 180◦, and 270◦). The temporal nature of
sensory and motor sequences is captured on the higher level in the association
areas modeled by the special type of recurrent self-organizing maps, namely the
merge-SOMs (MSOM) [23]. These are to resemble the F5 and STS areas of the
monkey’s MNS in form of topologically organized maps of the actions.

When trained, the MSOMs indeed get organized by the action type (3 dif-
ferent grasps) in the F5 and by viewpoints and subsequently action types in the
STS. The activations from the MSOMs are binarized via the k-WTA method,
which selects k winners (most active neurons) on the map and sets them to 1,
other neurons are set 0 (Fig. 1). This way biologically plausible sparse neural rep-
resentations of the visual and motor aspects of actions emerge. The connection
between the visual and motor representations is maintained by the bidirectional
activation based learning neural network model BAL [3].
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Fig. 1: From left to right: examples of iCub’s grasping actions of three types with
respective activations of F5 (MSOM 12× 12) and STS (MSOM 16× 16) for each
view-point, both binarized with k = 16. On the rightmost side the schema of the
MNS model is depicted. All figures adapted from [18].

The mirror neurons as such in this models are formed in the topmost area
that is modeled as a self-organizing map (SOM) [9] of perspective-invariant mul-
timodal representations of actions. The way how theses associations are formed
in the robot learning scenario is inspired by imitation learning in infants. It has
been hypothesized that children learn the association between the executed and
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the observed because parents tend to involuntarily imitate them right after they
produce an action allowing a Hebbian like association between perception and
action [5].

In this previous the original BAL model was not able to learn the one-to-many
mappings required to associate different visual representations with one motor
representation and thus the model was aided with its topmost association part.
However, with the emergence of the subsequent UBAL model which has similar
inspiration and properties, yet is more complex and universal, this association
should indeed be possible.

2.2 UBAL Model

Among its predecessors, the UBAL model [12] presents an alternative to classi-
cal error-backpropagation learning, the most prominent learning algorithm for
neural network nowadays, which is effective, but biologically implausible. UBAL
is a successor of the BAL model [3] and is mainly inspired by the recirculation al-
gorithm for the autoencoder by Hinton [6], and by the Generalized Recirculation
and Contrastive Hebbian Learning [14].

UBAL shares features with its predecessors and related models, but is also
very unique. It is a heteroencoder that maintains separate weight matrices W
and M for two different activation propagation directions (F and B) between
inputs and output. Fig. 2 (left) shows a model with two visible layers x and y and
hidden layer h. Activation states in the network are also propagated backwards
via echo connection E as indicated in Table 1, which shows general propagation
rules between any connected layers p and q. Additionally, the activation in UBAL
also propagates backwards within (echo) the model forming the model’s own
projections of its internal states.

Fig. 2: Schema of 3-layer UBAL (left) adapted from [12] and MNIST digits gen-
erated by trained UBAL (right) adapted from [11].

UBAL model learns by a local learning rule, which means that the weights
are only adapted based on presynaptic and postsynaptic neuron activations. The
learning takes into account all the activations variables (Table 1) transferred into
intermediate terms (Table 2) modulated by special hyperparameters β and γ
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forming a Hebbian-anti-Hebbian learning rule:

∆W pq = λ tBp (t
F
q − eFq ) (1)

∆M qp = λ tFq (t
B
p − eBp ) (2)

Table 1: Activation propagation.

Activation Phase Note Computation

Forward Prediction qFP f(W pqp
FP + bp)

Forward Echo pFE f(Mqpq
FP + dq)

Backward Prediction pBP f(Mqpq
BP + dq)

Backward Echo qBE f(W pqp
BP + bp)

Table 2: Learning rule terms.

Term Computation

tFq βF
q q

FP + (1− βF
q )q

BP

eF
q γF

q q
FP + (1− γF

q )q
BE

tBp βB
p p

BP + (1− βB
p )p

FP

eB
p γB

p p
BP + (1− γB

p )p
FE

Endowed with the echo mechanism and a universal learning rule, UBAL is
able to master various qualitatively different tasks such as association (mem-
ory), denoising and classification based on how hyperparameters β and γ are
set up. Since UBAL approaches any problem as a bidirectional heteroassocia-
tion (including classification from many data points to labels), it has intriguing
emergent properties, such as generation of patterns it learns to classify without
being trained with the objective to do so [11]. Fig. 2 (right) illustrates the model
imagination, i.e. the output of the model when only the label is inputted to the
model.

3 Robotic MNS: a Revival

With a novel universal heteroassociative model on hand, we revisit the old MNS
model [19] described in 2.1 and replace the BAL module with UBAL [12] de-
scribed in 2.2 also removing the topmost SOM-based association area of the
original MNS model. We assume that the hidden layer of UBAL will represent
the connection between the modal representations. Since we know about the
generative properties of the UBAL model we assume that it could also make
such projections about the visual representation which is mapped to the motor
representation in an ”unfair” way (4 viewpoints to 1 movement), similarly to
UBAL being able to make its own projection about the handwritten digits from
the labels. Additionally, UBAL can also be trained to classify and distinguish
the grasp types.

The schema of our new robotic MNS model is depicted in Fig. 3. In line with
the previous research we assume the low level modules for perception and action
can be any neural models and need to be tailored for the used robotics platform.
The positions of key joints of the observed counterpart could be extracted via
a deep neural network tailored for that task or just used out of the shelf. For
instance, we find the MediaPipe [10] library as a good candidate for this task.
The joint information in terms of angles and positions in the Cartesian space
(as extracted in the vision modules) are then fed to the respective modules of
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F5 and STS consisting of MSOMs and processed with k-WTA to form the high-
level sparse representations as in the original model. Subsequently, associations
of these different motor and visual representations are formed via UBAL, com-
pleting the mirroring connection between the observed and the executed actions.

Fig. 3: Schema the new robotic MNS.

3.1 NICO Robot and Grasping Actions

For our new robot MNS we have chosen the NICO (Neuro-Inspired COmpanion)
robot platform [8]. NICO is slightly smaller and simpler compared to the famous
iCub robot and comes in various versions. The one we have in the physical form
has the RH6D hand with 15 degrees of freedom in the hand, with three-segment
fingers and an opposable thumb, driven by intelligent actuators [21].

To replicate the previous work and have a proof of concept for our model,
we have not endowed the robot with autonomous grasping capability, but rather
recorded actions using the software NICO Control GUI1. Our grasping data
consisted of 3 different grasp types (Fig. 4), 10 different grasping sequences per
type, all with the length of 16 to much the original experiment with the iCub
[19] as much as possible.

We also followed the original MNS model in terms of acquisition of the pro-
cessed visual data in terms of positions of the robot’s joints in the Cartesian
space viewed from different viewpoints. For this we used the NICO simulator2

based on the MyGym software [26], implemented a forward kinematics model

1
NICO Control GUI is available at https://github.com/andylucny/nico/tree/main/nicogui, demo
at: https://www.youtube.com/watch?v=iRyn1FJB3FU

2
NICO simulator is available at https://github.com/incognite-lab/myGym/tree/nico-sim2real

https://github.com/andylucny/nico/tree/main/nicogui
https://www.youtube.com/watch?v=iRyn1FJB3FU
https://github.com/incognite-lab/myGym/tree/nico-sim2real
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to accompany the existing inverse kinematics model. We also adapted the ex-
isting URDF model of our NICO robot’s hand, which was missing the thumb
(Fig. 5) thus obtaining a good model for the future work with training NICO
to grasp autonomously via inverse kinematics or reinforcement learning. The
sources were published as the outcome of Jakub Mǐsovký’s master thesis and are
freely available online.3

Fig. 4: Examples of three actions executed by NICO, from left to right: side
grasp, precision grasp, power grasp.

Fig. 5: The NICO robot in the simulator (left) and NICO’s hand with an opposing
thumb (right).

3
https://github.com/misovsky3/RobotNICO_Master_thesis

https://github.com/misovsky3/RobotNICO_Master_thesis
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3.2 MNS model training and preliminary results

When we collected and preprocessed the data we were able to train the MSOM
models of F5 and STS. We have experimented with various hyperparameters of
the MSOM including the map size yielding the best size for F5 8 × 8 neurons
and for STS it was 12× 12 neurons. The distribution of winners on the trained
maps according to grasp types and viewpoints is shown in Fig. 6.

Fig. 6: From left to right: trained F5 organization according to grasp types and
trained STS organization according to viewpoints and grasp types. Note that
similarly to the original model the STS gets organized primarily based on view-
point.

With the trained MSOMs we collected the activations for each of the input
sequences and collected a dataset to train the UBAL model. We experimentally
achieved best values of k to be used for k-WTA as k = 8 for motor area F5
and k = 12 for visual area STS. The k-WTA processed data of F5 were inputed
at the visible layer x of the UBAL model and the STS data at the y layer.
We performed two different experiments, one with just the 0◦ viewpoint and a
second one with all 4 viewpoints. Note, that the motor data needed to be copied
to match the motor counterpart for each of the viewpoints. Thus the model
learned 1:4 association between the motor and the visual representations.

Hyperparameters for UBAL used in the experiments are shown in Table 3.
We trained the models for 25 epochs. We used the cross-validation technique
with 5 folds and 10 repetitions per fold. The training progress is displayed in
Fig. 7. The best achieved testing accuracy in the case of one viewpoint matching
was: in the F5 -to-STS association 99.59%± 0.3% and in the opposite direction
from STS -to-F5 86.68% ± 3.43%. In the second experiment the accuracy was
90.6% ± 0.6% and 83% ± 2.2%. We expected the performance of the model to
be worse in the case of mapping 4 viewpoints of the same action to just 1 motor
sequence, however, the difference was surprisingly smaller then expected. Even
though it is a hard task to match the unevenly distributed representations, we
can conclude UBAL masters it quite well.
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Table 3: UBAL hyperparameters

Hyperparameter Value βF
(per layer) 1.0 - 1.0 - 0.9

Architecture 64–70–144 γF
(per weight matrix) 1.0 - 1.0

Learning rate 0.05 γB
(per weight matrix) 0.9 - 1.0

Weight initialization N (0.0, 0.5) βB
(per layer) 0.0 - 0.0 - 0.1

Fig. 7: Training progress of UBAL with association of 1 viewpoint (left) and all
4 viewpoints (right).

3.3 Discussion and future work

With the pilot experiments yielding good results we have many prospects to
follow. Our next goals will indeed include building and training a neural-based
control module (low level) for the NICO robot to perform actions autonomously
and learn new actions. The accompanying neural modules should also consider
some visual processing of the scene and evaluation of the target object to be
manipulated with.

Within the next steps of developing our MNS model, understanding of motor
actions of humans will be implemented. For this, an out of the shelf deep neural
network library such as MediaPipe [10] will be utilized. This way the robot
should not only ”understand” actions of the human partner, but also be able to
imitate or mimic new actions within its own joint space. Since the transformation
from the observed to the motor counterpart takes place on the higher level, the
direct transformation for human joints to robot joints is not necessary. This
could be and advantage for our future research in human-robot interaction and
collaboration.

4 Conclusion

Modeling the cognitive capacities of robots with the bio-inspired methods is
a main goal of the field of cognitive robotics. Here we presented our attempt
at revisiting the concept of modeling the mirror neuron system for a cognitive
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robot and corroborate our methodology with preliminary experimental results.
The use of bio-inspired neural network methods such as self-organization or local
heteroassociative learning (UBAL) still seems as a promising approach we would
like to follow in the future.
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Bidirectional Activation-based Learning Rule for Neural Networks. In: Proceedings
of the 2019 2nd International Conference on Computational Intelligence and Intel-
ligent Systems. pp. 57–62 (2019)

13. Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., Fried, I.: Single-neuron re-
sponses in humans during execution and observation of actions. Current Biology
20(8), 750–756 (2010)



Robotic Model of the Mirror Neuron System: a Revival 11

14. O’Reilly, R.C., Munakata, Y., Frank, M., Hazy, T., et al.: Computational Cognitive
Neuroscience. PediaPress (2012)

15. Oztop, E., Arbib, M.: Schema design and implementation of the grasp-related
mirror neuron system. Biological Cybernetics 87, 116–140 (2002)

16. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge,
MA (1999)

17. Pineda, J.: The functional significance of mu rhythms: translating “seeing” and
“hearing” into “doing”. Brain Research Reviews 50(1), 57–68 (2005)
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