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The novel neural network model UBAL represents
a more biologically plausible alternative to error-
backpropagation. Since UBAL is a heteroassociator
with a particular mechanism of activation propagation
including self loops, it demonstrates interesting emer-
gent phenomena such as the ability to generate mean-
ingful reconstructions of the learned patterns. Cognitive
robotics uses the paradigm of understanding by building
and in this spirit explores and models the neural corre-
lates of cognitive capacities in humanoid robots. In our
modeling we tackled the understanding of motor actions
and associations between different modalities such as
vision, touch, and proprioception. In this paper, we out-
line the history of our modeling efforts as well as new
prospects for our cognitive robotic models.

1 Introduction

Cognitive robotics aims at studying cognition of hu-
mans via “understanding by building” (Pfeifer &
Scheier, 1999) employing connectionist bio-inspired
models in robots that interact with and learn from com-
plex and multimodal environments. It is well known the
cognitive functions in the brain are built up in a hierar-
chical manner, the brain areas involved are processing
information on lower levels such as low-level feature
detection or motor control and pass it on to higher, so
called association areas. The common coding theory
(Hommel et al., 2001) suggests that there is a common
representational base for perception and action (motor
performance). The perception of action automatically
activates its motor component and vice versa. The com-
mon coding framework might also be considered the
means for sensorimotor simulation (Barsalou, 1999). A
phenomenon closely related to common coding is the
so called mirror neuron theory (Rizzolatti & Sinigaglia,
2010) which claims our brain has special mechanisms
that allow us to resonate with or step into the shoes
of another person thus providing us with deeper under-
standing of the observed actions.

Modeling of cognitive capacities in humanoid
robots within the embodied paradigm of cognition
builds up on robots own senses, competences and ex-
perience. In our research we have focused on building
and connecting these capacities in a modular way, utiliz-

Fig. 1: Illustration of macaque monkey’s mirror neuron
responses - motor neurons are firing due to visual stim-
ulation (Rizzolatti et al., 2009).

ing different neural network architectures and learning
paradigms. This is something in contrast with current
trend of end-to-end deep architectures, but unlike stan-
dard deep models, it offers bio-inspired mechanisms
and relates more to the processes in the brain.

2 Our models

2.1 Robot MNS

First of our models that are building high-level multi-
modal representations was our robotic mirror neuron
system (MNS) model (Rebrová et al., 2013). It consists
of several modules: the core and the topmost part is the
mirror neuron circuit itself, which is connected to asso-
ciation areas and the low-level modules for execution of
movement and gathering of visual information.

In our modeling we assume the sensory-motor
links are established between higher level representa-
tions, rather than directly between low-level representa-
tions of the movement. To encompass the temporal na-
ture of the action sequences (i.e. joint angles of the robot
changing in time), the association areas are made of the
special type of recurrent self-organizing maps, namely
the merge-SOMs (MSOM, Strickert & Hammer, 2005).
For our experiments we used the simulated version of
the humanoid iCub robot (Tikhanoff et al., 2008) trained
to perform three different grasping actions. These are
processed by the higher level association area (MSOM)
and get self-organized on the resulting maps. We ob-
served that this organization is according to the type of
the grasp. Similarly, the higher level association area for
vision received information from low-level vision mod-
ule in terms of joint positions from different viewpoints.



Fig. 2: The left side of the figure shows the examples of
iCub’s grasping actions of three types and on the right
side activations of the trained motor MSOM of 12 × 12

neurons and from the visual MSOM of 16× 16 neurons
for each view-point, both binarized with k = 16.

This MSOM gets organized primarily according to the
viewpoints and secondarily according to the grasp types
(Fig. 2).

During the production of the movement, the motor
information and the visual information from the self-
observation perspective are binarized via the k-WTA
method1 and associated bidirectionally using the BAL
(Bidirectional Activation-based Learning) neural net-
work (Farkaš & Rebrová, 2013). We assume that the
robot observes another robot producing the same ac-
tions and creates visual representations of those actions
from viewpoints and associates them with the motor
representations as well. After the model is trained, the
action observed by the robot elicits the motor represen-
tation of the action. These are projected to the topmost
module together with visual information, where the mo-
tor information helps to form the view-independent rep-
resentations (Fig. 3).

In this previous work we proposed the BAL
model, but soon found out that it was unable to learn
one-to-many mappings required to associate different
visual representations from different viewpoints with
one motor representation. With a motivation to over-
come this problem and also to provide a universal ac-
count on learning in the brain, the UBAL (Univer-
sal Bidirectional Activation-based Learning) model was
born.

2.2 UBAL

The fruit of our research endeavors of cognitive mod-
eling is a novel neural network model UBAL (Mali-
novská et al., 2019). It represents an alternative to
classical, effective, yet biologically implausible error-

1k-WTA or k winner takes all: k winners on the neuron map are
set to 1 and others to 0
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Fig. 3: The robot MNS model (Rebrová et al., 2013).

Fig. 4: Schematic deptions of UBAL. The neural acti-
vation in the model propagates bidirectionally (F and B)
between layers x and y via weights W and M . Activa-
tion states computed by the network are also propagated
backwards via echo connection denotes with E.

backpropagation learning. As well as its predecessor
BAL, inpired by GeneRec model (O’Reilly et al., 2012),
UBAL is heteroassociative network that does not learn
by gradient descent. Unlike any other model UBAL
maintains separate weight matrices for two different ac-
tivation propagation directions between inputs and out-
puts (Fig. 4). As in the brain the signal only travels
through the axons of the neurons in one way via sep-
arate synaptic weights. Additionally, UBAL enhances
contrastive Hebbian learning rule with an internal echo
mechanism enabling self-supervised learning. There-
fore, it is able to master various tasks such as associa-
tion (memory), denoising and classification based on its
hyperparameter setup.

Since UBAL approaches any problem as a bidi-
rectional heteroassociation, it has intriguing emergent
properties, such as generation of patterns while trained
for classification (Malinovská & Farkaš, 2021) as shown
in Fig. 5. Such a neural network model can also be un-
derstood as a model cognition and the representations it
creates on the input level without the stimulation input
can be seen as prototypes of the learned categories.



Fig. 5: Projections of learned digits from the MNIST
dataset generated by UBAL.

Fig. 6: Proprio (left) and tactile (right) self-organizing
map-based association area representations.

2.3 Proprio-tactile associations

In a more recent work within the modular hierarchical
modeling paradigm (Malinovská et al., 2022) we ex-
plored the phenomenon of the emergence of the body
schema which built form our early infancy. Body repre-
sentations have a multimodal nature that foremost com-
prises somatosensory, i.e. tactile and proprioceptive in-
formation, coupled in a hierarchical fashion in high-
level multi-modal representations. In line with the cog-
nitive robotics paradigm we proposed a simple connec-
tionist model build from hierarchically connected neural
networks that learns the proprioceptive-tactile represen-
tations for the humanoid iCub robot.

This model, along with the previous MNS model
utilizes self-organizing maps (SOM, Kohonen, 1997) as
association areas (Fig. 6, the k-WTA mechanism and
the UBAL model at the topmost level. It has shown a
quite good ability to predict touch and its location from
proprioceptive information. Due to the generative prop-
erties of UBAL mentioned above we could also observe
how the model predicts the body-configuration based on
the information from the tactile modality, even though
the association is many-to-one rather then one-to-one.
This intriguing properties along with other aspects such
as the quality of the high-level representations emerg-
ing on the hidden layer of the model are worth further
investigation and modeling and are subject to ongoing
research.

Fig. 7: The robot MNS model (Rebrová et al., 2013).

2.4 Robot MNS: a revival

Our path towards robot mirror neurons or robot com-
mon coding model is still unraveling. Our current effort
is to revisit the old MNS model and replace the BAL
module with the UBAL module which would in turn
also replace the topmost association area of the model.
Progressing with the current knowledge on the UBAL
model we can also assume interesting phenomena if we
turn the prediction task the other way round and let our
model predict what would be seen when the action is
executed.

The modular neural architecture (Fig. 7 is com-
posed of low level execution modules that can be var-
ious different control models2 and vision processing
module which could be a deep neural network for ex-
traction of the observed joint positions. The core of our
model is representing the movements in motor (propri-
oceptive) and visual modalities as patterns in a topolog-
ically organized association area module utilizing the
MSOM model (Strickert & Hammer, 2005). On the
top these representations are connected via the UBAL
model, capable of connecting multiple different visual
representations with one motor representation (robot’s
own motor repertoire).

A vital task for this research is to collect an ade-
quate sample of data from the robot platform and also
to extend from the iCub robot to other platforms. In our
case we are working with the small humanoid NICO
robot (Kerzel et al., 2017), which we have also in physi-
cal form. The model that allows the robot to connect its
own movement with the observed one could be benefi-
cial for human-robot interaction and smooth implemen-
tation of robot’s ability to imitate the human partner.
The core idea behind is to use the hierarchical neural
model that will allow transfer on the conceptual level,
rather then on the concrete effector level, which is also

2Modules generating joint angle sequences for the robot such as
an inverse kinematics module or RL-trained neural network such as
the one used in the previous model



a known property of the mirror neurons (Rizzolatti &
Sinigaglia, 2010). The aim for the next modeling would
be to have the way to retrieve the robot’s movement pat-
terns from the association areas. Such model, connected
to a helpful software processing the human moving in
real time such as the MediaPipe (Lugaresi et al., 2019)
can be then used for the interaction of the robot with the
human in imitation learning and collaboration tasks.

3 Conclusion

Cognitive robotics aims at studying cognitive capacities
of humans via building them in humanoid robots. Ca-
pabilities such as action understanding or body schema
building are a result of hierarchical multi-modal pro-
cessing and therefore we claim it is opportune to build
them via modular hierarchical neural network architec-
tures with use of biologically plausible neural learn-
ing mechanisms such as self-organizing maps and bio-
inspired association models (UBAL). In our future work
we aim at further developing and testing the model for
action understanding and use it in the context of human-
robot interaction in imitation and collaboration tasks.
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