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Abstract—In autonomous driving systems, intention estimation
of traffic participants is one of the most crucial aspects. In
this paper, several machine learning methods are used to train
classifiers capable of estimating the intention of a pedestrian to
cross a zebra crossing. Their results are compared to a Bayesian
network – an approach commonly used in autonomous driving.
The data used for the estimation contain only position and
heading of the pedestrians. The best performing method achieved
the F2 score of 92.37%.

Index Terms—Intention estimation, Machine learning, Auto-
mated driving.

I. INTRODUCTION

The goal of scenario understanding in autonomous driving
applications is to correctly estimate the other traffic partic-
ipants’ intentions and predict their motion. Pedestrians are
the most vulnerable traffic participants. They are also capable
to change their speed and heading quite quickly. For these
reasons, one of the most crucial tasks of the scenario under-
standing, is the estimation of the pedestrians’ intentions.

Our goal is to evaluate several approaches in the task of
estimating the pedestrian intentions to cross the zebra based
solely on the trajectory data. The trajectory data are easily
obtained using sensors commonly used in autonomous driving
applications.

II. RELATED WORK

Understanding the current traffic situation is a key interme-
diate step on the way towards a self-driving car. The estimation
of the traffic participant‘s behavior is usually based on the
observations of the surrounding context and the previous
motion patterns of other involved traffic participants. However,
motion prediction of dynamic objects based solely on physical
laws (e.g., physics-based motion prediction) does not suffice,
but rather the intentions of these dynamic objects have to be
taken into account.

The systems for motion and intention predictions are mainly
focusing on other vehicles (e.g. [1], [2], [3]). However, the
safety of other traffic participants, especially the pedestrians,
in complicated urban traffic situations is crucial. Therefore,
the correct prediction of pedestrian‘s intention and motion
(e.g. intention to cross the street) can be very helpful in an
successful effort to avoid accidents.

In the past years, several different systems for pedestrian
intention estimation and motion prediction were proposed.
These systems work with a variety of input data such as

pedestrian dynamics, pose and head orientation. However, our
work focuses on more simplistic data containing only the
object classification, position, and heading of traffic partici-
pants. These data are easier to obtain with more conventional
hardware likely to be implemented in consumer autonomous
cars.

Based on the study from [4], for dealing with humans
around the vehicle, several different aspects have to be ana-
lyzed, such as intent and activity prediction, skill and style
of the traffic participant, attention model, general activity
classification and behavior analysis. This study includes a large
number of approaches for pedestrian motion prediction and
intention estimation and all of these approaches use pedestrian
dynamics. However, most of them are focusing on additional
information such as head orientation, social context and body
pose. These additional features can be very useful for the
correct estimation of pedestrians’ intentions. However, the
studies regarding pedestrian intention estimation still vary
considerably in terms of the type of the cues and computer
vision techniques employed.

In [5], the authors proposed a generic context-based model
to predict crossing behaviors of pedestrians in intra-city sce-
narios. This model provides accurate predictions at an early
time. The authors considered a multi-model system, where
they explored specific locations such as zebra crossings, which
where based on expert driving experience.

The approach from [6] presented an intent prediction system
for the use in advanced driver assistance systems. This system
uses a monocular view of the road. The authors used cues
such as GPS position and pedestrian dynamics, similar to the
data used in our study. For the behavior prediction, the authors
used a particle filter. The predictions have been computed for
the desired prediction horizon, and a bi-variate Gaussian was
fitted over the particles. The authors indicate a prediction time
5 steps ahead. However, they did not define the length of the
step. Another shortage is in the map information, where the
authors used map information from the OpenStreetMap, which
can be insufficient in multiple cases. Since the OpenStreetMap
is a collaborative community project the quality of the map
often varies. It also lacks some categories of information
such as the structure and type of the traffic lanes. Last,
but not least, the proposed method does not utilize ego-
motion compensation, so the system does not work for moving
vehicles.



In [7], the image-based 2D pose estimation using CNNs
is presented. The authors combined CNN-based pedestrian
detection, tracking and pose estimation for prediction of the
intention to cross the street. In [8] the authors proposed a
real-time framework, which learns intention recognition using
weak-supervision and locomotion dynamics of intention from
pose information using transfer learning. The method for
prediction of future pedestrian paths, poses, and intentions up
to 1s in advance is presented in [9]. This method is based
on balanced Gaussian process dynamical models (B-GPDMs),
which reduce the 3-D time-related information extracted from
key points or joints placed along pedestrian bodies into low-
dimensional spaces. This method contains four main models of
pedestrian activity (walking, stopping, starting and standing)
and selects the most similar model to estimate future pedes-
trian states.

The pedestrian intention estimation using motion informa-
tion similar to our data is presented in [10]. This information is
obtained by accelerometer carried by pedestrians. The authors
used different variations of kNN and SVM classifiers and
obtained prediction accuracy 84.8%.

Similar research is presented in [11], where the authors
use Support vector machines and dense and Long-Short-Term-
Memory networks to classify the intention of the pedestrians.
They use handcrafted features as well as CNN derived fea-
tures. They evaluate the results in respect to time and distance
to cross. Support vector machines achieved over 90% accuracy
in predicting crossing pedestrians correctly up to 2 seconds and
3 meters to cross.

III. OUR APPROACH

Our current focus is on pedestrians, namely on intention
estimation near zebra crossings. Our approach is heavily
dependent on the available data.

A. Data description

Due to the project setting we only have access to the
high-level preprocessed data. We could not use any semantic
cues e.g. body posture or head orientation extracted from the
video stream. The objects (cars, pedestrians) in our data are
represented by their centroid positions.

We extract our data from high-level representation of the
map of the environment and the processed information from
the ego-car. The data are processed on the frame-level, so
each data item in our dataset represents one pedestrian in
one particular time moment. We have cleaned the data to
include only pedestrians to avoid the noise introduced in the
preprocessing.

The data available from the system sensors include
• time: timestamp, frame number
• identity: pedestrians, zebras, ...
• position (x,y): pedestrians, cars, ...
• velocity: pedestrians, cars
• orientation: pedestrians’ headings
• map data: lanes, zebra anchor points, curbs, ...

Pedestrian position and heading 

Distance along border 

Distance to nearest point

Distance to zebra

Divergence angle

Fig. 1: Raw data from the sensors in blue. Computed features in red.

From the pedestrian data and the map data we can compute
more informative data like the time of the pedestrian crossing
or entering the road, the position of the nearest road or the
crossing entry point, the distance from the zebra (Euclidean
or along the road) or from the nearest road border, the angle
between pedestrian’s heading and the line to the zebra center,
etc.

Our final derived features used in classification tasks are
• Distance to zebra: the distance between the position of

pedestrian and the zebra anchor point,
• Distance to nearest point: the distance between the

nearest road border point and the pedestrian position,
• Distance along border: the distance between the nearest

road point and the zebra anchor, measured along the
border curve and

• Divergence angle: the angle between pedestrian’s current
heading direction and pedestrian-to-zebra direction.

The features are visualized in Figure 1. All features are mea-
sured in two consecutive time points. The delay between the
timepoints of measurement was chosen to be 0.6s (representing
the current situation and the situation 0.6s ago). The dataset
contains continuous values for standard ML methods and also
discretized values for Bayesian nets or classical reasoning.

In the raw data available to us, there is a strong imbalance
among classes. Namely, most of the tracked pedestrians are
not crossing the lane. This phenomenon can be observed
in Figure 2, where the crossing and non-crossing pedestrian
trajectories are color-coded. The majority of the pedestrians
are not crossing (magenta colored dots) and some are crossing
(blue colored dots).

When using an imbalanced dataset, the prediction models
learn to classify all pedestrians as non-crossing. We com-
pensated the imbalance in the dataset by oversampling the
minority class (the crossing pedestrians). The amount of data
available in the augmented dataset is 2278882 rows.

B. Intention estimation

We considered and tested several machine learning (ML)
approaches to pedestrians’ intention estimation. The first ap-



Fig. 2: Collected data. Color-coded trajectories of non-crossing (magenta) and crossing (blue) pedestrians.

proach - the Bayesian network (BN) - was inspired by our
previous work [12]. The data (the derived features) for the
BN prediction were discretized into two classes

xdiscr =

{
Far if x > θx
Close otherwise,

where θx is the threshold for the feature x. The thresholds
were found by via grid search. The outcome of the Bayesian
network classification is the probability of the pedestrian
crossing the zebra.

Bayesian networks are generally slow and computationally
demanding. Therefore we searched for alternatives and tested
several other methods. These classifiers were trained with the
same features as the Bayesian net, but without discretization
( e.g. distances in meters instead of Far/Close). Again data
from the current and previous time frame were used. We
investigated several simple ML methods, their bagged versions
and other meta-estimators:
• K nearest neighbors (KNN),
• Bagged K nearest neighbors (bKNN),
• Linear Discriminant Analysis (LDA),
• Bagged Support Vector Machines (bSVM),
• Random forests (RF),
• Extremely randomized trees (ERT).
The outcome of these methods is a binary classification of

the pedestrian intention to cross the zebra.
In the following sections we will describe these methods in

detail. The chosen parameters of the presented methods were
estimated using a grid search on a smaller dataset.

1) Bayesian network: Bayesian network [13] is a proba-
bilistic graphical model consisting of a directed acyclic graph
and a join probability distribution. In the graph, a directed
connection X → Y means that X causes Y with a given
probability. The conditional distribution for each node is given
its parents only P (Xi|Parents(Xi)). For discrete variables it
is represented as a conditional probability table giving the
distribution over Xifor each combination of parent values.

The structure of the proposed Bayesian network for the
intention estimation of pedestrians near a zebra crossing can
be seen in Figure 3.

The implemented Bayesian network solution processes the
data from two consecutive timepoints of pedestrian trajectory
history and locations of nearby roads and crosswalks.

2) K nearest neighbors: KNN classifier [14] is a memory
based classifier that needs all the training data stored for
classification. To classify a feature vector x, the distances to
all training vectors are computed and K closest points are
selected. The most occurring class is the resulting class.

In our experiments we used K = 501, Manhattan distance
measure

dManhattan(p,q) = ‖p− q‖1 =

n∑
i=1

|pi − qi|,

and KD tree algorithm for finding the nearest neighbors.
The votes of the neighbors were inverse distance weighted,
meaning that closer neighbors influence the decision more than
the distant neighbors.

3) Bagged K nearest neighbors: bKNN is an ensemble
estimator. Each of the KNN base estimators is trained on a
bootstrap replica of the training set. The decision is made by
voting. We used K = 40, Chebyshev distance measure

dChebyshev(p,q) := max
i

(|pi − qi|)

with uniform neighbor weighting, where all the neighbors
influence the decision equally.

4) Linear discriminant analysis: LDA is a classifier with
a linear decision boundary using Bayes’ rule [14]. It assumes
that the conditional probability of X given Y is a multivariate
normal distribution with equal covariance matrices Σ in the
classes

P (X = x|Y = y) =
1√

(2π)
D|Σ|

e−
1
2 (x−µy)

T
Σ−1(x−µy),
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Fig. 3: Graphical representation of our Bayesian network.

where µy is the mean vector of each class. A feature vector
x is classified into the class y∗ that maximizes the value of
P (X = x|Y = y).

The LDA classifier tends to overfit less than the quadratic
discriminant analysis (QDA), where the covariance matrices
are different across the classes and the decision boundary is
quadratic.

5) Bagged Support Vector Machines: bSVM is an ensemble
classifier [14] of several kernel SVMs. The decision function
of the binary SVM classifier is sign(w · φ(xi) + b), where w
and b are found by solving

minimize 1
2wTw + C

∑n
i=1 ξi

subject to yi(w · φ(xi) + b) ≥ 1− ξi
ξi ≥ 0, for all i.

Here, ξi are the slack variables, C is the penalization constant
of misclassification and φ(.) is the kernel function. We used
the C = 1 and the radial basis function (RBF) kernel

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
with σ = 2 in our experiments.

The classification is done based on majority voting of the
individual 31 SVMs.

6) Random forest: RF algorithm has been proposed as an
enhancement of Tree Bagging [15]. It uses a CART algorithm
without pruning. At each test node, K random features are
selected and and a bootstrap replica of the training set is used
to find the optimal feature and cut-point.

The classifier with 500 decision tree estimators was used
in our experiments. The number of investigated features in
each node was set to 3. Entropy was used as the measure of
the quality of the split. To prevent over-fitting, the minimum
number of samples in the leaf nodes was set to 0.5% of the
training set. The classification is done based on majority voting
of the individual trees.

7) Extremely randomized trees: ERT are similar to RF,
but during induction, the algorithm splits nodes by choosing
the best feature with random cut-point and it uses the whole
learning sample to grow the trees [15].

The classifier with 100 decision tree estimators was used in
our experiments. At each node 7 random features were selected
to find the best split. Entropy was used as the measure of
the quality of the split. To prevent over-fitting, the minimum
number of samples in the leaf nodes was set to 0.5% of the
training set. The classification is done based on majority voting
of the individual trees.

IV. EVALUATION

We evaluate the methods described in Sec. III using our
dataset created from high-level representations of the UP-Drive
ego-car experience. Here we describe how we preprocess and
split our data, the performance measure we use for evaluation,
and the results of our experiments.

A. Data preprocessing

As we mentioned in Sec. , each observation in our dataset
contains one pedestrian in one particular time frame. In order
to better understand the available data, we plot the distribution
of the observations over the time of the crossing event. This
distribution is depicted in Figure 4. We can see that the
majority of crossing will happen in the time span of 3 seconds.
Therefore we trained the classifiers on the data where only
pedestrians crossing in less than 3 seconds were considered
as truly crossing.

To test the previously described methods, we decided to
use 3-folded cross-validation. We make use of the fact that
our data contain also identities of the pedestrians and of the
zebras which they entered and we split the data by these
attributes to form the training and testing data folds. This way
we make sure that although the data contain each time frame
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Fig. 4: The distribution of crossing pedestrians over the time to cross.

separately we make a reasonable split and do not mix different
trajectories and different pedestrians.

B. Performance measures

The performance of the binary classifiers can be expressed
by a confusion matrix containing the number of correctly clas-
sified instances (true positives (TP) and true negatives (TN))
and incorrectly classified objects (false positives (FP) and false
negatives (FN)). The meaning FP and FN is illustrated in
Table I.

TABLE I: Confusion matrix notation
Not crossing Crossing

class 0 class 1

Predicted Not crossing
TN FN

class 0

Predicted Crossing
FP TP

class 1

From the confusion matrix, other measures can be derived.
We use precision and recall, since recall can tell how well
we can detect all relevant objects (crossing pedestrians) and
precision is the measure how precise our detection is, i.e. how
many of the detected objects are relevant. Mathematically

Precision = TP
TP+FP ,

Recall = TP
TP+FN .

By using a Precision/Recall graph we can compare the
investigated ML methods. For each method we draw the pair
[Recall, Precision] into the graph. This graph is also conve-
nient to compare the performance of the Bayesian network
with the binary classifiers. Since the result of the BN is the
probability of crossing, we can select a threshold to make the
binary classification decision. By sliding this threshold from
0 to 1, we get several [Recall, Precision] couples forming
a curve. The area under the curve (AUC) is yet another
performance measure we use for evaluation.

The performance of the classifiers can be evaluated by

Accuracy =
TP + TN

P+N
=

TP+ TN

TP+ FN+ TN+ FP
,

but we decided to look also at the Fβ measure with β =
2, because Fβ measures do not take the true negatives into
account (non-crossing predicted correctly)

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall

.

In our research it is crucial to minimize the false negative
rate, which indicates the cases in which the pedestrians were
predicted as not having the intention to cross, but in reality
they did cross the road.

We used accuracy when evaluating with respect to time to
cross, because in this way only crossing pedestrians can be
evaluated. When evaluating with respect to distance to zebra
and overall evaluation we use the F2 measure.

C. Results

1) Original dataset: The summary of the performance of
all our proposed methods in terms of average F2 score from
the 3-folded cross-validation on the training and the testing
sets is displayed in Table II. Resulting confusion matrices
for the binary classifiers are displayed in Tables III-VIII. The
Precision/Recall graph in Figure 5 displays the performance of
our Bayesian network with variable threshold plus the results
from the binary classification ML methods experiments. The
best F2 score achieved by the BN was 86.54% at the threshold
0.224529.
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Fig. 5: PR graph. The point of highest F2 score of the BN is marked
by red circle.

In order to see how well the tested methods work in
particular time periods, we evaluated the accuracy with respect
to time to cross. In Figure 6 we can see that all methods except
the random forests achieve over 90% accuracy for pedestrians
crossing in less than 1 second. For the time of crossing up
to 3 seconds, BN and LDA keep the high accuracy, while
the accuracy of other methods is between 80% and 90%. For
pedestrians crossing after 3 seconds, the accuracy drops. This
corresponds with the fact that the methods were trained on
pedestrians crossing in less than to 3 seconds. The accuracy



TABLE II: F2 score and Accuracy of the tested methods in %
Method F2 train F2 test Accuracy train Accuracy test

K-nearest-neighbors 100 ± 0 92.33 ± 0.012 100 ± 0 90.79 ± 0.006

Bagged KNN 97.56 ± 0.001 91.07 ± 0.014 94.75 ± 0.002 90.33 ± 0.007

Linear Discriminant Analysis 92.56 ± 0.002 92.37 ± 0.009 86.42 ± 0.001 86.28 ± 0.006

Bagged SVM 94.68 ± 0.003 90.68 ± 0.008 93.04 ± 0.002 90.48 ± 0.004

Random forests 98.37 ± 0.001 87.02 ± 0.015 96.92 ± 0.001 89.49 ± 0.007

Extremely randomized trees 94.97 ± 0.001 90.83 ± 0.012 92.98 ± 0.001 90.27 ± 0.007

TABLE III: Confusion matrix for
KNN classification.

KNN class 0 class 1

class 0 330325 43609

class 1 26276 359176

TABLE IV: Confusion matrix for
bKNN classification.

bKNN class 0 class 1

class 0 333584 40350

class 1 33019 352433

TABLE V: Confusion matrix for
LDA classification.

LDA class 0 class 1

class 0 285833 88101

class 1 16075 369377

TABLE VI: Confusion matrix for
bSVM classification.

bSVM class 0 class 1

class 0 337384 36550

class 1 35750 349702

TABLE VII: Confusion matrix
for RF classification.

RF class 0 class 1

class 0 349430 24504

class 1 55281 330171

TABLE VIII: Confusion matrix
for ERT classification.

ERT class 0 class 1

class 0 334363 39571

class 1 34311 351141

of BN drops to 0 for pedestrians crossing after 3 seconds,
which influence the overall accuracy of the method.

Figure 7 show the accuracy as the function of distance to
the zebra. All methods achieve over 80% for distances up to
10 meters. BN and keeps accuracy over 95% in this interval.

2) Extended dataset: After the analysis of the previous
results we decided to extend the dataset by including an addi-
tional feature of pedestrian velocity into the feature vector. The
information about the velocity is taken from the preprocessed
high-level data abstracted from the ego-car sensors.

As a preliminary study we computed the F2 measure of the
ML methods using the same parameters as with the original
dataset. The resulting scores are reported in Table IX and the
PR graph is in the Figure 8. We can see that the results of the
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Fig. 6: Accuracy evaluated with respect to the time of crossing.
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Fig. 7: Accuracy with respect to the zebra distance.

binary classifiers are similar to the previous results, but the
AUC of the BN with velocity (0.8536) is bigger than the AUC
of the BN with only 8 features. The best F2 score achieved
by the BN was 87.98% at the threshold 0.204965.

TABLE IX: F2 measure of the ML classifiers on the extended dataset
Method F2 train F2 test

K-nearest-neighbors 100.00 ± 0.00 92.33 ± 1.21

Bagged KNN 97.89 ± 0.09 91.17 ± 1.24

Linear Discriminant Analysis 92.25 ± 0.29 92.16 ± 1.21

Bagged SVM 95.55 ± 0.22 89.57 ± 1.12

Random forests 98.69 ± 0.07 85.71 ± 1.78

Extremely randomized trees 94.95 ± 0.23 91.07 ± 1.19

D. Discussion

The results of our Bayesian network approach in [12] were
promising, so, after collecting more data we decided to use BN
approach to evaluate the method more thoroughly. We decided
to use the same features and a simplified structure of the BN.
To be able to asses the quality of the intention estimation
we also used binary classifiers with the features coming from
the same data observations as used by the BN, but in their
continuous form without applying the thresholds.

From the results we can see that the Bayesian approach did
not fulfill our expectations yet. The AUC of the PR curve is
only 0.8074. The highest achieved F2 was similar to the lowest
score of the binary classifiers, but from the Figure 5 we see
that the binary classifiers get the Precision and Recall closer
to the ideal point [1,1].
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Fig. 8: Evaluation on the extended dataset. PR graph. The point of
highest F2 score of the BN is marked by red circle.

The KNN and bKNN classifiers achieved high scores,
but we have to keep in mind, that they are memory based
classifiers that need all the training data stored for classi-
fication. To classify a feature vector x, the distances to all
training vectors must be computed, which is very unfeasible
for the autonomous cars application, due to large demands on
processing power.

LDA classifier achieved the highest score and the model is
compact enough to use it in our application.

In order to compare our approach with the existing work in
full, we would need a benchmark dataset with the high-level
representation data similar to ours. However, these representa-
tions are often bounded to particular manufacturers and there
are no standards or benchmarks on the market yet. From the
state-of-the-art research described in Sec. II we can make only
a weak comparison and conclude that our approach yields
slightly better accuracy in general, i.e. 90.79% for the best
method (kNN), given 84.8% accuracy achieved in [10] and
over 85% accuracy in predicting crossing pedestrians correctly
up to 3 seconds and 10 meters to cross (over 90% accuracy
for 2 seconds and 3 meters in [11]).

Looking at the extended dataset we conclude that the
Bayesian approach is still promising and better feature selec-
tion and structure of the BN could lead to a better performance.

V. CONCLUSION

In our paper we provided a survey of methods capable of
solving a special problem of pedestrian intention estimation
from trajectory data. Due to the project setup we can uti-
lize only the information related to trajectory of the tracked
pedestrians on the map, rather than building our own computer
vision methods to process the sensory data. Therefore, we do
not have access to information on the body posture or gaze
direction of the pedestrians.

Our highest achieved F2 score was 92.37% (accuracy
86.28%) by the linear discriminant analysis. The highest
achieved accuracy was 90.79% (F2 score 92.33%) by the

k nearest neighbors classifier. From the results we can see
that a simple Bayesian network approach does not reach
the performance of the binary classification machine learning
methods in the F2 score terms, but it has high accuracy
when investigating time and distance to cross. Therefore we
conclude that the F2 score can be improved by better BN
structure tailoring and feature selection.
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